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Basic notation and Notion

The twisted Alexander polynomial

The twisted
Alexander
polynomial

=
A refinement of ∆K (t)
(the Alexander polynomial)
with ρ : π1 → GL(V )

Notation

EK := S3 \ N(K ) a knot exterior,

Ad ◦ ρ : π1(EK )
ρ
−→ SL2(C)

Ad
−−→ Aut(sl2(C))

γ 7→ ρ(γ) 7→ Adρ(γ) : v 7→ ρ(γ)vρ(γ)−1

sl2(C) = C
(

0 1
0 0

)

⊕ C
(

1 0
0 −1

)

⊕ C
(

0 0
1 0

)

The adjoint action Ad gives a connection with the character
variety Hom(π1(EK ), SL2(C))//SL2(C).
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Metabelian representations

Definition of metabelian reps.

ρ : π1(EK ) → SL2(C) is metabelian

⇐⇒ ρ([π1(EK ), π1(EK )]) ⊂ SL2(C) abelian.

Remark

ρ : π1(EK ) → SL2(C) is abelian
⇐⇒ ρ(π1(EK )) ⊂ SL2(C) abelian,
⇐⇒ ρ([π1(EK ), π1(EK )]) = {1}.
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Background

ρ : π1(EK ) → SL2(C) metabelian

ρ : reducible

ρ : [π1(EK ), π1(EK )] →

{

±

(

1 ω
0 1

)∣

∣

∣

∣

ω ∈ C

}

⊂ SL2(C)

∆K (t) appears in the twisted Alexander.
(

−→
Hyperbolic torsion at “bifurcation points”
in Hom(π1(EK , SL2(C)))//SL2(C).

)

ρ : irreducible

ρ : [π1(EK ), π1(EK )] →

{(

a 0
0 a−1

)∣

∣

∣

∣

a ∈ C \ {0}
}

⊂ SL2(C)

Does ∆K (t) appear in the twisted Alexander?
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Main Theorem

Theorem

Suppose that

ρ : π1(EK ) → SL2(C) s.t.
{

an irred. metabelian and;
“longitude–regular ”.

Then
(the twisted Alexander poly.)

∆α⊗Ad◦ρ
EK

(t) ·
= (t − 1)∆K (−t)P(t),

where ∆K (t) is the Alexander polynomial of K .
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The details of ∆α⊗Ad◦ρ
EK

(t)

Homomorphisms

ρ : π1(EK ) → SL2(C) is metabelian

⇐⇒ ρ([π1(EK ), π1(EK )])(⊂ SL2(C)) is abelian,

Suppose that ρ([π1(EK ), π1(EK )]) 6= {1}.
α : π1(EK ) → π1(EK )/[π1(EK ), π1(EK )] ≃ H1(EK ) = 〈t〉
s.t. α(µ) = t

the twisted Alexander poly.

∆α⊗Ad◦ρ
EK

(t) =

det

(

α ⊗ Ad ◦ ρ

(

∂ri
∂gj

)

i ,j 6=1

)

det (α ⊗ Ad ◦ ρ (g1 − 1))

from a presentation π1(EK ) = 〈g1, g2, . . . , gk | ri , . . . , rk−1〉.
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Main tools

We need a “good” presentation of π1(EK )
for metabelian reps.
X-S. Lin introduced a suitable presentation of π1(EK )
by using a free Seifert surface of K .
a Seifert surface S is free
⇔ S3 = S × [−1, 1] ∪ S3 \ S × [−1, 1]

: a Heegaard decompo.

Figure: a free Seifert surface of the trefoil knot
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Lin’s presentation

By using a free Seifert surface S with genus 2g,

π1(EK ) = 〈µ, x1, . . . , x2g |µa+
i µ−1 = a−

i (i = 1, . . . 2g)〉

where

xi is a closed loop corresponding to 1–handle in
S3 \ S × [−1, 1],

a±
i is a word in x1, . . . , x2g , corresponding to closed loops

in the spine of S.

Figure: a free Seifert surface of the trefoil knot
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Remark & Examples of Lin’s presentation

Remark
The generators x1, . . . , x2g are null–homologous,

i.e., xi ∈ [π1(EK ), π1(EK )].

K = trefoil knot

π1(EK ) =

〈

µ, x1, x2

∣

∣

∣

∣

µx1µ
−1 = x1x−1

2 ,

µx−1
2 x1µ

−1 = x−1
2

〉

K = figure eight knot

π1(EK ) =

〈

µ, x1, x2

∣

∣

∣

∣

µx1µ
−1 = x1x−1

2 ,

µx2x1µ
−1 = x2

〉
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Explicit form of metabelian reps.

X-S. Lin, F. Nagasato

The correspondence

µ 7→

(

0 1
−1 0

)

, xi 7→

(

ξi 0
0 ξ−1

i

)

gives a metabelian rep.

They gives all representatives of conj. classes of
metabelian reps.

♯ (conj. classes of irred. metabelian reps) =
|∆K (−1)| − 1

2
.
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Sketch of proof

Ad ◦ ρ : π1(EK ) → Aut(sl2(C))

= Aut(C
(

0 1
0 0

)

⊕ C
(

1 0
0 −1

)

⊕ C
(

0 0
1 0

)

)

µ 7→





−1
−1

−1





xi 7→





ξ2

1
ξ−2





The subspace C
(

1 0
0 −1

)

is invariant space.

Decomposition of Ad ◦ ρ

Ad ◦ ρ = ρ2 ⊕ ρ1

where ρ1 is 1–dim. rep. and ρ2 is 2–dim. rep.
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Observation about ∆α⊗Ad◦ρ
EK

(t)

∆α⊗Ad◦ρ
EK

(t) = ∆α⊗ρ2
EK

(t) · ∆α⊗ρ1
EK

(t)

= Q(t) ·
∆K (−t)
(−t − 1)

Wada Milnor

= (t − 1)(t + 1)P(t) ·
∆K (−t)
−t − 1

longitude–regular
& inv. of conj.

for R–torsion

= −(t − 1) · P(t) · ∆K (−t).
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Examples

trefoil knot ∆K (t) = t2 − t + 1 ( |∆K (−1)|−1
2 = 1).

π1(EK ) =

〈

µ, x1, x2

∣

∣

∣

∣

µx1µ
−1 = x1x−1

2 ,

µx−1
2 x1µ

−1 = x−1
2

〉

ρ(µ) =

(

0 1
−1 0

)

, ρ(x1) =

(

ζ3 0
0 ζ−1

3

)

, ρ(x2) =

(

ζ2
3 0
0 ζ−2

3

)

where ζ3 = e
2π

√

−1
3

⇒ ∆α⊗Ad◦ρ
EK

(t) = (t − 1)∆K (−t)
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figure eight knot

Figure: a free Seifert surface of the figure eight knot
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figure eight knot ∆K (t) = t2 − 3t + 1 ( |∆K (−1)|−1
2 = 2).

π1(EK ) =

〈

µ, x1, x2

∣

∣

∣

∣

µx1µ
−1 = x1x−1

2 ,

µx2x1µ
−1 = x2

〉

ρ(µ) =

(

0 1
−1 0

)

, ρ(x1) =

(

ζ5 0
0 ζ−1

5

)

, ρ(x2) =

(

ζ2
5 0
0 ζ−2

5

)

ρ(µ) =

(

0 1
−1 0

)

, ρ(x1) =

(

ζ2
5 0
0 ζ−2

5

)

, ρ(x2) =

(

ζ4
5 0
0 ζ−4

5

)

where ζ5 = e
2π

√

−1
5

⇒ ∆α⊗Ad◦ρ
EK

(t) = (t − 1)∆K (−t)

( both reps. have the same result.)
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52 knot

Figure: a free Seifert surface of 52 knot
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52 knot ∆K (t) = 2t2 − 3t + 2 ( |∆K (−1)|−1
2 = 3).

π1(EK ) =

〈

µ, x1, x2

∣

∣

∣

∣

µx1µ
−1 = x1x−1

2 ,

µx−2
2 x1µ

−1 = x−2
2

〉

ρ(µ) =

(

0 1
−1 0

)

, ρ(x1) =

(

ζ7 0
0 ζ−1

7

)

, ρ(x2) =

(

ζ2
7 0
0 ζ−2

7

)

ρ(µ) =

(

0 1
−1 0

)

, ρ(x1) =

(

ζ2
7 0
0 ζ−2

7

)

, ρ(x2) =

(

ζ4
7 0
0 ζ−4

7

)

ρ(µ) =

(

0 1
−1 0

)

, ρ(x1) =

(

ζ3
7 0
0 ζ−3

7

)

, ρ(x2) =

(

ζ6
7 0
0 ζ−6

7

)

where ζ7 = e
2π

√

−1
7
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ρ(µ) =

(

0 1
−1 0

)

, ρ(x1) =

(

ζ7 0
0 ζ−1

7

)

, ρ(x2) =

(

ζ2
7 0
0 ζ−2

7

)

⇒ ∆α⊗Ad◦ρ
EK

(t) = (t−1)(2+e6π
√
−1/7+e−6π

√
−1/7)∆K (−t)

ρ(µ) =

(

0 1
−1 0

)

, ρ(x1) =

(

ζ2
7 0
0 ζ−2

7

)

, ρ(x2) =

(

ζ4
7 0
0 ζ−4

7

)

⇒ ∆α⊗Ad◦ρ
EK

(t) = (t−1)(2+e2π
√
−1/7+e−2π

√
−1/7)∆K (−t)

ρ(µ) =

(

0 1
−1 0

)

, ρ(x1) =

(

ζ3
7 0
0 ζ−3

7

)

, ρ(x2) =

(

ζ6
7 0
0 ζ−6

7

)

⇒ ∆α⊗Ad◦ρ
EK

(t) = (t−1)(2+e4π
√
−1/7+e−4π

√
−1/7)∆K (−t)
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