On the twisted Alexander polynomial for hyperbolic fibered links via twisted monodromy

Jérôme Dubois ${ }^{1}$ and Yoshikazu Yamaguchi ${ }^{2}$

${ }^{1}$ Institut de Mathematiques de Jussieu, Université Paris 7
${ }^{2}$ JSPS Research fellow (PD), Tokyo Institute of Technology
GCOE Workshop
Circle valued Morse theory and Alexander invariants

Notations

L : a fibered link in S^{3}, i.e.,

$$
F \longrightarrow \underset{\downarrow}{\substack{ \\S^{1}}} E_{L}:=S^{3} \backslash N(L)
$$

We can regard E_{L} as a mapping torus:

$$
E_{L}=F \times[0,1] /(x, 1) \sim(f(x), 0)
$$

where $f: F \rightarrow F$ is a diffeomorphism.
This diffeomorphism f is called a monodromy.

Classical result by Milnor

Theorem (J. Milnor)

For a fibered link exterior

$$
E_{L}=F \times[0,1] /(x, 1) \sim(f(x), 0)
$$

the characteristic polynomial of

$$
f_{*}: H_{1}(F ; \mathbb{Q}) \xrightarrow{\sim} H_{*}(F ; \mathbb{Q})
$$

is expressed as

$$
\operatorname{det}\left(t 1-f_{*}\right)= \begin{cases}\Delta_{K}(t), & \text { if } L \text { is a knot } K \\ (t-1) \Delta_{L}(t, \ldots, t), & \text { if } L \text { has } 2 \text { or more compos. }\end{cases}
$$

where $\Delta_{K}(t)$ and $\Delta_{L}\left(t_{1}, \ldots, t_{n}\right)$ are the Alexander polynomials.

The case of the twisted Alexander polynomial

Question

> How about the twisted Alexander polynomial $\Delta_{L, \rho}(t)$ twisted by $\rho: \pi_{1}\left(E_{L}\right) \rightarrow \operatorname{SL}_{N}(\mathbb{C}) ?$

Theorem (J. Cha)

For a fibered knot $K \subset S^{3}$, the twisted Alexander polynomial $\Delta_{K, \rho}(t)$ for $\rho: \pi_{1}\left(E_{K}\right) \rightarrow \operatorname{SL}_{N}(\mathbb{C})$ is expressed as

$$
\Delta_{K, \rho}(t)=\operatorname{det}\left(t 1-f_{*}\right)
$$

where $f_{*}: H_{1}\left(F ; \mathbb{C}_{\rho}^{N}\right) \xrightarrow{\sim} H_{1}\left(F ; \mathbb{C}_{\rho}^{N}\right)$.

$$
\left(E_{K}=F \times[0,1] /(x, 1) \sim(f(x), 0)\right)
$$

More general situations:

Theorem (J. Dubois and Y.)

For a fibered link in a closed 3-manifold M, the twisted Alexander polynomial $\Delta_{L, \rho}(t, \ldots, t)$ for $\rho: \pi_{1}\left(M_{L}\right) \rightarrow \operatorname{SL}_{N}(\mathbb{C})$ is expressed as

$$
\Delta_{M, \rho}(t, \ldots, t)=\operatorname{det}\left(t 1-f_{*}\right)
$$

where $f_{*}: H_{1}\left(F ; \mathbb{C}_{\rho}^{N}\right) \xrightarrow{\sim} H_{1}\left(F ; \mathbb{C}_{\rho}^{N}\right)$.
$\left(M_{L}=M \backslash N(L)=F \times[0,1] /(x, 1) \sim(f(x), 0), F:\right.$ connected $)$

Remark

We need some assumptions for ρ in the above theorem.

The contents of this talk

Precise statement and the proof of Main theorem

- The conditions on homomorphisms of $\pi_{1}\left(M_{L}\right)$.
- Sketch of the proof by using cut \& paste method in Reidemeister torsion theory.

Explicit examples

In general, it is difficult to compute the twisted monodromy

$$
f_{*}: H_{1}\left(F ; \mathbb{C}_{\rho}^{N}\right) \xrightarrow{\sim} H_{1}\left(F ; \mathbb{C}_{\rho}^{N}\right) .
$$

For special representations $\left(\pi_{1}\left(M_{L}\right) \rightarrow \mathrm{SL}_{3}(\mathbb{C})\right)$, we can relate $H_{1}\left(F ; \mathbb{C}_{\rho}^{3}\right)$ with an affine variety and f_{*} with the differential of a map on the variety
We will discuss once-punctured torus bundles over S^{1}.

Review of Twisted Alexander polynomial

To define Twisted Alexander polynomial, we need

- A surjective homomorphism from $\pi_{1}\left(E_{L}\right)$ onto an free abelian group $\mathbb{Z}^{n}\left(n \leqq b_{1}\left(E_{L}\right)\right)$:

$$
\varphi: \pi_{1}\left(E_{L}\right) \rightarrow \mathbb{Z}^{n}=\left\langle t_{1}, \ldots, t_{n} \mid t_{i} t_{j}=t_{j} t_{i}(\forall i, j)\right\rangle
$$

- a representation of $\pi_{1}\left(E_{L}\right)$:

$$
\rho: \pi_{1}\left(E_{L}\right) \rightarrow \operatorname{SL}_{N}(\mathbb{C})
$$

"Representation" means that $\pi_{1}\left(E_{L}\right)$ acts on a vector space via the homomorphism ρ,

$$
\gamma \cdot \boldsymbol{v}=\rho(\gamma)(\boldsymbol{v}) \quad \text { for } \quad \gamma \in \pi_{1}\left(E_{L}\right), \boldsymbol{v} \in \mathbb{C}^{N}
$$

Definition of Twisted Alexander polynomial

Choose a presentation of $\pi_{1}\left(E_{L}\right)$:

$$
\pi_{1}\left(E_{L}\right)=\left\langle x_{1}, \ldots, x_{k} \mid r_{1}, \ldots, r_{k-1}\right\rangle
$$

Definition (M. Wada)

For $\quad \varphi: \pi_{1}\left(E_{L}\right) \rightarrow \mathbb{Z}^{n}$ and $\rho: \pi_{1}\left(E_{L}\right) \rightarrow \operatorname{SL}_{N}(\mathbb{C})$,
the twisted Alexander polynomial $\Delta_{L, \rho}^{\varphi}\left(t_{1}, \ldots, t_{n}\right)$ of L is given by

$$
\Delta_{L, \rho}^{\varphi}\left(t_{1}, \ldots, t_{n}\right)=\frac{\operatorname{det}\left(\varphi \otimes \rho\left(\frac{\partial r_{i}}{\partial x_{j}}\right)\right) \underset{\substack{1 \\ j \neq \ell}}{ }(\varphi, j \leqq k,}{\operatorname{det}\left(\varphi \otimes \rho\left(x_{\ell}-1\right)\right)}
$$

when $\operatorname{det}\left(\varphi \otimes \rho\left(x_{\ell}-1\right)\right) \neq 0$.

Example of Twisted Alexander polynomial

Let K be the figure eight knot.

Figure: the fibered structure of E_{K}

The knot group $\pi_{1}\left(E_{K}\right)$ is expressed as

$$
\pi_{1}\left(E_{K}\right)=\left\langle\mu, \alpha, \beta \mid \mu \alpha \mu^{-1}=\alpha \beta, \mu \beta \mu^{-1}=\beta \alpha \beta\right\rangle
$$

where μ is a meridian (a lift of the base circle).

Put the relators as

$$
r_{1}=\mu \alpha \mu^{-1} \beta^{-1} \alpha^{-1}, \quad r_{2}=\mu \beta \mu^{-1} \beta^{-1} \alpha^{-1} \beta^{-1}
$$

Then

$$
\Delta_{K, \rho}^{\varphi}(t)=\frac{\operatorname{det}\left(\begin{array}{cc}
\varphi \otimes \rho\left(\frac{\partial}{\partial \alpha} r_{1}\right) & \varphi \otimes \rho\left(\frac{\partial}{\partial \beta} r_{1}\right) \\
\varphi \otimes \rho\left(\frac{\partial}{\partial \alpha} r_{2}\right) & \varphi \otimes \rho\left(\frac{\partial}{\partial \beta} r_{2}\right)
\end{array}\right)}{\operatorname{det}(\varphi \otimes \rho(\mu-1))} .
$$

in which we simplify words with $r_{1}=1$ and $r_{2}=1$.

Choose $\varphi: \pi_{1}\left(E_{K}\right) \rightarrow \mathbb{Z}$ as the induced hom. from the fibration

$$
\begin{aligned}
& \varphi: \pi_{1}\left(E_{K}\right) \rightarrow \pi_{1}\left(S^{1}\right)=\langle t\rangle \\
& \mu \mapsto t \\
& \alpha, \beta \mapsto 1
\end{aligned}
$$

and $\rho: \pi_{1}\left(E_{K}\right) \rightarrow \operatorname{SL}_{N}(\mathbb{C})$ such that $\rho\left(r_{1}\right)=\mathbf{1}$ and $\rho\left(r_{2}\right)=\mathbf{1}$:

$$
\rho: \mu \mapsto M, \quad \alpha \mapsto A, \quad \beta \mapsto B \in \operatorname{SL}_{N}(\mathbb{C})
$$

The twisted Alexander polynomial $\Delta_{K, \rho}^{\varphi}(t)$ turns into

$$
\Delta_{K, \rho}^{\varphi}(t)=\frac{\operatorname{det}\left(\begin{array}{cc}
t M-\mathbf{1} & -A \\
-B & t M-B A-\mathbf{1}
\end{array}\right)}{\operatorname{det}(t M-\mathbf{1})} .
$$

Some remarks on the homomorphism
 φ

Remark

- For every fibered knot $K \subset S^{3}$, the induced homomorphism

$$
\varphi: \pi_{1}\left(E_{K}\right) \rightarrow \pi_{1}\left(S^{1}\right)=\mathbb{Z}
$$

agrees with the abelianization homomorphism

$$
\pi_{1}\left(E_{K}\right) \rightarrow H_{1}\left(E_{K} ; \mathbb{Z}\right)=\pi_{1}\left(E_{K}\right) /\left[\pi_{1}\left(E_{K}\right), \pi_{1}\left(E_{K}\right)\right] .
$$

- For every fibered link $L \subset S^{3}$, the induced homomorphism φ factors through the abelianization homomorphism.

$$
\begin{aligned}
& \pi_{1}\left(E_{L}\right) \xrightarrow{\varphi} \pi_{1}\left(S^{1}\right)=\langle t\rangle \\
& \begin{array}{l}
t_{1}=\cdots=t_{m}=t \\
H_{1}\left(E_{L} ; \mathbb{Z}\right):=\left\langle t_{1}, \ldots, t_{m} \mid t_{i} t_{j}=t_{j} t_{i}(\forall i, j)\right\rangle
\end{array}
\end{aligned}
$$

Homomorphism onto an abelian group

We assume that

- L is a fibered link in a closed 3-manifold M and;
- p denotes the fibration of M_{L} over S^{1}.

$$
\underset{\substack { p \\
\begin{subarray}{c}{ \\
S^{1}{ p \\
\begin{subarray} { c } { \\
S ^ { 1 } } } \\
{M_{L}}\end{subarray}}{ }:=M \backslash N(L)
$$

Hereafter we set the surjective homomorphism

$$
\varphi: \pi_{1}\left(M_{L}\right) \rightarrow \mathbb{Z}
$$

as the induced homomorphism from the fibration, i.e.,

$$
\varphi=p_{*}: \pi_{1}\left(M_{L}\right) \rightarrow \pi_{1}\left(S^{1}\right)=\langle t\rangle .
$$

Note that $\operatorname{Ker} \varphi=\pi_{1}(F)$.

Review of Twisted Alexander polynomial The statement of Main Theorem The Sketch of Proof

Representations of $\pi_{1}\left(M_{L}\right)$ into $\mathrm{SL}_{N}(\mathbb{C})$

We denote by ρ an $\operatorname{SL}_{N}(\mathbb{C})$-representation of $\pi_{1}\left(M_{L}\right)$:

$$
\pi_{1}\left(M_{L}\right) \rightarrow \operatorname{SL}_{N}(\mathbb{C}) \curvearrowright \mathbb{C}^{N}
$$

We assume that the ρ satisfies that

- the homology of local system given by ρ and φ is trivial:

$$
H_{*}\left(M_{L} ; \mathbb{C}(t)_{\rho}^{N}\right)=\mathbf{0} \quad \text { and } ;
$$

- the restriction $\left.\rho\right|_{\pi_{1}(F)}$ on $\pi_{1}(F)$ is irreducible. ($\Leftrightarrow \rho\left(\pi_{1}(F)\right)$ has no common eigenvector in \mathbb{C}^{N}.)
Under these assumptions, $\Delta_{L, \rho}$ is well-defined as a Laurent polynomial.

Statement of Main Theorem

Theorem

Let L be a fibered link in a closed 3-manifold M :

$$
\begin{aligned}
F \rightarrow & M_{L}:=M \backslash N(L) \\
& p \downarrow \\
& S^{1}
\end{aligned}
$$

We assume that

- $\varphi=p_{*}: \pi_{1}\left(M_{L}\right) \rightarrow \pi_{1}\left(S^{1}\right)=\langle t\rangle$ and;
- $\rho: \pi_{1}\left(M_{L}\right) \rightarrow \operatorname{SL}_{N}(\mathbb{C})$ satisfies that

$$
H_{*}\left(M_{L} ; \mathbb{C}(t)_{\rho}^{N}\right)=0 \text { and }\left.\rho\right|_{\pi_{1} F} \text { is irreducible. }
$$

Then

$$
\Delta_{L, \rho}(t)=\operatorname{det}\left(t 1-f_{*}\right)
$$

where $f_{*}: H_{1}\left(F ; \mathbb{C}_{\rho}^{N}\right) \xrightarrow{\sim} H_{1}\left(F ; \mathbb{C}_{\rho}^{N}\right)$ (twisted monodromy).

Review of Twisted Alexander polynomial

Idea of Proof

Main Tool

Mayer-Vietoris argument in Reidemeister torsion:

$$
\Delta_{L, \rho}(t)=\text { Reidemeister torsion of }\left(M_{L}, \varphi \otimes \rho\right)
$$

The Right Hand Side is an invariant of

$$
C_{*}\left(M_{L} ; \mathbb{C}(t)_{\rho}^{N}\right):=C_{*}\left(\widetilde{M}_{L} ; \mathbb{Z}\right) \otimes_{\mathbb{Z}\left[\pi_{1}\left(M_{L}\right)\right]}\left(\mathbb{C}(t) \otimes \mathbb{C}^{N}\right)
$$

where

- \widetilde{M}_{L} is the universal cover of M_{L} and
- $\mathbb{C}(t) \otimes \mathbb{C}^{N}=\mathbb{C}(t)^{N}$ is a left $\mathbb{Z}\left[\pi_{1}\left(M_{L}\right)\right]$-module via $\varphi \otimes \rho$.

Review of Twisted Alexander polynomial

Details in Mayer-Vietoris argument

Decompose $M_{L}=F \times[0,1] / \sim$ as

$$
M_{L}=\overline{N(F \times\{1\})} \cup F \times[\epsilon, 1-\epsilon]
$$

where $N(F)$ is an open tubular neighbourhood of a fiber F. Note that

- $\overline{N(F)} \simeq F \times[0,1]$;
- $\partial \overline{N(F)}=F_{+} \cup F_{-}, \quad F_{ \pm}=F$;
- the gluing map is given by

$$
F_{+} \cup F_{-} \xrightarrow{f \cup i d} F \times\{\epsilon\} \cup F \times\{1-\epsilon\}
$$

Figure: the decomposition of M_{L}

Computation

From the decomposition:

$$
F_{+} \cup F_{-} \rightarrow \overline{N(F)} \cup F \times[\epsilon, 1-\epsilon] \stackrel{\begin{array}{c}
\text { identified } \\
\text { along } F_{ \pm}
\end{array}}{\xrightarrow{c}} M_{L}
$$

it follows that

$$
\begin{aligned}
\Delta_{L, \rho}(t) & =\frac{\operatorname{Tor}(\overline{N(F)}) \cdot \operatorname{Tor}(F \times[\epsilon, 1-\epsilon])}{\operatorname{Tor}\left(F_{+} \cup F_{-}\right) \cdot \operatorname{Tor}(\mathcal{H})} \\
& =\frac{\operatorname{Tor}(F) \cdot \operatorname{Tor}(F)}{\operatorname{Tor}(F) \cdot \operatorname{Tor}(F) \cdot \operatorname{Tor}(\mathcal{H})} \\
& =\operatorname{Tor}(\mathcal{H})^{-1}
\end{aligned}
$$

where \mathcal{H} is the chain complex given by Mayer-Vietoris exact sequence with the coefficient $\mathbb{C}(t)_{\rho}^{N}$.
$\cdots \rightarrow H_{i}\left(F_{+} \cup F_{-}\right) \rightarrow H_{i}(\overline{N(F)}) \oplus H_{i}(F \times[\epsilon, 1-\epsilon]) \rightarrow H_{i}\left(M_{L}\right) \rightarrow \cdots$.

Torsion of Mayer-Vietoris exact sequence

By the irreducibolity of $\left.\rho\right|_{\pi_{1}(F)}$ and $H_{*}\left(M_{L} ; \mathbb{C}(t)_{\rho}^{N}\right)=\mathbf{0}$, the Mayer-Vietoris sequence \mathcal{H} turns into

$$
0 \rightarrow H_{1}\left(F_{+}\right) \oplus H_{1}\left(F_{-}\right) \rightarrow H_{1}(\overline{N(F)}) \oplus H_{1}(F \times[\epsilon, 1-\epsilon]) \rightarrow 0 .
$$

Moreover this isomorphism is expressed as, (by Friedl-Kim's Proposition),

$$
0 \rightarrow H_{1}(F) \xrightarrow{t \cdot f_{*}-i d} H_{1}(F) \rightarrow 0
$$

where the coefficiet is $\mathbb{C}(t)_{\rho}^{N}$.
We can deduce that

$$
\Delta_{L, \rho}(t)=\operatorname{Tor}(\mathcal{H})^{-1}=\operatorname{det}\left(t \cdot f_{*}-\mathbf{1}\right) .
$$

Note that

$$
\Delta_{L, \rho}(t) \doteq \Delta_{L, \rho}\left(t^{-1}\right) \doteq \operatorname{det}\left(t \mathbf{1}-f_{*}\right) \quad \text { up to a factor } t^{k}(k \in \mathbb{Z}) .
$$

Once-punctured torus bundles over S^{1}

Review of once-punctured torus bundles

Let

- $\Sigma_{1,1}$ be the once-punctured torus and;
- $f: \Sigma_{1,1} \rightarrow \Sigma_{1,1}$ an ori. pres. diffeomorphism such that

$$
\left.f\right|_{\partial \Sigma_{1,1}}=i d \quad \text { on } \partial \Sigma_{1,1}
$$

- T_{f} the mapping torus of f, i.e.,

$$
T_{f}=\Sigma_{1,1} \times[0,1] /(x, 1) \sim(f(x), 0)
$$

Figure: Once-punctured torus bundle

Once-punctured torus bundles over S^{1}

Review of once-punctured torus bundles

Once-punctured torus bundles are classified by the induced isomorphism:

$$
A_{f}: H_{1}\left(\Sigma_{1,1} ; \mathbb{Z}\right) \simeq \mathbb{Z}^{2} \rightarrow H_{1}\left(\Sigma_{1,1} ; \mathbb{Z}\right) \simeq \mathbb{Z}^{2}
$$

Since f is ori. pres., $A_{f} \in \mathrm{SL}_{2}(\mathbb{Z})$, generated by

$$
R=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad L=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

For example, the figure knot exterior E_{K} corresponds to

$$
L R=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)
$$

The Alexander polynomial for once-punctured torus bundles

We can define the Alexander polynomial of T_{f} corresponding to

$$
\varphi: \pi_{1}\left(T_{f}\right) \rightarrow \pi_{1}\left(S^{1}\right)=\langle t\rangle \quad\left(\leftrightarrow \widehat{T}_{f}: \text { infinite cyclic cover of } T_{f}\right)
$$

induced from the fibration.
The Alexander polynomial of T_{f} is expressed as

$$
\Delta_{T_{t}}(t)=t^{2}-\left(\operatorname{tr} A_{f}\right) t+1
$$

where $A_{f}: H_{1}\left(\Sigma_{1,1} ; \mathbb{Z}\right) \rightarrow H_{1}\left(\Sigma_{1,1} ; \mathbb{Z}\right)$ induced from the monodromy f.

Once-punctured torus bundles over S^{1}

Relation to the character variety

We consider the composition $A d \circ \rho$:

$$
\begin{aligned}
\pi_{1}\left(T_{f}\right) & \stackrel{\rho}{\rightarrow} \mathrm{SL}_{2}(\mathbb{C}) \curvearrowright \mathfrak{s l}_{2}(\mathbb{C}) \quad \text { (adjoint action) } \\
\gamma & \mapsto \rho(\gamma) \quad \rho(\gamma) \cdot \boldsymbol{v}=\rho(\gamma) \boldsymbol{v} \rho(\gamma)^{-1}
\end{aligned}
$$

where $\mathfrak{s l}_{2}(\mathbb{C})=\mathbb{C}\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \oplus \mathbb{C}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \oplus \mathbb{C}\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$.
Note that

- $\operatorname{Ad} \circ \rho: \pi_{1}\left(T_{f}\right) \rightarrow \mathrm{SL}_{3}(\mathbb{C}) \curvearrowright \mathbb{C}^{3} \simeq \mathfrak{s l}_{2}(\mathbb{C})$.
- If ρ is irreducible on $\pi_{1}\left(\Sigma_{1,1}\right)$, then

$$
H_{1}\left(\Sigma_{1,1} ; \mathfrak{s l}_{2}(\mathbb{C})_{\rho}\right) \simeq T_{[\rho]}^{*} X\left(\Sigma_{1,1}\right)
$$

($X\left(\Sigma_{1,1}\right)$ the character variety of $\left.\pi_{1}\left(\Sigma_{1,1}\right)\right)$

The character variety $X\left(\Sigma_{1,1}\right)$ of $\pi_{1}\left(\Sigma_{1,1}\right)$ is

$\operatorname{Hom}\left(\pi_{1}\left(\Sigma_{1,1}\right), \mathrm{SL}_{2}(\mathbb{C})\right) / /$ conjugation.
This space $X\left(\Sigma_{1,1}\right)$ is identified with

$$
\begin{aligned}
X\left(\Sigma_{1,1}\right) & \simeq \mathbb{C}^{3} \\
{[\rho] } & \mapsto(\operatorname{tr} \rho(\alpha), \operatorname{tr} \rho(\beta), \operatorname{tr} \rho(\alpha \beta))
\end{aligned}
$$

where $\pi_{1}\left(\Sigma_{1,1}\right)=\langle\alpha, \beta\rangle$.
A diffeomorphism $f: \Sigma_{1,1} \rightarrow \Sigma_{1,1}$ induces

$$
\begin{aligned}
f^{*}: X\left(\Sigma_{1,1}\right) & \rightarrow X\left(\Sigma_{1,1}\right) \\
{[\rho] } & \mapsto\left[\rho \circ f_{*}\right] \text { and; } \\
t\left(d f^{*}\right): T_{\left[\rho \circ f_{*}\right]}^{*} X\left(\Sigma_{1,1}\right) & \rightarrow T_{[\rho]}^{*} X\left(\Sigma_{1,1}\right) \simeq H_{1}\left(\Sigma_{1,1, \mathfrak{s l}}^{2}(\mathbb{C})_{\rho}\right)
\end{aligned}
$$

The character varieties of once-punctured torus bundles

If T_{f} is an once-punctured torus bundle over S^{1} :

$$
T_{f}=\Sigma_{1,1} \times[0,1] /(x, 1) \sim(f(x), 0),
$$

then the fundamental group $\pi_{1}\left(T_{f}\right)$ has the presentation:

$$
\left\langle\mu, \alpha, \beta \mid \mu \alpha \mu^{-1}=f_{*}(\alpha), \mu \beta \mu^{-1}=f_{*}(\beta)\right\rangle .
$$

Hence every $\rho: \pi_{1}\left(T_{f}\right) \rightarrow \mathrm{SL}_{2}(\mathbb{C})$ satisfies that

$$
\operatorname{tr} \rho(\alpha)=\operatorname{tr} \rho\left(f_{*}(\alpha)\right), \operatorname{tr} \rho(\beta)=\operatorname{tr} \rho\left(f_{*}(\beta)\right), \operatorname{tr} \rho(\alpha \beta)=\operatorname{tr} \rho\left(f_{*}(\alpha \beta)\right) .
$$

This means that

$$
X\left(T_{f}\right)\left(:=\operatorname{Hom}\left(\pi_{1}\left(T_{f}\right), \mathrm{SL}_{2}(\mathbb{C})\right) / / \operatorname{conj} .\right) \subset \operatorname{Fix}\left(\mathbf{f}^{*}\right)
$$

in $X\left(\Sigma_{1,1}\right) \simeq \mathbb{C}^{3}\left(f^{*}: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}\right)$.

Once-punctured torus bundles over S^{1}

If the $f \in \operatorname{Diff}_{+}\left(\Sigma_{1,1}, \partial \Sigma_{1,1}\right)$ is pseudo-Anosov, i.e., $\left|\operatorname{tr} A_{f}\right|>2$, then

- T_{f} is a hyperbolic 3-manifold and;
- $\exists X_{0} \subset X\left(T_{f}\right)$ such that

$$
\operatorname{dim} X_{0}=1 \quad \& \quad X_{0} \ni\left[\rho_{0}\right]
$$

where $\rho_{0}: \pi_{1}\left(T_{f}\right) \rightarrow \mathrm{SL}_{2}(\mathbb{C})$ corresponding to the complete hyperbolic structure.
Hence the differential df* at $[\rho] \in X_{0} \subset \operatorname{Fix}\left(f^{*}\right) \subset X\left(\Sigma_{1,1}\right) \simeq \mathbb{C}^{3}$:

$$
d f^{*}: T_{[\rho]} X\left(\Sigma_{1,1}\right) \rightarrow T_{[\rho]} X\left(\Sigma_{1,1}\right)
$$

has the eigenvalues $\mathbf{1}, \lambda_{1}$ and $\lambda_{\mathbf{2}}$.

Fact

$$
\lambda_{1} \lambda_{2}=1
$$

Once-punctured torus bundles over S^{1}

The twisted Alexander polynomial via Trace of $d f^{*}$

Summarized above, we have

$$
\begin{aligned}
& \Delta_{T_{f}, A d \circ \rho}(t)= \operatorname{det}\left(t 1-f_{*}\right) \\
&\left(f_{*}: H_{1}\left(\Sigma_{1,1} ; \mathfrak{s l}_{2}(\mathbb{C})_{\rho}\right) \rightarrow H_{1}\left(\Sigma_{1,1} ; \mathfrak{s l}_{2}(\mathbb{C})_{\rho}\right)\right) \\
&= \operatorname{det}\left(t \mathbf{1}-{ }^{t}\left(d f^{*}\right)\right) \\
&\left({ }^{t}\left(d f^{*}\right): T_{[\rho]}^{*} X\left(\Sigma_{1,1}\right) \rightarrow T_{[\rho]}^{*} X\left(\Sigma_{1,1}\right)\right) \\
&= \operatorname{det}\left(t \mathbf{1}-d f^{*}\right) \\
&\left(d f^{*}: T_{[\rho]} X\left(\Sigma_{1,1}\right) \rightarrow T_{[\rho]} X\left(\Sigma_{1,1}\right)\right) \\
&=\mathbf{t}^{3}-\left(\operatorname{trd} \mathbf{d} f^{*}\right) \mathbf{t}^{2}+\left(\operatorname{tr} \mathbf{d f} f^{*}\right) \mathbf{t}-\mathbf{1} . \\
&(=\left.(t-1)\left(t-\lambda_{1}\right)\left(t-\lambda_{2}\right)\right)
\end{aligned}
$$

Once-punctured torus bundles over S

Recursive formula for f^{*}

For every $f \in \operatorname{Diff}_{+}\left(\Sigma_{1,1}, \partial \Sigma_{1,1}\right)$, we can compute

$$
f^{*}: X\left(\Sigma_{1,1}\right) \rightarrow X\left(\Sigma_{1,1}\right)
$$

from the presentation

$$
A_{f}: H_{1}\left(\Sigma_{1,1} ; \mathbb{Z}\right) \rightarrow H_{1}\left(\Sigma_{1,1} ; \mathbb{Z}\right)
$$

as a word in $R=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), L=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ and $\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right)$.
The relation is given by

$$
\begin{aligned}
A_{f}= \pm i d & \Rightarrow f^{*}:(x, y, z) \mapsto(x, y, z), \\
A_{f}=R & \Rightarrow f^{*}:(x, y, z) \mapsto(x, z, x z-y), \\
A_{f}=L & \Rightarrow f^{*}:(x, y, z) \mapsto(z, y, y z-x) .
\end{aligned}
$$

Once-punctured torus bundles over S^{1}

Example of the figure eight knot exterior

If we consider the figure eight knot exterior E_{K}, then

$$
A_{f}=L R .
$$

Hence the map f^{*} on $X\left(\Sigma_{1,1}\right)=\mathbb{C}^{3}$ is expressed as

$$
f^{*}(x, y, z)=\left(\begin{array}{c}
f_{1}^{*}(x, y, z) \\
f_{2}^{*}(x, y, z) \\
f_{3}^{*}(x, y, z)
\end{array}\right)=\left(\begin{array}{c}
z \\
y z-x \\
y z^{2}-x z-y
\end{array}\right)
$$

since $(x, y, z) \xrightarrow{L}(z, y, y z-x) \xrightarrow{R}(z, y z-x, z(y z-x)-y)$.

Once-punctured torus bundles over S^{1}

Twisted Alexander polynomial for 4_{1} knot and $A d \circ \rho$

From the Jacobi matrix, we can see that

$$
\operatorname{tr}\left(d f^{*}\right)=\operatorname{tr}\left(\begin{array}{ccc}
0 & 0 & 1 \\
-1 & z & y \\
-z & z^{2}-1 & 2 y z-x
\end{array}\right)=z+2 y z-x
$$

Since

$$
[\rho] \in X\left(E_{K}\right) \subset \operatorname{Fix}\left(f^{*}\right)=\left\{(x, y, z) \in C^{3} \mid x=z, x+y=x y\right\},
$$

we have

$$
\operatorname{tr}\left(d f^{*}\right)=2(x+y)=2(\operatorname{tr} \rho(\alpha)+\operatorname{tr} \rho(\beta))
$$

Hence for the figure eight knot K and $A d \circ \rho: \pi_{1}\left(E_{K}\right) \rightarrow \mathrm{SL}_{3}(\mathbb{C})$,

$$
\Delta_{K, A d \circ \rho}(t)=t^{3}-2(\operatorname{tr} \rho(\alpha)+\operatorname{tr} \rho(\beta)) t^{2}+2(\operatorname{tr} \rho(\alpha)+\operatorname{tr} \rho(\beta)) t+1
$$

