Homology cylinders and knot theory (joint work with Hiroshi GODA)

Takuya SAKASAI

Tokyo Institute of Technology
May 24, 2010

Contents

(1) Introduction (on Homology cylinders)
(2) Homologically fibered knots
(3) Factorization formulas of Alexander invariants [From homology cylinders to knot theory]
(1) Computations
(0) Abelian quotient of the monoid of homology cylinders [From knot theory to homology cylinders]
© Problems
§1. Introduction

$$
\text { (} g \geq 0, \text { oriented) }
$$

with a standard cell decomposition:

$\Sigma_{8,1}$

Definition (Goussarov, Habiro, Garoufalidis-Levine, Levine)

(M, i_{+}, i_{-}) : a homology cylinder (HC) over $\Sigma_{g, 1}$
$\stackrel{\text { def }}{\Longrightarrow}\{M$: a compact oriented 3 -manifold, $\left\{i_{+}, i_{-}: \Sigma_{g, 1} \hookrightarrow \partial M\right.$ two embeddings (markings) satisfying
(1) i_{+}: orientation-preserving, i_{-}: orientation-reversing;
(2) $\partial M=i_{+}\left(\Sigma_{g, 1}\right) \cup i_{-}\left(\Sigma_{g, 1}\right)$,

$$
i_{+}\left(\Sigma_{g, 1}\right) \cap i_{-}\left(\Sigma_{g, 1}\right)=i_{+}\left(\partial \Sigma_{g, 1}\right)=i_{-}\left(\partial \Sigma_{g, 1}\right) ;
$$

(3) $\left.i_{+}\right|_{\partial \Sigma_{g, 1}}=\left.i_{-}\right|_{\partial \Sigma_{g, 1}}$;
(1) $i_{+}, i_{-}: H_{*}\left(\Sigma_{g, 1} ; \mathbb{Z}\right) \xrightarrow{\cong} H_{*}(M ; \mathbb{Z})$ isomorphisms.

- $\left(M, i_{+}, i_{-}\right)$: a homology cylinder (over $\left.\Sigma_{g, 1}\right)$

Definition

$\mathcal{C}_{g, 1}:=\left\{\left(M, i_{+}, i_{-}\right):\right.$HC over $\left.\Sigma_{g, 1}\right\} /($ marking compatible diffeo).

Stacking

Definition (Stacking operation)

For $\left(M, i_{+}, i_{-}\right),\left(N, j_{+}, j_{-}\right) \in \mathcal{C}_{g, 1}$,

$$
\left(M, i_{+}, i_{-}\right) \cdot\left(N, j_{+}, j_{-}\right):=\left(M \cup_{i_{-} \circ}\left(j_{+}\right)^{-1} N, i_{+}, j_{-}\right) \in \mathcal{C}_{g, 1}
$$

$\leadsto \mathcal{C}_{g, 1}$ becomes a monoid.
unit: $\left(\Sigma_{g, 1} \times[0,1]\right.$, id $\left.\times 1, \mathrm{id} \times 0\right)$ where corners of $\Sigma_{g, 1} \times[0,1]$ are rounded, and

Examples

(1) $\mathcal{M}_{g, 1}$: the mapping class group of $\Sigma_{g, 1}$
$[\varphi] \in \mathcal{M}_{g, 1}$, i.e.

$$
\begin{aligned}
& \varphi: \Sigma_{g, 1} \xrightarrow{\sim} \Sigma_{g, 1}: \text { a diffeo. s.t. }\left.\varphi\right|_{\partial \Sigma_{g, 1}}=\text { id } \\
& \Longrightarrow\left(\Sigma_{g, 1} \times[0,1], \text { id } \times 1, \varphi \times 0\right) \in \mathcal{C}_{g, 1} .
\end{aligned}
$$

We can check
$\mathcal{M}_{g, 1} \hookrightarrow \mathcal{C}_{g, 1}$: monoid embedding
$\leadsto \mathcal{C}_{g, 1}$ is an enlargement of $\mathcal{M}_{g, 1}$.
(2) surgery along clovers (Goussarov) or claspers (Habiro)
(3) surgery along pure string links (Habegger, Levine)
(4) connected sum with a homology 3-sphere X :

$$
\left(\left(\Sigma_{g, 1} \times[0,1]\right) \# X, \mathrm{id} \times 1, \mathrm{id} \times 0\right) \in \mathcal{C}_{g, 1} .
$$

Today we focus on
(5) complementary sutured manifolds of Seifert surfaces of a special class of knots.
§2. Homologically fibered knots

- $K \subset S^{3}:$ a knot,
S : a Seifert surface of K of genus g.
M_{S} : the cobordism obtained from $E(K)$ by cutting along S $=$ the (complementary) sutured manifold for S.

- By fixing an identification $i: \Sigma_{g, 1} \xlongequal{\cong} S$, we obtain a marked sutured manifold (M_{S}, i_{+}, i_{-}):

Question When this becomes a homology cylinder?

Proposition (Crowell-Trotter, ..., Goda-S.)

K : a knot in S^{3},
K has a Seifert surface S of genus g s.t. M_{S} is a homology product (over a copy of S)
\Longleftrightarrow The following hold:

- S is a minimal genus Seifert surface,
- The Alexander polynomial $\Delta_{K}(t)$ of K is monic,
- $\operatorname{deg}\left(\Delta_{K}(t)\right)=2 \operatorname{genus}(K)$.

Definition

A knot K in S^{3} is said to be homologically fibered if
(1) $\Delta_{K}(t)$ is monic,
(2) $\operatorname{deg}\left(\Delta_{K}(t)\right)=2$ genus (K).

Remarks

- (Fibered knots) \subset (HFknots [Homologically Fibered knots]) corresponds to $\mathcal{M}_{g, 1} \subset \mathcal{C}_{g, 1}$.
- We can define rational homologically fibered knots (\mathbb{Q}-HFknots) by assuming only (2).
"Uniqueness"

Proposition

K : an HFknot of genus g
S_{1}, S_{2} : minimal genus Seifert surfaces
For any markings of $\partial M_{S_{1}}$ and $\partial M_{S_{2}}, \exists N \in \mathcal{C}_{g, 1}$ s.t.

$$
M_{S_{1}} \cdot N=N \cdot M_{S_{2}} \in \mathcal{C}_{g, 1}
$$

In particular, any monoid homomorphism

$$
\mathcal{C}_{g, 1} \rightarrow A \quad \mathrm{w} / A: \text { an abelian group }
$$

gives an invariant of HFknots.

Pretzel knot $P(-3,5,9)$ is an HFknot.

Easy to see $P\left(-2 n+1,2 n+1,2 n^{2}+1\right)$ is an HFknot for any $k \geq 1$.
§3. Factorization formulas of Alexander invariants

Classical case

- $K \subset S^{3}:$ a knot, S : a Seifert surface of $K \mathrm{w} /$ a Seifert matrix A.

Assume that A is invertible over \mathbb{Q} (i.e. K is a \mathbb{Q}-HFknot). Then

$$
\begin{aligned}
\Delta_{K}(t) & =\operatorname{det}\left(A^{T}-t A\right) \\
& =\operatorname{det}\left(A^{T}\right) \operatorname{det}\left(I_{2 g(S)}-t\left(A^{T}\right)^{-1} A\right)
\end{aligned}
$$

What does this factorization mean?

We can check:

- A^{T} and A represent

$$
i_{+}, i_{-}: \mathbb{Z}^{2 g} \cong H_{1}\left(\Sigma_{g, 1}\right) \longrightarrow H_{1}\left(M_{S}\right) \cong \mathbb{Z}^{2 g}
$$

under certain bases of $H_{1}\left(\Sigma_{g, 1}\right)$ and $H_{1}\left(M_{S}\right)$. In fact,

$$
\begin{aligned}
\operatorname{det}(A) & =\text { The top }(\text { bottom }) \text { coeff. of } \Delta_{K}(t) \\
& = \pm \mid H_{1}\left(M, i_{+}\left(\Sigma_{g, 1}\right) \mid\right. \\
& =\tau\left(C_{*}\left(M_{S}, i_{+}\left(\Sigma_{g, 1}\right) ; \mathbb{Q}\right)\right) \quad \text { torsion }
\end{aligned}
$$

- $\sigma\left(M_{S}\right):=\left(A^{T}\right)^{-1} A \in \operatorname{Sp}(2 g, \mathbb{Q})$.
(Can regard $\sigma\left(M_{S}\right)$ as an H_{1}-monodromy of M_{S}.)

Roughly speaking, our factorization formula says

$$
\begin{aligned}
\Delta_{K}(t) & =\operatorname{det}\left(A^{T}\right) \operatorname{det}\left(I_{2 g(S)}-t\left(A^{T}\right)^{-1} A\right) \\
& =\left(\text { torsion of } M_{S}\right) \cdot\left(\text { effect of } H_{1} \text {-monodromy of } M_{S}\right) .
\end{aligned}
$$

Remark By Milnor,

$$
\frac{\Delta_{K}(t)}{1-t}=\tau_{\mathbb{Z}}(K)
$$

where $\tau_{\mathbb{Z}}(K)$ is the Reidemeister torsion associated with the Z-cover of $E(K)$.

- For an HFknot K,

$$
\begin{aligned}
\Delta_{K}(t) & =\operatorname{det}\left(A^{T}\right) \operatorname{det}\left(I_{2 g(S)}-t\left(A^{T}\right)^{-1} A\right) \\
& = \pm \operatorname{det}\left(I_{2 g(S)}-t\left(A^{T}\right)^{-1} A\right)
\end{aligned}
$$

\leadsto The factorization formula is useless for HFknots!
\leadsto We will give a generalization by using twisted homology.

Higher-order case (Twisted coefficients)

- K: an HFknot,
- $M_{S}=\left(M_{S}, i_{+}, i_{-}\right) \in \mathcal{C}_{g, 1}:$ an HC associated with K,
- $\mathcal{K}:=\operatorname{Frac}\left(\mathbb{Z} H_{1}\left(M_{S}\right)\right) \cong \mathbb{Q}\left(t_{1}, \ldots, t_{2 g}\right)$ as twisted coefficients.

Lemma
For $\pm \in\{+,-\}, H_{*}\left(M_{S}, i_{ \pm}\left(\Sigma_{g, 1}\right) ; \mathcal{K}\right)=0$.
cf. classical case: $H_{*}\left(M_{S}, i_{ \pm}\left(\Sigma_{g, 1}\right) ; \mathbb{Z}\right)=0$.

Definition

- The \mathcal{K}-torsion $\tau_{\mathcal{K}}\left(M_{S}\right)$ is

$$
\tau_{\mathcal{K}}\left(M_{S}\right):=\tau\left(C_{*}\left(M_{S}, i_{+}\left(\Sigma_{g, 1}\right) ; \mathcal{K}\right)\right) \in G L(\mathcal{K}) / \sim
$$

- The Magnus matrix $r_{\mathcal{K}}\left(M_{S}\right) \in G L(2 g, \mathcal{K})$ is the representation matrix of the right \mathcal{K}-isom.:

$$
\begin{array}{r}
H_{1}\left(\Sigma_{g, 1}, p ; i_{-}^{*} \mathcal{K}\right) \underset{i_{-}}{\cong} H_{1}\left(M_{S}, p ; \mathcal{K}\right) \stackrel{\underset{i_{+}^{-1}}{\cong}}{\leftrightarrows} H_{1}\left(\sum_{g, 1}, p ; i_{+}^{*} \mathcal{K}\right) \\
\mathcal{K}^{2 g} \xrightarrow[r_{\mathcal{K}}\left(M_{s}\right) .]{\cong}
\end{array}
$$

Remark By substituting $t_{i} \mapsto 1$, we have

$$
\tau_{\mathcal{K}}\left(M_{S}\right) \mapsto \operatorname{det} A= \pm 1, \quad r_{\mathcal{K}}\left(M_{S}\right) \mapsto \sigma\left(M_{S}\right) .
$$

- If K is fibered $w /$ the monodromy $\varphi \in \mathcal{M}_{g, 1}$, then

$$
r_{\mathcal{K}}\left(M_{S}\right)={\overline{\left(\frac{\partial \varphi\left(\gamma_{j}\right)}{\partial \gamma_{i}}\right)_{1 \leq i, j \leq 2 g}}}
$$

Thus, $r_{\mathcal{K}}$ generalizes the magnus representation for $\mathcal{M}_{g, 1}$.

Theorem (Fibering obstructions)

K, M_{S} : as before.
If K is fibered, then
(1) all the entries of the Magnus matrix $r_{\mathcal{K}}\left(M_{S}\right)$ are Laurent polynomials in $\mathbb{Q}\left[t_{1}^{ \pm}, \ldots, t_{2 g}^{ \pm}\right] \subset \mathcal{K}=\mathbb{Q}\left(t_{1}, \ldots, t_{2 g}\right)$,
(2) the \mathcal{K}-torsion $\tau_{\mathcal{K}}\left(M_{S}\right)$ is trivial.

Higher-order Alexander invariant (torsion)

- $\rho: \pi_{1}(E(K)) \longrightarrow \frac{\pi_{1}(E(K))}{\pi_{1}(E(K))^{\prime \prime}}=: D_{2}(K)$ the natural projection on the metabelian quotient,
- $t \in H_{1}(E(K))$: an oriented meridian loop.

Then we have

$$
D_{2}(K) \cong H_{1}\left(M_{S}\right) \rtimes H_{1}(E(K))=H_{1}\left(M_{S}\right) \rtimes\langle t\rangle
$$

and

$$
\mathbb{Z} D_{2}(K) \hookrightarrow \mathbb{Z} D_{2}(K)\left(\mathbb{Z} D_{2}(K)-\{0\}\right)^{-1}=\mathcal{K}(t ; \sigma)
$$

where $\mathcal{K}(t ; \sigma)$ is the (skew) field of rational functions over $\mathcal{K}=\operatorname{Frac}\left(\mathbb{Z} H_{1}\left(M_{S}\right)\right)$ with twisting σ.

Theorem (Goda-S. Factorization formula)

- $\rho: \pi_{1}(E(K)) \longrightarrow D_{2}(K)=H_{1}\left(M_{S}\right) \rtimes\langle t\rangle:$ the natural proj.
- $t \in H_{1}(E(K))$: an oriented meridian loop.

We can define

$$
\tau_{\mathcal{K}(t ; \sigma)}(E(K)):=\tau\left(C_{*}(E(K) ; \mathcal{K}(t ; \sigma))\right),
$$

the noncommutative higher-order torsion associated with ρ (defined by Cochran, Harvey and Friedl).

Moreover, it factorizes into

$$
\begin{aligned}
\tau_{\mathcal{K}(t ; \sigma)}(E(K)) & =\frac{\tau_{\mathcal{K}}\left(M_{S}\right) \cdot\left(l_{2 g}-t \cdot r_{\mathcal{K}}\left(M_{S}\right)\right)}{1-t} \\
& \in G L(\mathcal{K}(t ; \sigma)) / \sim,
\end{aligned}
$$

Remarks.

(1) $\operatorname{det}\left(\tau_{\mathcal{K}(t ; \sigma)}(E(K))\right)=\frac{\operatorname{det}\left(\tau_{\mathcal{K}}\left(M_{S}\right)\right) \cdot \operatorname{det}\left(l_{2 g}-t \cdot r_{\mathcal{K}}\left(M_{S}\right)\right)}{1-t}$
$\leadsto \operatorname{det}\left(\tau_{\mathcal{K}}\left(M_{S}\right)\right)$: the "leading coefficient" of $\tau_{\mathcal{K}(t ; \sigma)}(E(K))$.
Know as decategorification of sutured Floer homology (Friedl-Juhász-Rasmussen)
(2) Similar formulas of the form

$$
\text { Alexander inv. }=(\text { torsion }) \cdot(\text { monodromy }):
$$

(1) Formulas of Hutchings-Lee, Goda-Matsuda-Pajitnov and Kitayama using Morse-Novikov theory.
(2) Kirk-Livingston-Wang for string links.
§4. Computations

Facts on fibered knots vs. HFknots

- HFknots with at most 11-crossings are all fibered.
- There are 13 non-fibered HFknots with 12-crossings. In particular, Friedl-Kim showed that these 13 knots are not fibered by using twisted Alexander polynomial associated with finite representations.

We can also use $r_{\mathcal{K}}\left(M_{S}\right)$ and $\tau_{\mathcal{K}}\left(M_{S}\right)$ to detect the non-fiberedness of HFknots.

Recipe

(1) Get all the pictures of those 13 knots.
[By Computer (Database (KnotInfo) on Internet)]
(2) For each of them,
(1) Find a minimal genus Seifert surface S.
[By hand]
(2) Calculate an admissible presentation of $\pi_{1}\left(M_{S}\right)$. [By hand]
(3) Compute $r_{\mathcal{K}}\left(M_{S}\right)$ and $\tau_{\mathcal{K}}\left(M_{S}\right)$.
[By hand and also by computer program]

Non-fibered HFknots with 12-crossings

(2) Example of calculation of admissible presentation

Generators $i_{-}\left(\gamma_{1}\right), \ldots, i_{-}\left(\gamma_{4}\right), z_{1}, \ldots, z_{10}, i_{+}\left(\gamma_{1}\right), \ldots, i_{+}\left(\gamma_{4}\right)$ Relations $\quad z_{1} z_{5} z_{6}^{-1}, z_{2} z_{3} z_{4} z_{1}, z_{3} z_{9}^{-1} z_{5}^{-1}, z_{7} z_{4} z_{8}^{-1}, z_{8} z_{10} z_{6}$, $z_{2} z_{5} z_{7}^{-1} z_{5}^{-1}, z_{9} z_{4} z_{10}^{-1} z_{4}^{-1}, i_{-}\left(\gamma_{1}\right) z_{1}^{-1} z_{5}^{-1}, i_{-}\left(\gamma_{2}\right) z_{2}$, $i_{-}\left(\gamma_{3}\right) z_{4} z_{8} z_{7} z_{5}^{-1}, i_{-}\left(\gamma_{4}\right) z_{4}, i_{+}\left(\gamma_{1}\right) z_{5}^{-1}, i_{+}\left(\gamma_{2}\right) z_{9}^{-1} z_{6}^{-1}$, $i_{+}\left(\gamma_{3}\right) z_{6} z_{4} z_{7} z_{5}^{-1} z_{3}^{-1} z_{5} z_{6}^{-1}, i_{+}\left(\gamma_{4}\right) z_{6} z_{7}^{-1} z_{6}^{-1}$

Computational results for 12 n 0057

$\tau_{\mathcal{K}}\left(M_{S}\right)=\mathrm{x} 1 \times 2^{4}+\mathrm{x} 1 \times 2^{5}-\mathrm{x} 1 \times 2^{5} \times 4$,
where $\times j=i_{+}\left(\gamma_{j}\right)$.
Each of $r_{\mathcal{K}}\left(M_{S}\right)$ and $\tau_{\mathcal{K}}\left(M_{S}\right)$ shows that 12 n 0057 is not fibered!

We computed $r_{\mathcal{K}}\left(M_{S}\right)$ and $\tau_{\mathcal{K}}\left(M_{S}\right)$ similarly for the 13 knots and checked that detected the non-fiberedness of all 13 HF knots.

Abelian quotient of the monoid of homology cylinders (1)

§5. Abelian quotient of the monoid of homology cylinders

Definition (Irreducible homology cylinders)

$$
\mathcal{C}_{g, 1}^{\mathrm{irr}}:=\left\{\left(M, i_{+}, i_{-}\right) \in \mathcal{C}_{g, 1} \mid M \text { is an irreducible 3-mfd. }\right\} .
$$

Question Does there exist non-trivial abelian quotients of $\mathcal{C}_{g, 1}^{\mathrm{irr}}$?
Note that $\mathcal{M}_{g, 1}$ is a perfect group (i.e. no non-trivial abelian quotients).

Theorem (Goda-S.)

The monoid $\mathcal{C}_{g, 1}^{\mathrm{irr}}$ has an abelian quotient isomorphic to $\left(\mathbb{Z}_{\geq 0}\right)^{\infty}$.

Sketch of Proof

We use the rank of sutured Floer homology.
An HC $\left(M, i_{+}, i_{-}\right) \in \mathcal{C}_{g, 1}^{\mathrm{irr}}$ can be regarded as a sutured manifold (M, ζ) with $\zeta=i_{+}\left(\partial \Sigma_{g, 1}\right)=i_{-}\left(\partial \Sigma_{g, 1}\right)$.

Moreover, the sutured manifold (M, ζ) is balanced in the sense of Juhász. So the sutured Floer homology $\operatorname{SFH}(M, \zeta)$ of (M, ζ) is defined.

Consider

$$
R: \mathcal{C}_{g, 1}^{\mathrm{irr}} \longrightarrow \mathbb{Z}_{\geq 0}
$$

defined by

$$
R\left(M, i_{+}, i_{-}\right)=\operatorname{rank}_{\mathbb{Z}}(S F H(M, \zeta))
$$

By deep results of Ni and Juhász, we have

- $R\left(M, i_{+}, i_{-}\right) \geq 1$ for any $\left(M, i_{+}, i_{-}\right) \in \mathcal{C}_{g, 1}^{\mathrm{irr}}$.
- $R\left(M, i_{+}, i_{-}\right)=1 \Longleftrightarrow\left(M, i_{+}, i_{-}\right) \in \mathcal{M}_{g, 1} \subset \mathcal{C}_{g, 1}^{\mathrm{irr}}$.
- $R(M \cdot N)=R(M) \cdot R(N)$ for $M, N \in \mathcal{C}_{g, 1}^{\mathrm{irr}}$.

Therefore we obtain the rank homomorphism

$$
R: \mathcal{C}_{g, 1}^{\mathrm{irr}} \longrightarrow \mathbb{Z}_{>0}
$$

to the multiplicative monoid $\mathbb{Z}_{>0}$.

We further decompose R by using the prime decomposition of integers:

$$
R=\bigoplus_{p: \text { prime }} R_{p}: \mathcal{C}_{g, 1}^{\mathrm{irr}} \longrightarrow \mathbb{Z}_{>0}^{\times}=\bigoplus_{p: \text { prime }} \mathbb{Z}_{\geq 0}^{(p)}
$$

where $\mathbb{Z}_{\geq 0}^{(p)}$ is a copy of $\mathbb{Z}_{\geq 0}$, the monoid of non-negative integers whose product is given by sum.

Let M_{n} be the HC obtained from an HFknot

$$
P_{n}:=P\left(-2 n+1,2 n+1,2 n^{2}+1\right) .
$$

Then

$$
\begin{aligned}
R\left(M_{n}\right) & =\operatorname{rank}_{\mathbb{Z}}\left(S F H\left(M_{n}, \zeta\right)\right) \\
& =\widehat{H F K}\left(S^{3}, P_{n}, 1\right) \\
& =2 n^{2}-2 n+1 .
\end{aligned}
$$

Easy arithmetic shows our claim.

Remark

The homomorphism R is not homology cobordism invariant.

Here, $\left(M, i_{+}, i_{-}\right),\left(N, i_{+}, i_{-}\right) \in \mathcal{C}_{g, 1}$ are homology cobordant.
$\stackrel{\text { def }}{\Longrightarrow} \exists W$: a cpt oriented smooth 4-mfd s.t.

- $\partial W=M \cup(-N) /\left(i_{+}(x)=j_{+}(x), i_{-}(x)=j_{-}(x)\right) \quad x \in \Sigma_{g, 1} ;$
- the inclusions $M \hookrightarrow W, N \hookrightarrow W$ induce isomorphisms on the integral homology.
§6. Problems
- Is there Categorification of factorization formulas???

- Is the rank homomorphism

$$
R=\bigoplus_{p: \text { prime }} R_{p}: \mathcal{C}_{g, 1}^{\mathrm{irr}} \longrightarrow \mathbb{Z}_{>0}^{\times}=\bigoplus_{p: \text { prime }} \mathbb{Z}_{\geq 0}^{(p)},
$$

a homology cobordism invariant modulo 2 for some p ?

Supporting fact:

Theorem (Cha-Friedl-Kim)

If $\left(M, i_{+}, i_{-}\right),\left(N, j_{+}, j_{-}\right) \in \mathcal{C}_{g, 1}$ are homology cobordant, then $\exists q \in \mathcal{K}=\operatorname{Frac}\left(\mathbb{Z} H_{1}\left(\Sigma_{g, 1}\right)\right)$ such that

$$
\tau_{\mathcal{K}}(M)=\tau_{\mathcal{K}}(N) \cdot q \cdot \bar{q} \quad \in \mathcal{K} /\left(\pm H_{1}\left(\Sigma_{g, 1}\right)\right) .
$$

Fin

