Seiberg-Witten invariants and end-periodic Dirac operators

Tomasz Mrowka Daniel Ruberman Nikolai Saveliev **Homology** $S^1 \times S^3$ is a smooth oriented closed spin manifold X of dimension 4 such that

$$H_*(X) = H_*(S^1 \times S^3).$$

Example. A product $X = S^1 \times Y$, where Y is an integral homology sphere.

Example. A "furled up" homology cobordism from Y to itself:

Homology orientation of X is a choice of generator $1 \in H^1(X; \mathbb{Z})$.

Rohlin Invariant

Given an oriented spin 3-manifold Y, the **Rohlin** invariant of Y is defined as

$$\rho(Y) = \frac{1}{8} \operatorname{sign}(Z) \pmod{2}$$

where Z is any smooth compact spin 4-manifold with boundary $\partial Z = Y$.

Let X be a homology $S^1 \times S^3$ with a fixed homology orientation, and choose an oriented submanifold $Y \subset X$ dual to $1 \in H^1(X; \mathbb{Z})$. Define the **Rohlin invariant** of X as

$$\rho(X) = \rho(Y) \pmod{2}$$

where Y has the induced spin structure. This is a well defined invariant of X.

The Rohlin invariant is tied to some difficult questions in 4-dimensional topology. Here is an example :

Question: Is there a homotopy $S^1 \times S^3$ with non-trivial Rohlin invariant?

Such a manifold, if existed, would provide a fake smooth structure on $S^1 \times S^3$.

Approach: An integer valued lift $\lambda_{SW}(X)$ of the Rohlin invariant $\rho(X)$.

Seiberg–Witten Theory

Given a metric g on X and $\beta \in \Omega^1(X, i\mathbf{R})$, consider the triples

 $(A, s, \varphi) \in \Omega^1(X, i\mathbf{R}) \times \mathbf{R}_{\geq 0} \times \mathbf{C}^\infty(S^+)$ such that

$$\begin{cases} F_A^+ - s^2 \cdot \tau(\varphi, \varphi) = d^+ \beta \\ D_A^+(X, g)(\varphi) = 0, \quad \|\varphi\|_{L^2(X)} = 1 \end{cases}$$

Seiberg–Witten moduli space $\mathcal{M}(X, g, \beta)$: the gauge equivalence classes of solutions of the above system. The solutions with s = 0are called reducible.

Theorem 1. For generic (g,β) , the moduli space $\mathcal{M}(X,g,\beta)$ is a compact oriented 0-dimensional manifold with no reducibles.

Denote by $\# \mathcal{M}(X, g, \beta)$ the signed count of points in this moduli space.

Correction Term

Let $\tilde{X} \to X$ be the Z-fold covering corresponding to $1 \in H^1(X; \mathbb{Z})$ and \tilde{X}_+ its "positive half".

End-periodic manifold is a smooth manifold $Z_+ = Z \cup \tilde{X}_+$, where Z is a compact smooth spin 4-manifold with $\partial Z = -\partial \tilde{X}_+$.

Product case: $X = S^1 \times Y$ gives rise to $Z_+ = Z \cup ([0, +\infty) \times Y)$. The index theory was studied by Atiyah, Patodi and Singer.

General case: the basics of index theory on Z_+ were established by Taubes. We develop this theory far enough to prove the following two theorems.

Theorem 2. For generic (g,β) , the operator $D^+(Z_+,g) + \beta : L_1^2 \to L^2$ is Fredholm, and

 $w(X,g,\beta) = \operatorname{ind}(D^+(Z_+,g) + \beta) + \operatorname{sign}(Z)/8$

is independent of the choice of Z and the way g and β are extended over $Z \subset Z_+$.

Theorem 3. The quantity

$$\lambda_{SW}(X) = #\mathcal{M}(X, g, \beta) - w(X, g, \beta)$$

is an invariant of X (with a choice of orientation and homology orientation). Moreover,

$$\lambda_{SW}(X) = \rho(X) \pmod{2}.$$

Product case: Weimin Chen and Yuhan Lim.

Idea of proof

Choose a (generic) path (g_t, β_t) , $0 \le t \le 1$, between two generic pairs of metrics and perturbations. Then the parameterized moduli space

$$\bigcup_{t \in [0,1]} \{t\} \times \mathcal{M}(X, g_t, \beta_t)$$

is a 1-dimensional manifold with boundary:

A version of Fourier transform associates with $D^+(Z_+,g)$ the holomorphic family

$$D_z^+(X,g) = D^+(X,g) - \log z \cdot df,$$

where $f : X \to S^1$ is such that $[df] = 1 \in H^1(X; \mathbb{Z})$.

Spectral points

Fredholmness means no spectral points on the circle |z| = 1.

9

Then ind $(D^+(Z_+, g) + \beta)$ changes along (g_t, β_t) by the spectral flow of the family

 $D_z^+(X,g_t) + \beta_t$

The well definedness of $\lambda_{SW}(X,g)$ follows by matching this with the Seiberg-Witten difference cycle.

The Rohlin invariant part is the hardest because it requires Fredholmness of $D^+(Z_+,g)$ with $\beta = 0$, by perturbing metric g alone.

Product case

If $X = S^1 \times Y$ then $D^+(X,g) = d/d\theta + D$ with *D* the self-adjoint Dirac operator on *Y*.

Theorem (Atiyah-Patodi-Singer)

ind
$$D^+(Z_+,g) = \int_Z \widehat{A}(Z,g) - \frac{1}{2}\eta(Y,g),$$

where

$$\eta(Y,g) = \sum_{\substack{0 \neq \lambda \in \operatorname{Spec}(D)}} \operatorname{sign}(\lambda) \cdot |\lambda|^{-s}$$

evaluated at s = 0.

Theorem (Yuhan Lim)

$$\lambda_{SW}(S^1 \times Y) = -\lambda(Y),$$

the **Casson invariant** of Y, obtained by counting irreducible representations $\pi_1(Y) \rightarrow SU(2)$.

11

Mapping torus case

Let Y be a homology sphere and X the mapping torus of $\tau : Y \to Y$ of **finite order**. Then $\tilde{X} = \mathbf{R} \times Y$ as in the product case.

Theorem 4. Let $Y = \Sigma(a_1, \ldots, a_n)$ and X the mapping torus of $\tau : Y \to Y$ induced by complex conjugation on the link so that $Y/\tau = S^3$ with branch set a Montesinos knot k. Then

$$\lambda_{\rm SW}(X) = -\frac{1}{8}\,{\rm sign}(k),$$

also known as the equivariant Casson $\lambda^{\tau}(Y)$ (Collin–Saveliev).

Conjecture. For any mapping torus X of finite order orientation preserving diffeomorphism τ : $Y \rightarrow Y$, one has

$$\lambda_{\mathsf{SW}}(X) = -\lambda^{\mathsf{T}}(Y).$$

12

Furuta–Ohta invariant

Conjecture. If X is a $\mathbb{Z}[\mathbb{Z}]$ -homology $S^1 \times S^3$ then (cf. Witten's conjecture)

$$\lambda_{\mathsf{SW}}(X) = -\lambda_{\mathsf{FO}}(X),$$

the **Furuta–Ohta invariant** obtained by counting irreducible representations $\pi_1(X) \to SU(2)$. Note that $\lambda_{FO}(X) = \lambda^{\tau}(Y)$ for the finite order mapping tori.

If true, this conjecture would give a negative answer to the question about homotopy $S^1 \times S^3$.

End-periodic index theorem

(work in progress)

Assume there is $Y \subset X$ dual to $1 \in H^1(X; \mathbb{Z})$ such that

(1) X is isometric to $N(Y) = [-\varepsilon, \varepsilon] \times Y$ near Y, and

(2) df is supported in N(Y)

(if not, the formulas will be more complicated).

Then

ind
$$D^+(Z_+,g) = \int_Z \hat{A}(Z,g) - \frac{1}{2}\eta(X,g),$$

where

properly regularized :

 $\eta(X,g) =$

$$\frac{1}{\pi i} \int_0^\infty \oint_{|z|=1} \operatorname{Tr} \left(df \cdot D_z^+ e^{-tD_z^- D_z^+} \right) \frac{dz}{z} \, dt.$$

In the product case, $z = e^{\lambda} \in \mathbf{R}$, and we get back the η -invariant of Atiyah-Patodi-Singer.