On the twisted Alexander polynomial for metabelian $\mathrm{SL}_{2}(\mathbb{C})$-representations with the adjoint action

Yoshikazu Yamaguchi
JSPS Research fellow (PD)
Tokyo Institute of Technology

Tambara Workshop

Basic notation and Notion

The twisted Alexander polynomial

The twisted A refinement of $\Delta_{K}(t)$
Alexander $=$ (the Alexander polynomial) polynomial with $\rho: \pi_{1} \rightarrow \mathrm{GL}(V)$

Notation

$$
\begin{aligned}
& E_{K}:=S^{3} \backslash N(K) \text { a knot exterior, } \\
& A d \circ \rho: \pi_{1}\left(E_{K}\right) \xrightarrow{\rho} \mathrm{SL}_{2}(\mathbb{C}) \\
& \gamma \xrightarrow{\operatorname{Ad}} \operatorname{Aut}\left(\mathfrak{s l}_{2}(\mathbb{C})\right) \\
& \mathfrak{s l}_{2}(\mathbb{C})=\mathbb{C}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \oplus \mathbb{C}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \oplus \mathbb{C}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

The adjoint action Ad gives a connection with the character variety $\operatorname{Hom}\left(\pi_{1}\left(E_{K}\right), \mathrm{SL}_{2}(\mathbb{C})\right) / / \mathrm{SL}_{2}(\mathbb{C})$.

Metabelian representations

Definition of metabelian reps.

- $\rho: \pi_{1}\left(E_{K}\right) \rightarrow \mathrm{SL}_{2}(\mathbb{C})$ is metabelian

$$
\Longleftrightarrow \quad \rho\left(\left[\pi_{1}\left(E_{K}\right), \pi_{1}\left(E_{K}\right)\right]\right) \subset \mathrm{SL}_{2}(\mathbb{C}) \text { abelian. }
$$

Remark

- $\rho: \pi_{1}\left(E_{K}\right) \rightarrow \mathrm{SL}_{2}(\mathbb{C})$ is abelian

$$
\begin{array}{ll}
\Longleftrightarrow & \rho\left(\pi_{1}\left(E_{K}\right)\right) \subset \mathrm{SL}_{2}(\mathbb{C}) \text { abelian }, \\
\Longleftrightarrow & \rho\left(\left[\pi_{1}\left(E_{K}\right), \pi_{1}\left(E_{K}\right)\right]\right)=\{\mathbf{1}\} .
\end{array}
$$

Background

$\rho: \pi_{1}\left(E_{K}\right) \rightarrow \mathrm{SL}_{2}(\mathbb{C})$ metabelian

- ρ : reducible

$$
\rho:\left[\pi_{1}\left(E_{K}\right), \pi_{1}\left(E_{K}\right)\right] \rightarrow\left\{\left. \pm\left(\begin{array}{ll}
1 & \omega \\
0 & 1
\end{array}\right) \right\rvert\, \omega \in \mathbb{C}\right\} \subset \mathrm{SL}_{2}(\mathbb{C})
$$

$\Delta_{K}(t)$ appears in the twisted Alexander. $\left(\longrightarrow \begin{array}{l}\text { Hyperbolic torsion at "bifurcation points" } \\ \text { in } \operatorname{Hom}\left(\pi_{1}\left(E_{K}, \mathrm{SL}_{2}(\mathbb{C})\right)\right) / / \mathrm{SL}_{2}(\mathbb{C}) .\end{array}\right)$

- ρ : irreducible
$\rho:\left[\pi_{1}\left(E_{K}\right), \pi_{1}\left(E_{K}\right)\right] \rightarrow\left\{\left.\left(\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right) \right\rvert\, a \in \mathbb{C} \backslash\{0\}\right\} \subset \mathrm{SL}_{2}(\mathbb{C})$
Does $\Delta_{K}(t)$ appear in the twisted Alexander?

Main Theorem

Theorem

Suppose that

$$
\rho: \pi_{1}\left(E_{K}\right) \rightarrow \mathrm{SL}_{2}(\mathbb{C}) \quad \text { s.t. } \quad\left\{\begin{array}{l}
\text { an irred. metabelian and; } \\
\text { "longitude-regular". }
\end{array}\right.
$$

(the twisted Alexander poly.)
Then

$$
\Delta_{E_{K}}^{\alpha \otimes A d \rho \rho}(t)
$$

$$
\doteq(t-1) \Delta_{K}(-t) P(t),
$$

where $\Delta_{K}(t)$ is the Alexander polynomial of K.

The details of $\Delta_{E_{K}}^{\alpha \otimes A d \rho \rho}(t)$

Homomorphisms

- $\rho: \pi_{1}\left(E_{K}\right) \rightarrow \mathrm{SL}_{2}(\mathbb{C})$ is metabelian
$\Longleftrightarrow \quad \rho\left(\left[\pi_{1}\left(E_{K}\right), \pi_{1}\left(E_{K}\right)\right]\right)\left(\subset \mathrm{SL}_{2}(\mathbb{C})\right)$ is abelian,
- Suppose that $\rho\left(\left[\pi_{1}\left(E_{K}\right), \pi_{1}\left(E_{K}\right)\right]\right) \neq\{\mathbf{1}\}$.
- $\alpha: \pi_{1}\left(E_{K}\right) \rightarrow \pi_{1}\left(E_{K}\right) /\left[\pi_{1}\left(E_{K}\right), \pi_{1}\left(E_{K}\right)\right] \simeq H_{1}\left(E_{K}\right)=\langle t\rangle$ s.t. $\alpha(\mu)=t$

the twisted Alexander poly.

$$
\Delta_{E_{K}}^{\alpha \otimes A d \rho \rho}(t)=\frac{\operatorname{det}\left(\alpha \otimes A d \circ \rho\left(\frac{\partial r_{i}}{\partial g_{j}}\right)_{i, j \neq 1}\right)}{\operatorname{det}\left(\alpha \otimes A d \circ \rho\left(g_{1}-1\right)\right)}
$$

from a presentation $\pi_{1}\left(E_{K}\right)=\left\langle g_{1}, g_{2}, \ldots, g_{k} \mid r_{i}, \ldots, r_{k-1}\right\rangle$.

Main tools

- We need a "good" presentation of $\pi_{1}\left(E_{K}\right)$ for metabelian reps.
- X-S. Lin introduced a suitable presentation of $\pi_{1}\left(E_{K}\right)$ by using a free Seifert surface of K.
a Seifert surface S is free
$\Leftrightarrow S^{3}=S \times[-1,1] \cup \overline{S^{3} \backslash S \times[-1,1]}$
: a Heegaard decompo.

Figure: a free Seifert surface of the trefoil knot

Main tools

- We need a "good" presentation of $\pi_{1}\left(E_{K}\right)$ for metabelian reps.
- X-S. Lin introduced a suitable presentation of $\pi_{1}\left(E_{K}\right)$ by using a free Seifert surface of K.
a Seifert surface S is free
$\Leftrightarrow S^{3}=S \times[-1,1] \cup \overline{S^{3} \backslash S \times[-1,1]}$
: a Heegaard decompo.

Figure: a free Seifert surface of the trefoil knot

Main tools

- We need a "good" presentation of $\pi_{1}\left(E_{K}\right)$ for metabelian reps.
- X-S. Lin introduced a suitable presentation of $\pi_{1}\left(E_{K}\right)$ by using a free Seifert surface of K.
a Seifert surface S is free
$\Leftrightarrow S^{3}=S \times[-1,1] \cup \overline{S^{3} \backslash S \times[-1,1]}$
: a Heegaard decompo.

Figure: a free Seifert surface of the trefoil knot

Main tools

- We need a "good" presentation of $\pi_{1}\left(E_{K}\right)$ for metabelian reps.
- X-S. Lin introduced a suitable presentation of $\pi_{1}\left(E_{K}\right)$ by using a free Seifert surface of K.
a Seifert surface S is free
$\Leftrightarrow S^{3}=S \times[-1,1] \cup \overline{S^{3} \backslash S \times[-1,1]}$
: a Heegaard decompo.

Figure: a free Seifert surface of the trefoil knot

Lin's presentation

By using a free Seifert surface S with genus $2 g$,

$$
\pi_{1}\left(E_{K}\right)=\left\langle\mu, x_{1}, \ldots, x_{2 g} \mid \mu a_{i}^{+} \mu^{-1}=a_{i}^{-}(i=1, \ldots 2 g)\right\rangle
$$

where

- x_{i} is a closed loop corresponding to 1 -handle in $S^{3} \backslash S \times[-1,1]$,
- $a_{i}^{ \pm}$is a word in $x_{1}, \ldots, x_{2 g}$, corresponding to closed loops in the spine of S.

Figure: a free Seifert surface of the trefoil knot

Lin's presentation

By using a free Seifert surface S with genus $2 g$,

$$
\pi_{1}\left(E_{K}\right)=\left\langle\mu, x_{1}, \ldots, x_{2 g} \mid \mu a_{i}^{+} \mu^{-1}=a_{i}^{-}(i=1, \ldots 2 g)\right\rangle
$$

where

- x_{i} is a closed loop corresponding to 1 -handle in $S^{3} \backslash S \times[-1,1]$,
- $a_{i}^{ \pm}$is a word in $x_{1}, \ldots, x_{2 g}$, corresponding to closed loops in the spine of S.

Figure: a free Seifert surface of the trefoil knot

Remark \& Examples of Lin's presentation

Remark

The generators $x_{1}, \ldots, x_{2 g}$ are null-homologous,
i.e., $x_{i} \in\left[\pi_{1}\left(E_{K}\right), \pi_{1}\left(E_{K}\right)\right]$.

- $K=$ trefoil knot

$$
\pi_{1}\left(E_{K}\right)=\left\langle\begin{array}{l|l}
\mu, x_{1}, x_{2} & \begin{array}{l}
\mu x_{1} \mu^{-1}=x_{1} x_{2}^{-1} \\
\mu x_{2}^{-1} x_{1} \mu^{-1}=x_{2}^{-1}
\end{array}
\end{array}\right\rangle
$$

- $K=$ figure eight knot

$$
\pi_{1}\left(E_{K}\right)=\left\langle\begin{array}{l|l}
\mu, x_{1}, x_{2} & \begin{array}{l}
\mu x_{1} \mu^{-1}=x_{1} x_{2}^{-1} \\
\mu x_{2} x_{1} \mu^{-1}=x_{2}
\end{array}
\end{array}\right\rangle
$$

Explicit form of metabelian reps.

X-S. Lin, F. Nagasato

- The correspondence

$$
\mu \mapsto\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad x_{i} \mapsto\left(\begin{array}{cc}
\xi_{i} & 0 \\
0 & \xi_{i}^{-1}
\end{array}\right)
$$

gives a metabelian rep.

- They gives all representatives of conj. classes of metabelian reps.
- \sharp (conj. classes of irred. metabelian reps $)=\frac{\left|\Delta_{K}(-1)\right|-1}{2}$.

Sketch of proof

$$
\begin{aligned}
\operatorname{Ad} \circ \rho: \pi_{1}\left(E_{K}\right) & \rightarrow \operatorname{Aut}\left(\mathfrak{s l}_{2}(\mathbb{C})\right) \\
& =\operatorname{Aut}\left(\mathbb{C}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \oplus \mathbb{C}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \oplus \mathbb{C}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\right) \\
\mu & \mapsto\left(\begin{array}{ccc}
& -1 & \\
-1 & & \\
-1
\end{array}\right) \\
x_{i} & \mapsto\left(\begin{array}{lll}
\xi^{2} & & \\
& 1 & \\
& & \xi^{-2}
\end{array}\right)
\end{aligned}
$$

The subspace $\mathbb{C}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ is invariant space.

Decomposition of $A d \circ \rho$

$$
A d \circ \rho=\rho_{2} \oplus \rho_{1}
$$

where ρ_{1} is 1 -dim. rep. and ρ_{2} is $2-$ dim. rep.

Observation about $\Delta_{E_{K}}^{\alpha \otimes A d o \rho}(t)$

$$
\begin{aligned}
\Delta_{E_{K}}^{\alpha \otimes A d \circ \rho}(t) \\
\text { Wada }
\end{aligned} \quad=\Delta_{E_{K}}^{\alpha \otimes \rho_{2}(t) \cdot \Delta_{E_{K}}^{\alpha \otimes \rho_{1}}(t)} \begin{aligned}
& \\
& \begin{array}{l}
\text { longitude-regular } \\
\text { \& inv. of conj. } \\
\text { for R-torsion }
\end{array} Q(t) \cdot \frac{\Delta_{K}(-t)}{(-t-1)} \\
&=(t-1)(t+1) P(t) \cdot \frac{\Delta_{K}(-t)}{-t-1} \\
&=-(t-1) \cdot P(t) \cdot \Delta_{K}(-t) .
\end{aligned}
$$

Examples

- trefoil knot $\Delta_{K}(t)=t^{2}-t+1\left(\frac{\left|\Delta_{K}(-1)\right|-1}{2}=1\right)$.

$$
\begin{aligned}
& \qquad \pi_{1}\left(E_{K}\right)=\left\langle\mu, x_{1}, x_{2} \left\lvert\, \begin{array}{l}
\mu x_{1} \mu^{-1}=x_{1} x_{2}^{-1}, \\
\mu x_{2}^{-1} x_{1} \mu^{-1}=x_{2}^{-1}
\end{array}\right.\right\rangle \\
& \rho(\mu)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \rho\left(x_{1}\right)=\left(\begin{array}{cc}
\zeta_{3} & 0 \\
0 & \zeta_{3}^{-1}
\end{array}\right), \rho\left(x_{2}\right)=\left(\begin{array}{cc}
\zeta_{3}^{2} & 0 \\
0 & \zeta_{3}^{-2}
\end{array}\right) \\
& \text { where } \zeta_{3}=e^{\frac{2 \pi \sqrt{-1}}{3}} \\
& \Rightarrow \quad \Delta_{E_{K}}^{\alpha \otimes A d \circ \rho}(t)=(t-1) \Delta_{K}(-t)
\end{aligned}
$$

- figure eight knot

Figure: a free Seifert surface of the figure eight knot

- figure eight knot $\Delta_{K}(t)=t^{2}-3 t+1\left(\frac{\left|\Delta_{K}(-1)\right|-1}{2}=2\right)$.

$$
\pi_{1}\left(E_{K}\right)=\left\langle\begin{array}{l|l}
\mu, x_{1}, x_{2} & \begin{array}{l}
\mu x_{1} \mu^{-1}=x_{1} x_{2}^{-1} \\
\mu x_{2} x_{1} \mu^{-1}=x_{2}
\end{array}
\end{array}\right\rangle
$$

- $\rho(\mu)=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), \rho\left(x_{1}\right)=\left(\begin{array}{cc}\zeta_{5} & 0 \\ 0 & \zeta_{5}^{-1}\end{array}\right), \rho\left(x_{2}\right)=\left(\begin{array}{cc}\zeta_{5}^{2} & 0 \\ 0 & \zeta_{5}^{-2}\end{array}\right)$
- $\rho(\mu)=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), \rho\left(x_{1}\right)=\left(\begin{array}{cc}\zeta_{5}^{2} & 0 \\ 0 & \zeta_{5}^{-2}\end{array}\right), \rho\left(x_{2}\right)=\left(\begin{array}{cc}\zeta_{5}^{4} & 0 \\ 0 & \zeta_{5}^{-4}\end{array}\right)$
where $\zeta_{5}=e^{\frac{2 \pi \sqrt{-1}}{5}}$

$$
\Rightarrow \quad \Delta_{E_{K}}^{\alpha \otimes A d \circ \rho}(t)=(t-1) \Delta_{K}(-t)
$$

(both reps. have the same result.)

- 5_{2} knot

Figure: a free Seifert surface of 5_{2} knot

- 5_{2} knot $\quad \Delta_{K}(t)=2 t^{2}-3 t+2\left(\frac{\left|\Delta_{K}(-1)\right|-1}{2}=3\right)$.

$$
\pi_{1}\left(E_{K}\right)=\left\langle\begin{array}{l|l}
\mu, x_{1}, x_{2} & \begin{array}{l}
\mu x_{1} \mu^{-1}=x_{1} x_{2}^{-1} \\
\mu x_{2}^{-2} x_{1} \mu^{-1}=x_{2}^{-2}
\end{array}
\end{array}\right\rangle
$$

- $\rho(\mu)=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), \rho\left(x_{1}\right)=\left(\begin{array}{cc}\zeta_{7} & 0 \\ 0 & \zeta_{7}^{-1}\end{array}\right), \rho\left(x_{2}\right)=\left(\begin{array}{cc}\zeta_{7}^{2} & 0 \\ 0 & \zeta_{7}^{-2}\end{array}\right)$
- $\rho(\mu)=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), \rho\left(x_{1}\right)=\left(\begin{array}{cc}\zeta_{7}^{2} & 0 \\ 0 & \zeta_{7}^{-2}\end{array}\right), \rho\left(x_{2}\right)=\left(\begin{array}{cc}\zeta_{7}^{4} & 0 \\ 0 & \zeta_{7}^{-4}\end{array}\right)$
- $\rho(\mu)=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), \rho\left(x_{1}\right)=\left(\begin{array}{cc}\zeta_{7}^{3} & 0 \\ 0 & \zeta_{7}^{-3}\end{array}\right), \rho\left(x_{2}\right)=\left(\begin{array}{cc}\zeta_{7}^{6} & 0 \\ 0 & \zeta_{7}{ }^{-6}\end{array}\right)$
where $\zeta_{7}=e^{\frac{2 \pi \sqrt{-1}}{7}}$

$$
\begin{aligned}
& 0 \rho(\mu)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \rho\left(x_{1}\right)=\left(\begin{array}{cc}
\zeta_{7} & 0 \\
0 & \zeta_{7}^{-1}
\end{array}\right), \rho\left(x_{2}\right)=\left(\begin{array}{cc}
\zeta_{7}^{2} & 0 \\
0 & \zeta_{7}^{-2}
\end{array}\right) \\
& \Rightarrow \quad \Delta_{E_{K}}^{\alpha \otimes A d \circ \rho}(t)=(t-1)\left(2+e^{6 \pi \sqrt{-1} / 7}+e^{-6 \pi \sqrt{-1} / 7}\right) \Delta_{K}(-t) \\
& \bullet \rho(\mu)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \rho\left(x_{1}\right)=\left(\begin{array}{cc}
\zeta_{7}^{2} & 0 \\
0 & \zeta_{7}^{-2}
\end{array}\right), \rho\left(x_{2}\right)=\left(\begin{array}{cc}
\zeta_{7}^{4} & 0 \\
0 & \zeta_{7}^{-4}
\end{array}\right) \\
& \Rightarrow \quad \Delta_{E_{K}}^{\alpha \otimes A d \circ \rho}(t)=(t-1)\left(2+e^{2 \pi \sqrt{-1} / 7}+e^{-2 \pi \sqrt{-1} / 7}\right) \Delta_{K}(-t) \\
& \bullet \rho(\mu)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \rho\left(x_{1}\right)=\left(\begin{array}{cc}
\zeta_{7}^{3} & 0 \\
0 & \zeta_{7}^{-3}
\end{array}\right), \rho\left(x_{2}\right)=\left(\begin{array}{cc}
\zeta_{7}^{6} & 0 \\
0 & \zeta_{7}^{-6}
\end{array}\right) \\
& \Rightarrow \quad \Delta_{E_{K}}^{\alpha \otimes A d \circ \rho}(t)=(t-1)\left(2+e^{4 \pi \sqrt{-1} / 7}+e^{-4 \pi \sqrt{-1} / 7}\right) \Delta_{K}(-t)
\end{aligned}
$$

