Seiberg-Witten invariants and end-periodic Dirac operators

Tomasz Mrowka
Daniel Ruberman
Nikolai Saveliev

Homology $\mathbf{S}^{1} \times \mathbf{S}^{3}$ is a smooth oriented closed spin manifold X of dimension 4 such that

$$
H_{*}(X)=H_{*}\left(S^{1} \times S^{3}\right)
$$

Example. A product $X=S^{1} \times Y$, where Y is an integral homology sphere.

Example. A "furled up" homology cobordism from Y to itself:

Homology orientation of X is a choice of generator $1 \in H^{1}(X ; \mathbf{Z})$.

Rohlin Invariant

Given an oriented spin 3-manifold Y, the Rohlin invariant of Y is defined as

$$
\rho(Y)=\frac{1}{8} \operatorname{sign}(Z) \quad(\bmod 2)
$$

where Z is any smooth compact spin 4-manifold with boundary $\partial Z=Y$.

Let X be a homology $S^{1} \times S^{3}$ with a fixed homology orientation, and choose an oriented submanifold $Y \subset X$ dual to $1 \in H^{1}(X ; \mathbf{Z})$. Define the Rohlin invariant of X as

$$
\rho(X)=\rho(Y) \quad(\bmod 2)
$$

where Y has the induced spin structure. This is a well defined invariant of X.

The Rohlin invariant is tied to some difficult questions in 4-dimensional topology. Here is an example:

Question: Is there a homotopy $S^{1} \times S^{3}$ with non-trivial Rohlin invariant?

Such a manifold, if existed, would provide a fake smooth structure on $S^{1} \times S^{3}$.

Approach: An integer valued lift $\lambda_{\mathrm{sw}}(X)$ of the Rohlin invariant $\rho(X)$.

Seiberg-Witten Theory

Given a metric g on X and $\beta \in \Omega^{1}(X, i \mathbf{R})$, consider the triples

$$
(A, s, \varphi) \in \Omega^{1}(X, i \mathbf{R}) \times \mathbf{R}_{\geq 0} \times \mathbf{C}^{\infty}\left(S^{+}\right)
$$

such that

$$
\left\{\begin{array}{l}
F_{A}^{+}-s^{2} \cdot \tau(\varphi, \varphi)=d^{+} \beta \\
D_{A}^{+}(X, g)(\varphi)=0, \quad\|\varphi\|_{L^{2}(X)}=1
\end{array}\right.
$$

Seiberg-Witten moduli space $\mathcal{M}(X, g, \beta)$: the gauge equivalence classes of solutions of the above system. The solutions with $s=0$ are called reducible.

Theorem 1. For generic (g, β), the moduli space $\mathcal{M}(X, g, \beta)$ is a compact oriented 0 dimensional manifold with no reducibles.

Denote by $\# \mathcal{M}(X, g, \beta)$ the signed count of points in this moduli space.

Correction Term

Let $\tilde{X} \rightarrow X$ be the \mathbf{Z}-fold covering corresponding to $1 \in H^{1}(X ; \mathbf{Z})$ and \tilde{X}_{+}its "positive half".

End-periodic manifold is a smooth manifold $Z_{+}=Z \cup \tilde{X}_{+}$, where Z is a compact smooth spin 4-manifold with $\partial Z=-\partial \tilde{X}_{+}$.

Product case: $X=S^{1} \times Y$ gives rise to $Z_{+}=Z \cup([0,+\infty) \times Y)$. The index theory was studied by Atiyah, Patodi and Singer.

General case: the basics of index theory on Z_{+}were established by Taubes. We develop this theory far enough to prove the following two theorems.

Theorem 2. For generic (g, β), the operator $D^{+}\left(Z_{+}, g\right)+\beta: L_{1}^{2} \rightarrow L^{2}$ is Fredholm, and

$$
w(X, g, \beta)=\operatorname{ind}\left(D^{+}\left(Z_{+}, g\right)+\beta\right)+\operatorname{sign}(Z) / 8
$$

is independent of the choice of Z and the way g and β are extended over $Z \subset Z_{+}$.

Theorem 3. The quantity

$$
\lambda_{\mathrm{SW}}(X)=\# \mathcal{M}(X, g, \beta)-w(X, g, \beta)
$$

is an invariant of X (with a choice of orientation and homology orientation). Moreover,

$$
\lambda_{\mathrm{sw}}(X)=\rho(X) \quad(\bmod 2) .
$$

Product case: Weimin Chen and Yuhan Lim.

Idea of proof

Choose a (generic) path (g_{t}, β_{t}), $0 \leq t \leq 1$, between two generic pairs of metrics and perturbations. Then the parameterized moduli space

$$
\bigcup_{t \in[0,1]}\{t\} \times \mathcal{M}\left(X, g_{t}, \beta_{t}\right)
$$

is a 1-dimensional manifold with boundary:

A version of Fourier transform associates with $D^{+}\left(Z_{+}, g\right)$ the holomorphic family

$$
D_{z}^{+}(X, g)=D^{+}(X, g)-\log z \cdot d f,
$$

where $f: X \rightarrow S^{1}$ is such that $[d f]=1 \in$ $H^{1}(X ; \mathbf{Z})$.

Spectral points

Fredholmness means no spectral points on the circle $|z|=1$.

Then ind $\left(D^{+}\left(Z_{+}, g\right)+\beta\right)$ changes along $\left(g_{t}, \beta_{t}\right)$ by the spectral flow of the family

$$
D_{z}^{+}\left(X, g_{t}\right)+\beta_{t}
$$

The well definedness of $\lambda_{\mathrm{SW}}(X, g)$ follows by matching this with the Seiberg-Witten difference cycle.

The Rohlin invariant part is the hardest because it requires Fredholmness of $D^{+}\left(Z_{+}, g\right)$ with $\beta=0$, by perturbing metric g alone.

Product case

If $X=S^{1} \times Y$ then $D^{+}(X, g)=d / d \theta+D$ with D the self-adjoint Dirac operator on Y.

Theorem (Atiyah-Patodi-Singer)

$$
\text { ind } D^{+}\left(Z_{+}, g\right)=\int_{Z} \widehat{A}(Z, g)-\frac{1}{2} \eta(Y, g)
$$

where

$$
\eta(Y, g)=\sum_{0 \neq \lambda \in \operatorname{Spec}(D)} \operatorname{sign}(\lambda) \cdot|\lambda|^{-s}
$$

evaluated at $s=0$.
Theorem (Yuhan Lim)

$$
\lambda_{\mathrm{SW}}\left(S^{1} \times Y\right)=-\lambda(Y),
$$

the Casson invariant of Y, obtained by counting irreducible representations $\pi_{1}(Y) \rightarrow \mathrm{SU}(2)$.

Mapping torus case

Let Y be a homology sphere and X the mapping torus of $\tau: Y \rightarrow Y$ of finite order. Then $\tilde{X}=\mathbf{R} \times Y$ as in the product case.

Theorem 4. Let $Y=\Sigma\left(a_{1}, \ldots, a_{n}\right)$ and X the mapping torus of $\tau: Y \rightarrow Y$ induced by complex conjugation on the link so that $Y / \tau=$ S^{3} with branch set a Montesinos knot k. Then

$$
\lambda_{\mathrm{SW}}(X)=-\frac{1}{8} \operatorname{sign}(k)
$$

also known as the equivariant Casson $\lambda^{\tau}(Y)$ (Collin-Saveliev).

Conjecture. For any mapping torus X of finite order orientation preserving diffeomorphism τ : $Y \rightarrow Y$, one has

$$
\lambda_{\mathrm{SW}}(X)=-\lambda^{\tau}(Y)
$$

Furuta-Ohta invariant

Conjecture. If X is a $\mathrm{Z}[\mathrm{Z}]$-homology $S^{1} \times S^{3}$ then (cf. Witten's conjecture)

$$
\lambda_{\mathrm{SW}}(X)=-\lambda_{\mathrm{FO}}(X)
$$

the Furuta-Ohta invariant obtained by counting irreducible representations $\pi_{1}(X) \rightarrow \mathrm{SU}(2)$. Note that $\lambda_{\mathrm{FO}}(X)=\lambda^{\tau}(Y)$ for the finite order mapping tori.

If true, this conjecture would give a negative answer to the question about homotopy $S^{1} \times$ S^{3}.

End-periodic index theorem

(work in progress)
Assume there is $Y \subset X$ dual to $1 \in H^{1}(X ; \mathbf{Z})$ such that
(1) X is isometric to $N(Y)=[-\varepsilon, \varepsilon] \times Y$ near Y, and
(2) $d f$ is supported in $N(Y)$
(if not, the formulas will be more complicated).
Then

$$
\text { ind } D^{+}\left(Z_{+}, g\right)=\int_{Z} \widehat{A}(Z, g)-\frac{1}{2} \eta(X, g),
$$

where

$$
\eta(X, g)=\sum_{\operatorname{ker} D_{z}^{+} \neq 0} \operatorname{sign}(\log |z|)
$$

properly regularized:
$\eta(X, g)=$

$$
\frac{1}{\pi i} \int_{0}^{\infty} \oint_{|z|=1} \operatorname{Tr}\left(d f \cdot D_{z}^{+} e^{-t D_{z}^{-} D_{z}^{+}}\right) \frac{d z}{z} d t
$$

In the product case, $z=e^{\lambda} \in \mathbf{R}$, and we get back the η-invariant of Atiyah-Patodi-Singer.

