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Homology S1 × S3 is a smooth oriented closed

spin manifold X of dimension 4 such that

H∗(X) = H∗(S
1 × S3).

Example. A product X = S1 × Y , where Y is

an integral homology sphere.

Example. A “furled up” homology cobordism

from Y to itself :

Y

Y

Y X

Homology orientation of X is a choice of

generator 1 ∈ H1(X;Z).
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Rohlin Invariant

Given an oriented spin 3-manifold Y , the Rohlin

invariant of Y is defined as

ρ(Y ) =
1

8
sign(Z) (mod 2)

where Z is any smooth compact spin 4-manifold

with boundary ∂Z = Y .

Let X be a homology S1 × S3 with a fixed

homology orientation, and choose an oriented

submanifold Y ⊂ X dual to 1 ∈ H1(X;Z). De-

fine the Rohlin invariant of X as

ρ(X) = ρ(Y ) (mod 2)

where Y has the induced spin structure. This

is a well defined invariant of X.
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The Rohlin invariant is tied to some difficult

questions in 4-dimensional topology. Here is

an example :

Question: Is there a homotopy S1 × S3 with

non-trivial Rohlin invariant ?

Such a manifold, if existed, would provide a

fake smooth structure on S1 × S3.

Approach: An integer valued lift λSW(X) of

the Rohlin invariant ρ(X).
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Seiberg–Witten Theory

Given a metric g on X and β ∈ Ω1(X, iR), con-

sider the triples

(A, s, ϕ) ∈ Ω1(X, iR) × R≥0 × C
∞(S+)

such that







F+
A − s2 · τ(ϕ, ϕ) = d+β

D+
A (X, g)(ϕ) = 0, ‖ϕ‖L2(X) = 1

Seiberg–Witten moduli space M(X, g, β) :

the gauge equivalence classes of solutions of

the above system. The solutions with s = 0

are called reducible.

Theorem 1. For generic (g, β), the mod-

uli space M(X, g, β) is a compact oriented 0-

dimensional manifold with no reducibles.

Denote by #M(X, g, β) the signed count of

points in this moduli space.

5



Correction Term

Let X̃ → X be the Z–fold covering correspond-

ing to 1 ∈ H1(X;Z) and X̃+ its “positive half”.

End-periodic manifold is a smooth manifold

Z+ = Z ∪ X̃+, where Z is a compact smooth

spin 4-manifold with ∂Z = −∂X̃+.

X̃+
Z

YYY

Product case: X = S1 × Y gives rise to

Z+ = Z ∪ ([0,+∞) × Y ). The index theory

was studied by Atiyah, Patodi and Singer.

General case: the basics of index theory on

Z+ were established by Taubes. We develop

this theory far enough to prove the following

two theorems.
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Theorem 2. For generic (g, β), the operator

D+(Z+, g) + β : L2
1 → L2 is Fredholm, and

w(X, g, β) = ind(D+(Z+, g) + β) + sign(Z)/8

is independent of the choice of Z and the way

g and β are extended over Z ⊂ Z+.

Theorem 3. The quantity

λSW(X) = #M(X, g, β) − w(X, g, β)

is an invariant of X (with a choice of orien-

tation and homology orientation). Moreover,

λSW(X) = ρ(X) (mod 2).

Product case: Weimin Chen and Yuhan Lim.
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Idea of proof

Choose a (generic) path (gt, βt), 0 ≤ t ≤ 1, be-

tween two generic pairs of metrics and pertur-

bations. Then the parameterized moduli space

⋃

t∈[0,1]

{t} ×M(X, gt, βt)

is a 1-dimensional manifold with boundary :

s

t

M(X, g0, β0) M(X, g1, β1)

difference cycle
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A version of Fourier transform associates with

D+(Z+, g) the holomorphic family

D+
z (X, g) = D+(X, g) − log z · df,

where f : X → S1 is such that [df ] = 1 ∈

H1(X;Z).

1

Spectral points

Fredholmness means no spectral points on the

circle |z| = 1.
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Then ind (D+(Z+, g)+β) changes along (gt, βt)

by the spectral flow of the family

D+
z (X, gt) + βt

C

t

S

The well definedness of λSW(X, g) follows by

matching this with the Seiberg-Witten differ-

ence cycle.

The Rohlin invariant part is the hardest be-

cause it requires Fredholmness of D+(Z+, g)

with β = 0, by perturbing metric g alone.
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Product case

If X = S1×Y then D+(X, g) = d/dθ + D with

D the self-adjoint Dirac operator on Y .

Theorem (Atiyah-Patodi-Singer)

indD+(Z+, g) =

∫

Z
Â(Z, g) −

1

2
η(Y, g),

where

η(Y, g) =
∑

06=λ∈Spec(D)

sign(λ) · |λ|−s

evaluated at s = 0.

Theorem (Yuhan Lim)

λSW (S1 × Y ) = −λ(Y ),

the Casson invariant of Y , obtained by count-

ing irreducible representations π1(Y ) → SU(2).
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Mapping torus case

Let Y be a homology sphere and X the map-

ping torus of τ : Y → Y of finite order. Then

X̃ = R × Y as in the product case.

Theorem 4. Let Y = Σ(a1, . . . , an) and X

the mapping torus of τ : Y → Y induced by

complex conjugation on the link so that Y/τ =

S3 with branch set a Montesinos knot k. Then

λSW(X) = −
1

8
sign(k),

also known as the equivariant Casson λτ(Y )

(Collin–Saveliev).

Conjecture. For any mapping torus X of finite

order orientation preserving diffeomorphism τ :

Y → Y , one has

λSW(X) = −λτ(Y ).
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Furuta–Ohta invariant

Conjecture. If X is a Z[Z]–homology S1 × S3

then (cf. Witten’s conjecture)

λSW(X) = −λFO(X),

the Furuta–Ohta invariant obtained by count-

ing irreducible representations π1(X) → SU(2).

Note that λFO(X) = λτ(Y ) for the finite order

mapping tori.

If true, this conjecture would give a negative

answer to the question about homotopy S1 ×

S3.
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End-periodic index theorem

(work in progress)

Assume there is Y ⊂ X dual to 1 ∈ H1(X;Z)

such that

(1) X is isometric to N(Y ) = [−ε, ε] × Y near

Y , and

(2) df is supported in N(Y )

(if not, the formulas will be more complicated).

Then

indD+(Z+, g) =

∫

Z
Â(Z, g) −

1

2
η(X, g),

where
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η(X, g) =
∑

ker D+
z 6=0

sign(log |z|),

1

properly regularized :

η(X, g) =

1

πi

∫ ∞

0

∮

|z|=1
Tr

(

df · D+
z e−tD−

z D+
z

)

dz

z
dt.

In the product case, z = eλ ∈ R, and we get

back the η-invariant of Atiyah-Patodi-Singer.
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