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Notations

L : a fibered link in S3, i.e.,
F EL := S3 \ N(L)

S1

We can regard EL as a mapping torus:

EL = F × [0, 1]/(x , 1) ∼ (f (x), 0)

where f : F → F is a diffeomorphism.

This diffeomorphism f is called a monodromy .
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Classical result by Milnor

Theorem (J. Milnor)

For a fibered link exterior

EL = F × [0, 1]/(x , 1) ∼ (f (x), 0),

the characteristic polynomial of

f∗ : H1(F ; Q)
∼
−→ H∗(F ; Q)

is expressed as

det(t1− f∗) =

{
∆K (t), if L is a knot K

(t − 1)∆L(t , . . . , t), if L has 2 or more compos.

where ∆K (t) and ∆L(t1, . . . , tn) are the Alexander polynomials.
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The case of the twisted Alexander polynomial

Question

How about the twisted Alexander polynomial ∆L,ρ(t)
twisted by ρ : π1(EL) → SLN(C)?

Theorem (J. Cha)

For a fibered knot K ⊂ S3,
the twisted Alexander polynomial ∆K ,ρ(t) for
ρ : π1(EK ) → SLN(C) is expressed as

∆K ,ρ(t) = det(t1 − f∗)

where f∗ : H1(F ; CN
ρ )

∼
−→ H1(F ; CN

ρ ).

(EK = F × [0, 1]/(x , 1) ∼ (f (x), 0))

Jérôme Dubois and Yoshikazu Yamaguchi The twisted Alexander poly. for hyperbolic fibered links



Introduction
Main Theorem and Sketch of the proof

Example

More general situations:

Theorem (J. Dubois and Y.)

For a fibered link in a closed 3-manifold M,
the twisted Alexander polynomial ∆L,ρ(t , . . . , t) for
ρ : π1(ML) → SLN(C) is expressed as

∆M,ρ(t , . . . , t) = det(t1 − f∗)

where f∗ : H1(F ; CN
ρ )

∼
−→ H1(F ; CN

ρ ).

(ML = M \ N(L) = F × [0, 1]/(x , 1) ∼ (f (x), 0), F : connected)

Remark

We need some assumptions for ρ in the above theorem.
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The contents of this talk

Precise statement and the proof of Main theorem

The conditions on homomorphisms of π1(ML).

Sketch of the proof by using cut & paste method in
Reidemeister torsion theory.

Explicit examples

In general, it is difficult to compute the twisted monodromy

f∗ : H1(F ; CN
ρ )

∼
−→ H1(F ; CN

ρ ).

For special representations (π1(ML) → SL3(C)), we can relate

H1(F ; C3
ρ) with an affine variety and

f∗ with the differential of a map on the variety

We will discuss once-punctured torus bundles over S1.
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The statement of Main Theorem
The Sketch of Proof

Review of Twisted Alexander polynomial

To define Twisted Alexander polynomial, we need

A surjective homomorphism from π1(EL) onto an free
abelian group Zn (n ≦ b1(EL)):

ϕ : π1(EL) → Zn = 〈t1, . . . , tn | ti tj = tj ti(∀i , j)〉

a representation of π1(EL):

ρ : π1(EL) → SLN(C)

“Representation” means that π1(EL) acts on a vector space via
the homomorphism ρ,

γ · v = ρ(γ)(v) for γ ∈ π1(EL), v ∈ CN
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Definition of Twisted Alexander polynomial

Choose a presentation of π1(EL):

π1(EL) = 〈x1, . . . , xk | r1, . . . , rk−1〉.

Definition (M. Wada)

For ϕ : π1(EL) → Zn and ρ : π1(EL) → SLN(C),

the twisted Alexander polynomial ∆ϕ
L,ρ

(t1, . . . , tn) of L is given by

∆ϕ
L,ρ

(t1, . . . , tn) =

det
(

ϕ ⊗ ρ

(
∂ri
∂xj

))
1 ≦ i, j ≦ k ,
j 6= ℓ

det
(
ϕ ⊗ ρ(xℓ − 1)

)

when det
(
ϕ ⊗ ρ(xℓ − 1)

)
6= 0.
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Example of Twisted Alexander polynomial

Let K be the figure eight knot.

Figure: the fibered structure of EK

The knot group π1(EK ) is expressed as

π1(EK ) = 〈µ, α, β |µαµ−1 = αβ, µβµ−1 = βαβ〉

where µ is a meridian (a lift of the base circle).
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Put the relators as

r1 = µαµ−1β−1α−1, r2 = µβµ−1β−1α−1β−1.

Then

∆ϕ
K ,ρ

(t) =

det


ϕ ⊗ ρ

(
∂
∂α

r1

)
ϕ ⊗ ρ

(
∂
∂β

r1

)

ϕ ⊗ ρ
(

∂
∂α

r2

)
ϕ ⊗ ρ

(
∂
∂β

r2

)



det (ϕ ⊗ ρ(µ − 1))

=

det
(

ϕ ⊗ ρ(µ − 1) ϕ ⊗ ρ(−α)
ϕ ⊗ ρ(−β) ϕ ⊗ ρ(µ − βα − 1)

)

det (ϕ ⊗ ρ(µ − 1))

in which we simplify words with r1 = 1 and r2 = 1.
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Choose ϕ : π1(EK ) → Z as the induced hom. from the fibration

ϕ : π1(EK ) → π1(S
1) = 〈t〉

µ 7→ t

α, β 7→ 1

and ρ : π1(EK ) → SLN(C) such that ρ(r1) = 1 and ρ(r2) = 1:

ρ : µ 7→ M, α 7→ A, β 7→ B ∈ SLN(C)

The twisted Alexander polynomial ∆ϕ
K ,ρ(t) turns into

∆ϕ
K ,ρ

(t) =

det
(

tM − 1 −A
−B tM − BA − 1

)

det(tM − 1)
.
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Some remarks on the homomorphism ϕ

Remark

For every fibered knot K ⊂ S3, the induced homomorphism

ϕ : π1(EK ) → π1(S
1) = Z

agrees with the abelianization homomorphism

π1(EK ) → H1(EK ; Z) = π1(EK )/[π1(EK ), π1(EK )].

For every fibered link L ⊂ S3, the induced homomorphism
ϕ factors through the abelianization homomorphism.

π1(EL)

H1(EL; Z) := 〈t1, . . . , tm | ti tj = tj ti (∀i , j)〉

π1(S1) = 〈t〉
ϕ

t1 = · · · = tm = t
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Homomorphism onto an abelian group

We assume that
L is a fibered link in a closed 3-manifold M and;
p denotes the fibration of ML over S1.

F ML := M \ N(L)

S1

p

Hereafter we set the surjective homomorphism

ϕ : π1(ML) → Z

as the induced homomorphism from the fibration, i.e.,

ϕ = p∗ : π1(ML) → π1(S
1) = 〈t〉.

Note that Ker ϕ = π1(F ).
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Representations of π1(ML) into SLN(C)

We denote by ρ an SLN(C)-representation of π1(ML):

π1(ML) → SLN(C) y CN .

We assume that the ρ satisfies that

the homology of local system given by ρ and ϕ is trivial:

H∗(ML; C(t)N
ρ ) = 0 and;

the restriction ρ|π1(F ) on π1(F ) is irreducible.
(⇔ ρ(π1(F )) has no common eigenvector in CN .)

Under these assumptions, ∆L,ρ is well-defined as a Laurent
polynomial.
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Statement of Main Theorem

Theorem

Let L be a fibered link in a closed 3-manifold M:

F ML := M \ N(L)

S1

= F × [0, 1]/(x , 1) ∼ (f (x), 0).p

We assume that

ϕ = p∗ : π1(ML) → π1(S1) = 〈t〉 and;

ρ : π1(ML) → SLN(C) satisfies that
H∗(ML; C(t)N

ρ ) = 0 and ρ|π1F is irreducible.

Then
∆L,ρ(t) = det(t1 − f∗)

where f∗ : H1(F ; CN
ρ )

∼
−→ H1(F ; CN

ρ ) (twisted monodromy).
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Idea of Proof

Main Tool

Mayer-Vietoris argument in Reidemeister torsion:

∆L,ρ(t) = Reidemeister torsion of (ML, ϕ ⊗ ρ).

The Right Hand Side is an invariant of

C∗(ML; C(t)N
ρ ) := C∗(M̃L; Z) ⊗Z[π1(ML)] (C(t) ⊗ CN)

where

· M̃L is the universal cover of ML and

· C(t) ⊗ CN = C(t)N is a left Z[π1(ML)]-module via ϕ ⊗ ρ.
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Details in Mayer-Vietoris argument

Decompose ML = F × [0, 1]/ ∼ as

ML = N(F × {1}) ∪ F × [ǫ, 1 − ǫ]

where N(F ) is an open tubular neighbourhood of a fiber F .
Note that

N(F ) ≃ F × [0, 1];
∂N(F ) = F+ ∪ F−, F± = F ;
the gluing map is given by

F+ ∪ F−

f ∪ id
−−−→ F × {ǫ} ∪ F × {1 − ǫ}

Figure: the decomposition of ML
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Computation

From the decomposition:

F+ ∪ F− → N(F ) ∪ F × [ǫ, 1 − ǫ]

identified
along F±
−−−−−−→ ML

it follows that

∆L,ρ(t) =
Tor(N(F )) · Tor(F × [ǫ, 1 − ǫ])

Tor(F+ ∪ F−) · Tor(H)

=
Tor(F ) · Tor(F )

Tor(F ) · Tor(F ) · Tor(H)

= Tor(H)−1

where H is the chain complex given by Mayer-Vietoris exact
sequence with the coefficient C(t)N

ρ .

· · · → Hi(F+∪F−) → Hi(N(F ))⊕Hi(F×[ǫ, 1−ǫ]) → Hi(ML) → · · · .
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Torsion of Mayer-Vietoris exact sequence

By the irreducibolity of ρ|π1(F ) and H∗(ML; C(t)N
ρ ) = 0, the

Mayer-Vietoris sequence H turns into

0 → H1(F+) ⊕ H1(F−) → H1(N(F )) ⊕ H1(F × [ǫ, 1 − ǫ]) → 0.

Moreover this isomorphism is expressed as, (by Friedl-Kim’s
Proposition),

0 → H1(F )
t · f∗ − id
−−−−−−−→ H1(F ) → 0

where the coefficiet is C(t)N
ρ .

We can deduce that

∆L,ρ(t) = Tor(H)−1 = det(t · f∗ − 1).

Note that

∆L,ρ(t)
·
= ∆L,ρ(t

−1)
·
= det(t1 − f∗) up to a factor tk (k ∈ Z).
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Once–punctured torus bundles over S1

Character varieties
Explicit description and example

Review of once–punctured torus bundles

Let

Σ1,1 be the once-punctured torus and;

f : Σ1,1 → Σ1,1 an ori. pres. diffeomorphism such that

f |∂Σ1,1 = id on ∂Σ1,1.

Tf the mapping torus of f , i.e.,
Tf = Σ1,1 × [0, 1]/(x , 1) ∼ (f (x), 0).

Figure: Once–punctured torus bundle
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Review of once–punctured torus bundles

Once–punctured torus bundles are classified by the induced
isomorphism:

Af : H1(Σ1,1; Z) ≃ Z2 → H1(Σ1,1; Z) ≃ Z2.

Since f is ori. pres., Af ∈ SL2(Z), generated by

R =

(
1 1
0 1

)
, L =

(
1 0
1 1

)
and

(
−1 0

0 −1

)
.

For example, the figure knot exterior EK corresponds to

LR =

(
1 1
1 2

)
.
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The Alexander polynomial for once–punctured torus
bundles

We can define the Alexander polynomial of Tf corresponding to

ϕ : π1(Tf ) → π1(S
1) = 〈t〉 (↔ T̂f : infinite cyclic cover of Tf )

induced from the fibration.
The Alexander polynomial of Tf is expressed as

∆Tf
(t) = t2 − (tr Af )t + 1

where Af : H1(Σ1,1; Z) → H1(Σ1,1; Z) induced from the
monodromy f .
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Once–punctured torus bundles over S1

Character varieties
Explicit description and example

Relation to the character variety

We consider the composition Ad ◦ ρ:

π1(Tf )
ρ
−→ SL2(C) y sl2(C) (adjoint action)

γ 7→ ρ(γ) ρ(γ) · v = ρ(γ)vρ(γ)−1

where sl2(C) = C
(

0 1
0 0

)
⊕ C

(
1 0
0 −1

)
⊕ C

(
0 0
1 0

)
.

Note that

Ad ◦ ρ : π1(Tf ) → SL3(C) y C3 ≃ sl2(C).

If ρ is irreducible on π1(Σ1,1), then

H1(Σ1,1; sl2(C)ρ) ≃ T ∗

[ρ]X (Σ1,1)

(X (Σ1,1) the character variety of π1(Σ1,1))
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The character variety X (Σ1,1) of π1(Σ1,1) is

Hom(π1(Σ1,1), SL2(C))//conjugation.

This space X (Σ1,1) is identified with

X (Σ1,1) ≃ C3

[ρ] 7→ (tr ρ(α), tr ρ(β), tr ρ(αβ))

where π1(Σ1,1) = 〈α, β〉.

A diffeomorphism f : Σ1,1 → Σ1,1 induces

f ∗ : X (Σ1,1) → X (Σ1,1)

[ρ] 7→ [ρ ◦ f∗] and;
t(df ∗) : T ∗

[ρ◦f∗]X (Σ1,1) → T ∗

[ρ]X (Σ1,1) ≃ H1(Σ1,1; sl2(C)ρ)
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The character varieties of once–punctured torus
bundles

If Tf is an once–punctured torus bundle over S1:

Tf = Σ1,1 × [0, 1]/(x , 1) ∼ (f (x), 0),

then the fundamental group π1(Tf ) has the presentation:

〈µ, α, β |µαµ−1 = f∗(α), µβµ−1 = f∗(β)〉.

Hence every ρ : π1(Tf ) → SL2(C) satisfies that

tr ρ(α) = tr ρ(f∗(α)), tr ρ(β) = tr ρ(f∗(β)), tr ρ(αβ) = tr ρ(f∗(αβ)).

This means that

X (Tf )(:= Hom(π1(Tf ), SL2(C))//conj.)⊂ Fix (f∗)

in X (Σ1,1) ≃ C3 (f ∗ : C3 → C3).
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If the f ∈ Diff+(Σ1,1, ∂Σ1,1) is pseudo-Anosov, i.e., | tr Af | > 2,
then

Tf is a hyperbolic 3-manifold and;
∃X0 ⊂ X (Tf ) such that

dim X0 = 1 & X0 ∋ [ρ0]

where ρ0 : π1(Tf ) → SL2(C) corresponding to the complete
hyperbolic structure.

Hence the differential df ∗ at [ρ] ∈ X0 ⊂ Fix(f ∗) ⊂ X (Σ1,1) ≃ C3:

df ∗ : T[ρ]X (Σ1,1) → T[ρ]X (Σ1,1)

has the eigenvalues 1, λ1 and λ2.

Fact

λ1λ2 = 1.
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The twisted Alexander polynomial via Trace of df ∗

Summarized above, we have

∆Tf ,Ad◦ρ(t) = det(t1 − f∗)

(f∗ : H1(Σ1,1; sl2(C)ρ) → H1(Σ1,1; sl2(C)ρ))

= det(t1 − t(df ∗))

(t(df ∗) : T ∗

[ρ]X (Σ1,1) → T ∗

[ρ]X (Σ1,1))

= det(t1 − df ∗)

(df ∗ : T[ρ]X (Σ1,1) → T[ρ]X (Σ1,1))

= t3 − (tr df∗)t2 + (tr df∗)t − 1.

(= (t − 1)(t − λ1)(t − λ2))
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Recursive formula for f ∗

For every f ∈ Diff+(Σ1,1, ∂Σ1,1), we can compute

f ∗ : X (Σ1,1) → X (Σ1,1)

from the presentation

Af : H1(Σ1,1; Z) → H1(Σ1,1; Z)

as a word in R =

(
1 1
0 1

)
, L =

(
1 0
1 1

)
and

(
−1 0

0 −1

)
.

The relation is given by

Af = ±id ⇒ f ∗ : (x , y , z) 7→ (x , y , z),

Af = R ⇒ f ∗ : (x , y , z) 7→ (x , z, xz − y),

Af = L ⇒ f ∗ : (x , y , z) 7→ (z, y , yz − x).
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Once–punctured torus bundles over S1

Character varieties
Explicit description and example

Example of the figure eight knot exterior

If we consider the figure
eight knot exterior EK , then

Af = LR.

Hence the map f ∗ on X (Σ1,1) = C3 is expressed as

f ∗(x , y , z) =




f ∗1 (x , y , z)
f ∗2 (x , y , z)
f ∗3 (x , y , z)


 =




z
yz − x

yz2 − xz − y




since (x , y , z)
L
−→ (z, y , yz − x)

R
−→ (z, yz − x , z(yz − x) − y).
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Once–punctured torus bundles over S1
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Twisted Alexander polynomial for 41 knot and Ad ◦ ρ

From the Jacobi matrix, we can see that

tr(df ∗) = tr




0 0 1
−1 z y
−z z2 − 1 2yz − x


 = z + 2yz − x .

Since

[ρ] ∈ X (EK ) ⊂ Fix(f ∗) = {(x , y , z) ∈ C3 | x = z, x + y = xy},

we have

tr(df ∗) = 2(x + y) = 2(tr ρ(α) + tr ρ(β)).

Hence for the figure eight knot K and Ad ◦ρ : π1(EK ) → SL3(C),

∆K ,Ad◦ρ(t) = t3 − 2(tr ρ(α) + tr ρ(β))t2 + 2(tr ρ(α) + tr ρ(β))t + 1.
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