Quantum ($\mathfrak{sl}_n, \wedge V_n$) link invariant and matrix factorizations

Yonezawa Yasuyoshi

Nagoya Univ, Studio phones

May 28 2010, Tanbara

Quantum link invariant (Reshetikhin-Turaev)

Quantum link inv. $\Leftrightarrow U_q(\mathfrak{g})$ and V_{λ} : irred. reps.

Quantum link invariant (Reshetikhin-Turaev)

Quantum link inv. $\leftarrow \sim U_q(\mathfrak{g})$ and V_{λ} : irred. reps.

Ex.

Jones poly. $J_2(q)$ \iff $U_q(\mathfrak{sl}_2)$ and V_2 : 2-dim rep. HOMFLY-PT poly. $J_n(q)$ \iff $U_q(\mathfrak{sl}_n)$ and V_n : n-dim rep.

HOMFLY-PT poly. $J_n(q)$ (Quantum (\mathfrak{sl}_n, V_n) link invariant)

HOMFLY-PT poly. $J_n(q)$ (Quantum (\mathfrak{sl}_n, V_n) link invariant)

Crossing
$$\uparrow f \in \operatorname{End}(V_n^{\otimes 2})$$

HOMFLY-PT poly. $J_n(q)$ (Quantum (\mathfrak{sl}_n, V_n) link invariant)

Crossing
$$\uparrow f \in \operatorname{End}(V_n^{\otimes 2})$$

Basis of $\operatorname{End}(V_n^{\otimes 2})$

HOMFLY-PT poly. $J_n(q)$ (Quantum (\mathfrak{sl}_n, V_n) link invariant)

Crossing
$$\uparrow f \in \operatorname{End}(V_n^{\otimes 2})$$

Basis of $\operatorname{End}(V_n^{\otimes 2})$

Morphism description of crossing

Categorification of quantum link invariant

Jones poly. $J_2(q)$ Euler char. Khovanov homology HOMFLY-PT poly. $J_n(q)$ Euler char. Khovanov-Rozansky homology

Categorification of quantum link invariant

Jones poly. $J_2(q)$ Euler char. Khovanov homology HOMFLY-PT poly. $J_n(q)$ Euler char. Khovanov-Rozansky homology

Khovanov-Rozansky homology

Categorification of quantum link invariant

Jones poly. $J_2(q)$ Euler char. Khovanov homology HOMFLY-PT poly. $J_n(q)$ Euler char. Khovanov-Rozansky homology

Categorification of quantum link invariant

Jones poly. $J_2(q)$ Euler char. Khovanov homology HOMFLY-PT poly. $J_n(q)$ Euler char. Khovanov-Rozansky homology

Categorification of quantum link invariant

Jones poly. $J_2(q)$ Euler char. Khovanov homology HOMFLY-PT poly. $J_n(q)$ Euler char. Khovanov-Rozansky homology

Khovanov-Rozansky homology

Polynomial link inv.
$$P_n(q, t, s)$$
 where $s^2 = 1$ $(P_n(q, -1, 1) = J_n(q))$

Quantum $(\mathfrak{sl}_n, \wedge V_n)$ link invariant (Murakami-Ohtsuki-Yamada)

$$\wedge V_n = \{V_n, \wedge^2 V_n, ..., \wedge^{n-1} V_n\} \cdots$$
 Fund. reps. of $U_q(\mathfrak{sl}_n)$.

$$[i, j]$$
-crossing \cdots

$$1 \le i, j \le n - 1$$

Plan of talk

- 1 MF for morphism between fund. reps.
 - Z-graded matrix factorization
 - MF and morphism
- 2 Complex for [1,k]-crossing
 - Definition
 - Main Theorem 1
- 3 New link invariant
 - \blacksquare Approximate [i, j]-crossing
 - Main theorem 2
 - New polynomial invariant
 - Main theorem 3 (Cor of Main theorem 2)

\mathbb{Z} -graded matrix factorization

Koszul matrix factorization

 $R \cdots$ graded polynomial ring,

 $M \cdots$ free R-module,

 $a, b \cdots$ graded homog. polynomial.

Z-graded matrix factorization

Koszul matrix factorization

 $R \cdots$ graded polynomial ring,

 $M \cdots$ free R-module,

 $a, b \cdots$ graded homog. polynomial.

Koszul matrix factorization $K(a;b)_M$ is 2-cyclic chain

$$K(a;b)_M = \cdots \xrightarrow{b} M \xrightarrow{a} M \xrightarrow{b} M \xrightarrow{a} M \xrightarrow{b} \cdots$$

$$(ab = ba \neq 0)$$

Category of MF

Category of MF

■ (outer) tensor product.

$$\overline{M} \boxtimes \overline{N}$$

■ Krull-Schmidt prop.

$$\overline{M}\oplus \overline{L}\simeq \overline{N}\oplus \overline{L}\Longrightarrow \overline{M}\simeq \overline{N}$$

Category of MF

Category of MF

■ (outer) tensor product.

$$\overline{M} \boxtimes \overline{N}$$

■ Krull-Schmidt prop.

$$\overline{M}\oplus \overline{L} \simeq \overline{N} \oplus \overline{L} \Longrightarrow \overline{M} \simeq \overline{N}$$

Behavior of matrix factorization

Graded matrix factorization ~ Graded (super) vector space

Construction of MF for morphism between fund. reps.

Construction of MF for morphism between fund. reps.

MF for identity between fund. rep. and essential morphism

Gluing MFs for morphism

Consider two morphisms with same coloring and opposite orientation legs.

Define gluing MFs for these diag. at end of legs.

Gluing MFs for morphism

Consider two morphisms with same coloring and opposite orientation legs.

Define gluing MFs for these diag. at end of legs.

Def (Gluing MFs for morphisms)

Gluing MF for morphism

Consider morphism with neighboring legs such that same coloring and opposite orientation.

Define gluing MF for the diag. at end of legs.

Gluing MF for morphism

Consider morphism with neighboring legs such that same coloring and opposite orientation.

Define gluing MF for the diag. at end of legs.

$$m_1$$
 m_1
 m_1
 m_1
 m_2
 m_3
 m_4
 m_4

Def (Gluing MF for morphism)

MF for morphims between fund. reps.

MF for morphism between fund. reps.

Complex for [1, k]-crossing

For [1,k]-crossing, quantum link inv. forms as follows;

Def [Y] (Complex for [1, k]-crossing)

Boundary maps $\chi_{+}^{[k,1]}$, $\chi_{-}^{[k,1]}$ are explicitly forms.

Complex for [1, k]-crossing

Main theorem 1 [Y](Invariance of Reidemeister move), in k = 1 [KR]

It's both difficult to define cpx. of [i, j]-crossing and to proof invariance under Reidemeister moves if we define cpx.

Consider approximate [i, j]-crossing as follows.

Consider approximate [i, j]-crossing as follows.

Approximate [i, j]-crossing consists of [i, 1]-crossings only. Therefore, we can obtain cpx of approximate [i, j]-crossing.

Theorem (Properties of cpx. of approximate [i, j]-crossing)

This claim is not enough to construct link homology. We need to pick out cpx. of original [i, j]-crossing. Unfortunately, I could not construct link homology in my thesis.

$$\overbrace{i \quad b \quad } \sim \bigoplus_{k=1}^{i!} \quad \overbrace{i} \quad \overrightarrow{b}$$

 $D\cdots$ Colored link diagram We obtain new link invariant by the following procedure.

 $D\cdots$ Colored link diagram We obtain new link invariant by the following procedure.

 $D\cdots$ Colored link diagram We obtain new link invariant by the following procedure.

 $\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}_2$ -homology $H^{i,j,k}(D)$ (Not link invariant)

 $D \cdots$ Colored link diagram

We obtain new link invariant by the following procedure.

$$\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}_2$$
-homology $H^{i,j,k}(D)$ (Not link invariant)

$$\overline{P}(D) = \sum_{i,j,k} t^i q^j s^k \dim_{\mathbb{Q}} H^{i,j,k}(D) \in \mathbb{Z}[q,t,s]/\langle s^2 - 1 \rangle$$

 $D \cdots$ Colored link diagram

We obtain new link invariant by the following procedure.

$$\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}_2$$
-homology $H^{i,j,k}(D)$ (Not link invariant)

$$\overline{P}(D) = \sum_{i,j,k} t^i q^j s^k \dim_{\mathbb{Q}} H^{i,j,k}(D) \in \mathbb{Z}[q,t,s]/\langle s^2 - 1 \rangle$$

Normalized Poincaré poly. (Link invariant)

$$P(D) := \overline{P}(D) \prod_{i=1}^{n-1} \frac{1}{\left([i]_{a}! \right)^{\operatorname{Cr}_{i}(D)}}.$$

$$\operatorname{Cr}_i(D) := \#\{ [*,i] \text{-crossing in } D \}.$$

Main theorem 3 (Cor of Main theorem 2)

If diagram D translates D' each other by Reidemeister moves, these evaluations by P are the same

$$P(D) = P(D').$$

That is, we have following equations: