
.

.

. ..

.

.

Homology cylinders and knot theory
(joint work with Hiroshi GODA)

Takuya SAKASAI

Tokyo Institute of Technology

May 24, 2010

Takuya SAKASAI Homology cylinders and knot theory



.

.

Contents

Contents

.

. . 1 Introduction (on Homology cylinders)

.

.
.

2 Homologically fibered knots

.

.

.

3 Factorization formulas of Alexander invariants
[From homology cylinders to knot theory]

.

.

.

4 Computations

.

.

.

5 Abelian quotient of the monoid of homology cylinders
[From knot theory to homology cylinders]

.

.

.

6 Problems

Takuya SAKASAI Homology cylinders and knot theory



.

.

Introduction (1)

§1. Introduction

• Σg,1 = g1 2 (g ≥ 0, oriented)

with a standard cell decomposition:

γγγ γ2 2g-1 2g

Σg,1

1

p
ζ
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Introduction (2)

.

Definition (Goussarov, Habiro, Garoufalidis-Levine, Levine)

.

.

.

. ..

.

.

(M, i+, i−) : a homology cylinder (HC) over Σg,1

def⇐⇒
{

M : a compact oriented 3-manifold,
i+, i− : Σg,1 ↪→ ∂M two embeddings (markings)

satisfying

.

.

.

1 i+: orientation-preserving, i−: orientation-reversing;

.

.

.

2 ∂M = i+(Σg,1) ∪ i−(Σg,1),
i+(Σg,1) ∩ i−(Σg,1) = i+(∂Σg,1) = i−(∂Σg,1);

.

.

.

3 i+|∂Σg,1 = i−|∂Σg,1 ;

.

.

.

4 i+, i− : H∗(Σg,1;Z)
∼=−→ H∗(M;Z) isomorphisms.
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Introduction (3)

• (M, i+, i−) : a homology cylinder (over Σg,1)

i+(Σg,1)

i−(Σg,1)

MΣg,1

i+

i−

.

Definition

.

.

.

. ..

.

.

Cg,1 := {(M, i+, i−) : HC over Σg,1}/(marking compatible diffeo).
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Introduction (4)

Stacking

.

Definition (Stacking operation)

.

.

.

. ..

.

.

For (M, i+, i−), (N, j+, j−) ∈ Cg,1,

(M, i+, i−) · (N, j+, j−) := (M ∪i−◦(j+)−1 N, i+, j−) ∈ Cg,1

; Cg,1 becomes a monoid.

unit: (Σg,1 × [0, 1], id× 1, id× 0)
where corners of Σg,1 × [0, 1] are rounded, and

Takuya SAKASAI Homology cylinders and knot theory



.

.

Introduction (5)

Examples

.

. . 1 Mg,1: the mapping class group of Σg,1

[ϕ] ∈Mg,1, i.e.

ϕ : Σg,1
∼−→ Σg,1: a diffeo. s.t. ϕ

∣∣
∂Σg,1

= id

=⇒ (Σg,1 × [0, 1], id× 1, ϕ× 0) ∈ Cg,1.

We can check

Mg,1 ↪→ Cg,1 : monoid embedding

; Cg,1 is an enlargement of Mg,1.
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Introduction (6)

.

.
.

2 surgery along clovers (Goussarov) or claspers (Habiro)

.

.
.

3 surgery along pure string links (Habegger, Levine)

.

.

.

4 connected sum with a homology 3-sphere X :

((Σg,1 × [0, 1])#X , id× 1, id× 0) ∈ Cg,1.

Today we focus on

.

.

.

5 complementary sutured manifolds of Seifert surfaces of
a special class of knots.
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Homologically fibered knots (1)

§2. Homologically fibered knots

• K ⊂ S3 : a knot,
S : a Seifert surface of K of genus g.

MS : the cobordism obtained from E(K ) by cutting along S
= the (complementary) sutured manifold for S.

S
S+

S−E(K ) MS

MS

S+

S−

∼=;
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Homologically fibered knots (2)

• By fixing an identification i : Σg,1
∼=−→ S, we obtain a marked

sutured manifold (MS, i+, i−):

S+ = i+(Σg,1)

S− = i−(Σg,1)

MSΣg,1

i+

i−

Question When this becomes a homology cylinder?
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Homologically fibered knots (3)

.

Proposition (Crowell-Trotter, . . ., Goda-S.)

.

.

.

. ..

.

.

K : a knot in S3,

K has a Seifert surface S of genus g s.t. MS is a homology
product (over a copy of S)

⇐⇒ The following hold:

S is a minimal genus Seifert surface,

The Alexander polynomial ∆K (t) of K is monic,

deg(∆K (t)) = 2 genus(K ).
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Homologically fibered knots (4)

.

Definition

.

.

.

. ..

.

.

A knot K in S3 is said to be homologically fibered if

(1) ∆K (t) is monic,

(2) deg(∆K (t)) = 2 genus(K ).

Remarks

• (Fibered knots) ⊂ (HFknots [Homologically Fibered knots])
corresponds to Mg,1 ⊂ Cg,1.

• We can define rational homologically fibered knots
(Q-HFknots) by assuming only (2).
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Homologically fibered knots (5)

“Uniqueness”

.

Proposition

.

.

.

. ..

.

.

K : an HFknot of genus g

S1, S2 : minimal genus Seifert surfaces

For any markings of ∂MS1
and ∂MS2

, ∃N ∈ Cg,1 s.t.

MS1
· N = N ·MS2

∈ Cg,1

In particular, any monoid homomorphism

Cg,1 ³ A w/ A: an abelian group

gives an invariant of HFknots.
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Pretzel knot P(−3, 5, 9) is an HFknot.

Easy to see

P(−2n + 1, 2n + 1, 2n2 + 1) is an HFknot for any k ≥ 1.
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Factorization formulas of Alexander invariants (1)

§3. Factorization formulas of Alexander invariants

Classical case

• K ⊂ S3 : a knot,
S : a Seifert surface of K w/ a Seifert matrix A.

Assume that A is invertible over Q (i.e. K is a Q-HFknot).
Then¶ ³

∆K (t) = det(AT − tA)

= det(AT ) det(I2g(S) − t(AT )−1A)

µ ´

What does this factorization mean?
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Factorization formulas of Alexander invariants (2)

We can check:

• AT and A represent

i+, i− : Z2g ∼= H1(Σg,1) −→ H1(MS) ∼= Z2g

under certain bases of H1(Σg,1) and H1(MS). In fact,

det(A) = The top (bottom) coeff. of ∆K (t)

= ±|H1(M, i+(Σg,1)|
= τ(C∗(MS, i+(Σg,1);Q)) torsion

• σ(MS) := (AT )−1A ∈ Sp(2g,Q).
(Can regard σ(MS) as an H1-monodromy of MS.)
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Factorization formulas of Alexander invariants (3)

Roughly speaking, our factorization formula says
¶ ³

∆K (t) = det(AT ) det(I2g(S) − t(AT )−1A)

= (torsion of MS) · (effect of H1-monodromy of MS).

µ ´

Remark By Milnor,

∆K (t)
1− t

= τZ(K ),

where τZ(K ) is the Reidemeister torsion associated with the
Z-cover of E(K ).
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Factorization formulas of Alexander invariants (4)

• For an HFknot K ,

∆K (t) = det(AT ) det(I2g(S) − t(AT )−1A)

= ±det(I2g(S) − t(AT )−1A).

; The factorization formula is useless for HFknots!

; We will give a generalization by using twisted homology.
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Factorization formulas of Alexander invariants (5)

Higher-order case (Twisted coefficients)

• K : an HFknot,

• MS = (MS, i+, i−) ∈ Cg,1 : an HC associated with K ,

• K := Frac(ZH1(MS)) ∼= Q(t1, . . . , t2g) as twisted coefficients.

.

Lemma

.

.

.

. ..

.

.

For ± ∈ {+,−}, H∗(MS, i±(Σg,1);K) = 0.

cf. classical case: H∗(MS, i±(Σg,1);Z) = 0.
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Factorization formulas of Alexander invariants (6)

.

Definition

.

.

.

. ..

.

.

The K-torsion τK(MS) is

τK(MS) := τ(C∗(MS, i+(Σg,1);K)) ∈ GL(K)/ ∼ .

The Magnus matrix rK(MS) ∈ GL(2g,K) is the
representation matrix of the right K-isom.:

H1(Σg,1, p; i∗−K)
∼=−→
i−

H1(MS, p;K)
∼=−−→

i−1
+

H1(Σg,1, p; i∗+K)

|| ||
K2g ∼=−−−−−−−−−−−−−−−−−−−→

rK(MS) ·
K2g

Remark By substituting ti 7→ 1, we have

τK(MS) 7→ det A = ±1, rK(MS) 7→ σ(MS).
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Factorization formulas of Alexander invariants (7)

• If K is fibered w/ the monodromy ϕ ∈Mg,1, then

rK(MS) =

(
∂ϕ(γj)

∂γi

)

1≤i,j≤2g
.

Thus, rK generalizes the magnus representation for Mg,1.

.

Theorem (Fibering obstructions)

.

.

.

. ..

.

.

K , MS: as before.

If K is fibered, then

.

.

.

1 all the entries of the Magnus matrix rK(MS) are Laurent
polynomials in Q[t±1 , . . . , t±2g] ⊂ K = Q(t1, . . . , t2g),

.

.

.

2 the K-torsion τK(MS) is trivial.
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Factorization formulas of Alexander invariants (8)

Higher-order Alexander invariant (torsion)

• ρ : π1(E(K )) −→ π1(E(K ))

π1(E(K ))′′
=: D2(K )

the natural projection on the metabelian quotient,

• t ∈ H1(E(K )): an oriented meridian loop.

Then we have

D2(K ) ∼= H1(MS)o H1(E(K )) = H1(MS)o 〈 t 〉

and

ZD2(K ) ↪→ ZD2(K )(ZD2(K )− {0})−1 = K(t ;σ),

where K(t ; σ) is the (skew) field of rational functions over
K = Frac(ZH1(MS)) with twisting σ.
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Factorization formulas of Alexander invariants (9)

.

Theorem (Goda-S. Factorization formula)

.

.

.

. ..

.

.

• ρ : π1(E(K )) −→ D2(K ) = H1(MS)o 〈 t 〉: the natural proj.

• t ∈ H1(E(K )): an oriented meridian loop.

We can define

τK(t ;σ)(E(K )) := τ(C∗(E(K );K(t ; σ))),

the noncommutative higher-order torsion associated with ρ
(defined by Cochran, Harvey and Friedl).

Moreover, it factorizes into

τK(t ;σ)(E(K )) =
τK(MS) · (I2g − t · rK(MS))

1− t
∈ GL(K(t ; σ))/ ∼,
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Factorization formulas of Alexander invariants (10)

Remarks.

.

.
.

1 det(τK(t ;σ)(E(K ))) =
det(τK(MS)) · det(I2g − t · rK(MS))

1− t

; det(τK(MS)): the “leading coefficient” of τK(t ;σ)(E(K )).

Know as decategorification of sutured Floer homology
(Friedl-Juhász-Rasmussen)

.

.

.

2 Similar formulas of the form

Alexander inv. = (torsion) · (monodromy) :

.

.

.

1 Formulas of Hutchings-Lee, Goda-Matsuda-Pajitnov and
Kitayama using Morse-Novikov theory.

.

.

.

2 Kirk-Livingston-Wang for string links.
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Computations (1)

§4. Computations

Facts on fibered knots vs. HFknots

HFknots with at most 11-crossings are all fibered.

There are 13 non-fibered HFknots with 12-crossings. In
particular, Friedl-Kim showed that these 13 knots are not
fibered by using twisted Alexander polynomial associated
with finite representations.

We can also use rK(MS) and τK(MS) to detect the
non-fiberedness of HFknots.
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Computations (2)

Recipe

.

. .
1 Get all the pictures of those 13 knots.

[By Computer (Database (KnotInfo) on Internet)]

.

.

.

2 For each of them,

.

.

.

1 Find a minimal genus Seifert surface S.
[By hand]

.

.

.

2 Calculate an admissible presentation of π1(MS).
[By hand]

.

.

.

3 Compute rK(MS) and τK(MS).
[By hand and also by computer program]
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Computations (3)

Non-fibered HFknots with 12-crossings
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Computations (4)

.

. .
2 Example of calculation of admissible presentation

12n0057
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Computations (5)

12n0057

Generators i−(γ1), . . . , i−(γ4), z1, . . . , z10, i+(γ1), . . . , i+(γ4)

Relations z1z5z−1
6 , z2z3z4z1, z3z−1

9 z−1
5 , z7z4z−1

8 , z8z10z6,
z2z5z−1

7 z−1
5 , z9z4z−1

10 z−1
4 , i−(γ1)z−1

1 z−1
5 , i−(γ2)z2,

i−(γ3)z4z8z7z−1
5 , i−(γ4)z4, i+(γ1)z−1

5 , i+(γ2)z−1
9 z−1

6 ,

i+(γ3)z6z4z7z−1
5 z−1

3 z5z−1
6 , i+(γ4)z6z−1

7 z−1
6
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Computations (6)

Computational results for 12n0057

rK(MS) =

x3+x1 x22 H-1+x2 H-1+x4LL-x2 x3 x4
x1 x22 H-1+x2 H-1+x4LL

-
H-1+x4L H-1+x2 x4L
-1+x2 H-1+x4L

x4

1+x2-x2 x4
0

-
H1+x1 x2L x3

x12 x2 H-1+x2 H-1+x4LL
-
x2 H1+x1 x2L H-1+x4L
x1 H-1+x2 H-1+x4LL

-

H1+x2L I1+x1 x22 H-1+x4LM

x1 x2 H-1+x2 H-1+x4LL
1

x4

x3

x1 H-1+x2 H-1+x4LL
x22 H-1+x4L
-1+x2 H-1+x4L

x2 H1+x2L H-1+x4L
-1+x2 H-1+x4L

0

Ix1 x22-x3M x4

x12 x2 H-1+x2 H-1+x4LL
x2 x4 Hx1 x2+x3-x3 x4L
x1 x3 H-1+x2 H-1+x4LL

H1+x2L Ix1 x22-x3M x4

x1 x2 x3 H-1+x2 H-1+x4LL
1

,

τK(MS) = x1 x24 + x1 x25 - x1 x25 x4 ,τK(MS) =

where xj = i+(γj).

Each of rK(MS) and τK(MS) shows that 12n0057 is not fibered!

¶ ³
We computed rK(MS) and τK(MS) similarly for the 13 knots
and checked that detected the non-fiberedness of all 13 HF-
knots.

µ ´
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Abelian quotient of the monoid of homology cylinders (1)

§5. Abelian quotient of the monoid of homology cylinders

.

Definition (Irreducible homology cylinders)

.

.

.

. ..

.

.

C irr
g,1 := {(M, i+, i−) ∈ Cg,1 | M is an irreducible 3-mfd.}.

Question Does there exist non-trivial abelian quotients of C irr
g,1 ?

Note that Mg,1 is a perfect group (i.e. no non-trivial abelian
quotients).
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Abelian quotient of the monoid of homology cylinders (2)

.

Theorem (Goda-S.)

.

.

.

. ..

.

.

The monoid C irr
g,1 has an abelian quotient isomorphic to (Z≥0)

∞.

Sketch of Proof

We use the rank of sutured Floer homology.

An HC (M, i+, i−) ∈ C irr
g,1 can be regarded as a sutured manifold

(M, ζ) with ζ = i+(∂Σg,1) = i−(∂Σg,1).

Moreover, the sutured manifold (M, ζ) is balanced in the sense
of Juhász. So the sutured Floer homology SFH(M, ζ) of (M, ζ)
is defined.
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Abelian quotient of the monoid of homology cylinders (3)

Consider
R : C irr

g,1 −→ Z≥0

defined by
R(M, i+, i−) = rankZ(SFH(M, ζ)).

By deep results of Ni and Juhász, we have

R(M, i+, i−) ≥ 1 for any (M, i+, i−) ∈ C irr
g,1.

R(M, i+, i−) = 1 ⇐⇒ (M, i+, i−) ∈Mg,1 ⊂ C irr
g,1.

R(M · N) = R(M) · R(N) for M, N ∈ C irr
g,1.
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Abelian quotient of the monoid of homology cylinders (4)

Therefore we obtain the rank homomorphism

R : C irr
g,1 −→ Z>0

to the multiplicative monoid Z>0.

We further decompose R by using the prime decomposition of
integers:

R =
⊕

p : prime

Rp : C irr
g,1 −→ Z×>0 =

⊕

p : prime

Z(p)
≥0,

where Z(p)
≥0 is a copy of Z≥0, the monoid of non-negative

integers whose product is given by sum.
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Abelian quotient of the monoid of homology cylinders (5)

Let Mn be the HC obtained from an HFknot

Pn := P(−2n + 1, 2n + 1, 2n2 + 1).

Then

R(Mn) = rankZ(SFH(Mn, ζ))

= ĤFK (S3, Pn, 1)

= 2n2 − 2n + 1.

Easy arithmetic shows our claim. 2
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Abelian quotient of the monoid of homology cylinders (6)

¶ ³
Remark

The homomorphism R is not homology cobordism invariant.
µ ´

Here, (M, i+, i−), (N, i+, i−) ∈ Cg,1 are homology cobordant.

def⇐⇒ ∃ W : a cpt oriented smooth 4-mfd s.t.

• ∂W = M ∪ (−N)/(i+(x) = j+(x), i−(x) = j−(x)) x ∈ Σg,1;

• the inclusions M ↪→ W , N ↪→ W induce isomorphisms on
the integral homology.

Takuya SAKASAI Homology cylinders and knot theory



.

.

Problems (1)

§6. Problems

Is there Categorification of factorization formulas???

ĤFK (K ) ; ∆K (t),
?
; τK(t±;σ)(E(K )),

SFH(MS, K ) ; τK(MS),
??? ; rK(MS).

decategorification
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Problems (2)

Is the rank homomorphism

R =
⊕

p : prime

Rp : C irr
g,1 −→ Z×>0 =

⊕

p : prime

Z(p)
≥0,

a homology cobordism invariant modulo 2 for some p?

Supporting fact:

.

Theorem (Cha-Friedl-Kim)

.

.

.

. ..

.

.

If (M, i+, i−), (N, j+, j−) ∈ Cg,1 are homology cobordant, then
∃q ∈ K = Frac(ZH1(Σg,1)) such that

τK(M) = τK(N) · q · q ∈ K/(±H1(Σg,1)).

Fin
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