On the twisted Alexander polynomial for hyperbolic fibered links via twisted monodromy

Jérôme Dubois¹ and Yoshikazu Yamaguchi²

¹Institut de Mathematiques de Jussieu, Université Paris 7

²JSPS Research fellow (PD), Tokyo Institute of Technology

GCOE Workshop Circle valued Morse theory and Alexander invariants

Notations

L : a fibered link in
$$S^3$$
, i.e.,
 $F \longrightarrow E_L := S^3 \setminus N(L)$
 \downarrow
 S^1

We can regard E_L as a mapping torus:

$$E_L = F \times [0,1]/(x,1) \sim (f(x),0)$$

where $f : F \rightarrow F$ is a diffeomorphism.

This diffeomorphism *f* is called a **monodromy**.

Classical result by Milnor

Theorem (J. Milnor)

For a fibered link exterior

$$E_L = F \times [0,1]/(x,1) \sim (f(x),0),$$

the characteristic polynomial of

$$f_*: H_1(F; \mathbb{Q}) \xrightarrow{\sim} H_*(F; \mathbb{Q})$$

is expressed as

 $det(t\mathbf{1} - f_*) = \begin{cases} \Delta_{\mathcal{K}}(t), & \text{if } L \text{ is a knot } \mathcal{K} \\ (t-1)\Delta_L(t,\ldots,t), & \text{if } L \text{ has 2 or more compos.} \end{cases}$

where $\Delta_{\mathcal{K}}(t)$ and $\Delta_{\mathcal{L}}(t_1, \ldots, t_n)$ are the Alexander polynomials.

The case of the twisted Alexander polynomial

Question

How about the twisted Alexander polynomial $\Delta_{L,\rho}(t)$ twisted by $\rho : \pi_1(E_L) \to SL_N(\mathbb{C})$?

Theorem (J. Cha)

For a fibered **knot** $K \subset S^3$, the twisted Alexander polynomial $\Delta_{K,\rho}(t)$ for $\rho : \pi_1(E_K) \to SL_N(\mathbb{C})$ is expressed as

$$\Delta_{\mathcal{K},
ho}(t) = \det(t\mathbf{1} - f_*)$$

where $f_* : H_1(F; \mathbb{C}^N_\rho) \xrightarrow{\sim} H_1(F; \mathbb{C}^N_\rho)$. $(E_K = F \times [0, 1]/(x, 1) \sim (f(x), 0))$

More general situations:

Theorem (J. Dubois and Y.)

For a fibered link in a closed 3-manifold M, the twisted Alexander polynomial $\Delta_{L,\rho}(t,...,t)$ for $\rho : \pi_1(M_L) \to SL_N(\mathbb{C})$ is expressed as

$$\Delta_{M,\rho}(t,\ldots,t) = \det(t\mathbf{1} - f_*)$$

where $f_* : H_1(F; \mathbb{C}^N_\rho) \xrightarrow{\sim} H_1(F; \mathbb{C}^N_\rho)$. $(M_L = M \setminus N(L) = F \times [0, 1]/(x, 1) \sim (f(x), 0), F : connected)$

Remark

We need some assumptions for ρ in the above theorem.

Jérôme Dubois and Yoshikazu Yamaguchi The twisted Alexander poly. for hyperbolic fibered links

The contents of this talk

Precise statement and the proof of Main theorem

- The conditions on homomorphisms of $\pi_1(M_L)$.
- Sketch of the proof by using cut & paste method in Reidemeister torsion theory.

Explicit examples

In general, it is difficult to compute the twisted monodromy

$$f_*: H_1(F; \mathbb{C}^N_{\rho}) \xrightarrow{\sim} H_1(F; \mathbb{C}^N_{\rho}).$$

For special representations $(\pi_1(M_L) \to SL_3(\mathbb{C}))$, we can relate

 $H_1(F; \mathbb{C}^3_{\rho})$ with an **affine variety** and

f_* with the differential of a map on the variety

We will discuss once-punctured torus bundles over S^1 .

Jérôme Dubois and Yoshikazu Yamaguchi The twisted Alexander poly. for hyperbolic fibered links

Review of Twisted Alexander polynomial The statement of Main Theorem The Sketch of Proof

Review of Twisted Alexander polynomial

To define Twisted Alexander polynomial, we need

 A surjective homomorphism from π₁(E_L) onto an free abelian group Zⁿ (n ≤ b₁(E_L)):

$$\varphi: \pi_1(E_L) \to \mathbb{Z}^n = \langle t_1, \ldots, t_n | t_i t_j = t_j t_i(\forall i, j) \rangle$$

• a representation of $\pi_1(E_L)$:

$$\rho: \pi_1(E_L) \to \mathrm{SL}_N(\mathbb{C})$$

"Representation" means that $\pi_1(E_L)$ acts on a vector space via the homomorphism ρ ,

$$\gamma \cdot \boldsymbol{v} =
ho(\gamma)(\boldsymbol{v}) \quad ext{for} \quad \gamma \in \pi_1(E_L), \, \boldsymbol{v} \in \mathbb{C}^N$$

Review of Twisted Alexander polynomial The statement of Main Theorem The Sketch of Proof

Definition of Twisted Alexander polynomial

Choose a presentation of $\pi_1(E_L)$:

$$\pi_1(E_L) = \langle x_1, \ldots, x_k \,|\, r_1, \ldots, r_{k-1} \rangle.$$

Definition (M. Wada)

For
$$\varphi: \pi_1(E_L) \to \mathbb{Z}^n$$
 and $\rho: \pi_1(E_L) \to SL_N(\mathbb{C})$,

the twisted Alexander polynomial $\Delta_{L,\rho}^{\varphi}(t_1,\ldots,t_n)$ of *L* is given by

$$\Delta_{L,\rho}^{\varphi}(t_1,\ldots,t_n) = \frac{\det\left(\varphi \otimes \rho\left(\frac{\partial r_i}{\partial x_j}\right)\right)_{\substack{1 \leq i,j \leq k, \\ j \neq \ell}} 1 \leq i,j \leq k,}{\det\left(\varphi \otimes \rho(x_{\ell}-1)\right)}$$

when det $(\varphi \otimes \rho(x_{\ell} - 1)) \neq 0$.

The twisted Alexander poly. for hyperbolic fibered links

Review of Twisted Alexander polynomial The statement of Main Theorem The Sketch of Proof

Example of Twisted Alexander polynomial

Let *K* be the figure eight knot.

Figure: the fibered structure of E_K

The knot group $\pi_1(E_K)$ is expressed as

$$\pi_{1}(\boldsymbol{E}_{\boldsymbol{K}}) = \langle \boldsymbol{\mu}, \boldsymbol{\alpha}, \boldsymbol{\beta} \, | \, \boldsymbol{\mu} \boldsymbol{\alpha} \boldsymbol{\mu}^{-1} = \boldsymbol{\alpha} \boldsymbol{\beta}, \, \boldsymbol{\mu} \boldsymbol{\beta} \boldsymbol{\mu}^{-1} = \boldsymbol{\beta} \boldsymbol{\alpha} \boldsymbol{\beta} \rangle$$

where μ is a meridian (a lift of the base circle).

Introduction Main Theorem and Sketch of the proof Example The Sketch of Proof

Put the relators as

$$r_1 = \mu \alpha \mu^{-1} \beta^{-1} \alpha^{-1}, \quad r_2 = \mu \beta \mu^{-1} \beta^{-1} \alpha^{-1} \beta^{-1}.$$

Then

$$\Delta^{\varphi}_{\mathcal{K},\rho}(t) = \frac{\det \begin{pmatrix} \varphi \otimes \rho \left(\frac{\partial}{\partial \alpha} r_{1}\right) & \varphi \otimes \rho \left(\frac{\partial}{\partial \beta} r_{1}\right) \\ \varphi \otimes \rho \left(\frac{\partial}{\partial \alpha} r_{2}\right) & \varphi \otimes \rho \left(\frac{\partial}{\partial \beta} r_{2}\right) \end{pmatrix}}{\det \left(\varphi \otimes \rho(\mu - 1)\right)} \\ = \frac{\det \begin{pmatrix} \varphi \otimes \rho(\mu - 1) & \varphi \otimes \rho(-\alpha) \\ \varphi \otimes \rho(-\beta) & \varphi \otimes \rho(\mu - \beta\alpha - 1) \end{pmatrix}}{\det \left(\varphi \otimes \rho(\mu - 1)\right)}$$

in which we simplify words with $r_1 = 1$ and $r_2 = 1$.

 Introduction
 Review of Twisted Alexander polynomial

 Main Theorem and Sketch of the proof
 The statement of Main Theorem

 Example
 The Sketch of Proof

Choose $\varphi : \pi_1(E_K) \to \mathbb{Z}$ as the induced hom. from the fibration

R

and $\rho : \pi_1(E_K) \to SL_N(\mathbb{C})$ such that $\rho(r_1) = 1$ and $\rho(r_2) = 1$:

$$\rho: \mu \mapsto M, \quad \alpha \mapsto A, \quad \beta \mapsto B \in \mathrm{SL}_{N}(\mathbb{C})$$

The twisted Alexander polynomial $\Delta_{K,a}^{\varphi}(t)$ turns into

$$\Delta^{\varphi}_{K,\rho}(t) = \frac{\det\begin{pmatrix} tM-1 & -A \\ -B & tM-BA-1 \end{pmatrix}}{\det(tM-1)}.$$

Review of Twisted Alexander polynomial The statement of Main Theorem The Sketch of Proof

Some remarks on the homomorphism φ

Remark

• For every fibered knot $K \subset S^3$, the induced homomorphism

$$\varphi: \pi_1(E_K) \to \pi_1(S^1) = \mathbb{Z}$$

agrees with the abelianization homomorphism

$$\pi_1(E_{\mathcal{K}}) \to H_1(E_{\mathcal{K}};\mathbb{Z}) = \pi_1(E_{\mathcal{K}})/[\pi_1(E_{\mathcal{K}}),\pi_1(E_{\mathcal{K}})].$$

• For every fibered link $L \subset S^3$, the induced homomorphism φ factors through the abelianization homomorphism.

$$\pi_{1}(E_{L}) \xrightarrow{\varphi} \pi_{1}(S^{1}) = \langle t \rangle$$

$$\swarrow \quad t_{1} = \cdots = t_{m} = t$$

$$H_{1}(E_{L}; \mathbb{Z}) := \langle t_{1}, \dots, t_{m} | t_{i}t_{j} = t_{j}t_{i} (\forall i, j) \rangle$$

Introduction Review of Twisted Alexander polynomial Main Theorem and Sketch of the proof The statement of Main Theorem Example The Sketch of Proof

Homomorphism onto an abelian group

We assume that

- L is a fibered link in a closed 3-manifold M and;
- *p* denotes the fibration of M_L over S^1 .

$$F \xrightarrow{p} M_L := M \setminus N(L)$$

$$p \bigvee_{S^1}$$

Hereafter we set the surjective homomorphism

$$\varphi:\pi_1(M_L)\to\mathbb{Z}$$

as the induced homomorphism from the fibration, i.e.,

$$\varphi = \boldsymbol{\rho}_* : \pi_1(\boldsymbol{M}_L) \to \pi_1(\boldsymbol{S}^1) = \langle \boldsymbol{t} \rangle.$$

Note that Ker $\varphi = \pi_1(F)$.

Review of Twisted Alexander polynomial The statement of Main Theorem The Sketch of Proof

Representations of $\pi_1(M_L)$ into $SL_N(\mathbb{C})$

We denote by ρ an SL_N(\mathbb{C})-representation of $\pi_1(M_L)$:

 $\pi_1(M_L) \to \operatorname{SL}_N(\mathbb{C}) \curvearrowright \mathbb{C}^N.$

We assume that the ρ satisfies that

• the homology of local system given by ρ and φ is trivial:

$$H_*(M_L; \mathbb{C}(t)^N_\rho) = \mathbf{0}$$
 and;

• the restriction $\rho|_{\pi_1(F)}$ on $\pi_1(F)$ is irreducible.

 $(\Leftrightarrow \rho(\pi_1(F)))$ has no common eigenvector in \mathbb{C}^N .)

Under these assumptions, $\Delta_{L,\rho}$ is well-defined as a Laurent polynomial.

Review of Twisted Alexander polynomial The statement of Main Theorem The Sketch of Proof

Statement of Main Theorem

Theorem

Let L be a fibered link in a closed 3-manifold M:

$$F \xrightarrow{\rightarrow} M_L := M \setminus N(L)$$

$$P \bigvee_{S^1} = F \times [0,1]/(x,1) \sim (f(x),0).$$

We assume that

Then

$$\Delta_{L,\rho}(t) = \det(t\mathbf{1} - f_*)$$

where $f_* : H_1(F; \mathbb{C}^N_{\rho}) \xrightarrow{\sim} H_1(F; \mathbb{C}^N_{\rho})$ (twisted monodromy).

Review of Twisted Alexander polynomial The statement of Main Theorem The Sketch of Proof

Idea of Proof

Main Tool

Mayer-Vietoris argument in Reidemeister torsion:

 $\Delta_{L,\rho}(t) = \text{Reidemeister torsion of } (M_L, \varphi \otimes \rho).$

The Right Hand Side is an invariant of

$$C_*(M_L;\mathbb{C}(t)^N_
ho):=C_*(\widetilde{M_L};\mathbb{Z})\otimes_{\mathbb{Z}[\pi_1(M_L)]}(\mathbb{C}(t)\otimes\mathbb{C}^N)$$

where

- M_L is the universal cover of M_L and
- $\cdot \mathbb{C}(t) \otimes \mathbb{C}^N = \mathbb{C}(t)^N$ is a left $\mathbb{Z}[\pi_1(M_L)]$ -module via $\varphi \otimes \rho$.

Introduction Review of Twisted Alexander polynomial
Main Theorem and Sketch of the proof
Example The Sketch of Proof

Details in Mayer-Vietoris argument

Decompose
$$M_L = F \times [0, 1] / \sim as$$

 $M_L = \overline{N(F \times \{1\})} \cup F \times [\epsilon, 1 - \epsilon]$

where N(F) is an open tubular neighbourhood of a fiber F. Note that

•
$$\overline{N(F)} \simeq F \times [0,1];$$

•
$$\partial \overline{N(F)} = F_+ \cup F_-, \quad F_{\pm} = F;$$

the gluing map is given by

$$F_{+} \cup F_{-} \xrightarrow{f \cup id} F \times \{\epsilon\} \cup F \times \{1 - \epsilon\}$$

$$F \times [\epsilon, 1 - \epsilon] \begin{cases} F_{-} & F_{-} \\ F_{+} & F_{-} \\ F_{+} & F_{-} \\ F_{+} & F_{-} \\ F_{-} & F_{$$

Figure: the decomposition of M_L

Introduction Review of Twisted Alexander polynomial Theorem and Sketch of the proof The statement of Main Theorem The Sketch of Proof

Computation

From the decomposition:

$$F_+ \cup F_- \to \overline{N(F)} \cup F \times [\epsilon, 1-\epsilon] \xrightarrow{\text{identified}} M_L$$

it follows that

$$\Delta_{L,\rho}(t) = \frac{\operatorname{Tor}(\overline{N(F)}) \cdot \operatorname{Tor}(F \times [\epsilon, 1 - \epsilon])}{\operatorname{Tor}(F_+ \cup F_-) \cdot \operatorname{Tor}(\mathcal{H})}$$
$$= \frac{\operatorname{Tor}(F) \cdot \operatorname{Tor}(F)}{\operatorname{Tor}(F) \cdot \operatorname{Tor}(F) \cdot \operatorname{Tor}(\mathcal{H})}$$
$$= \operatorname{Tor}(\mathcal{H})^{-1}$$

where \mathcal{H} is the chain complex given by Mayer-Vietoris exact sequence with the coefficient $\mathbb{C}(t)^{N}_{\rho}$.

$$\cdots \to H_i(F_+ \cup F_-) \to H_i(\overline{N(F)}) \oplus H_i(F \times [\epsilon, 1-\epsilon]) \to H_i(M_L) \to \cdots$$

Introduction Review of Twisted Alexander polynomial Theorem and Sketch of the proof The statement of Main Theorem The Sketch of Proof

Torsion of Mayer-Vietoris exact sequence

By the irreducibolity of $\rho|_{\pi_1(F)}$ and $H_*(M_L; \mathbb{C}(t)^N_{\rho}) = \mathbf{0}$, the Mayer-Vietoris sequence \mathcal{H} turns into

$$0 \to H_1(F_+) \oplus H_1(F_-) \to H_1(\overline{N(F)}) \oplus H_1(F \times [\epsilon, 1-\epsilon]) \to 0.$$

Moreover this isomorphism is expressed as, (by Friedl-Kim's Proposition),

$$0 \to H_1(F) \xrightarrow{t \cdot f_* - id} H_1(F) \to 0$$

where the coefficiet is $\mathbb{C}(t)^N_{\rho}$. We can deduce that

$$\Delta_{L,\rho}(t) = \operatorname{Tor}(\mathcal{H})^{-1} = \det(t \cdot f_* - \mathbf{1}).$$

Note that

$$\Delta_{L,
ho}(t) \stackrel{.}{=} \Delta_{L,
ho}(t^{-1}) \stackrel{.}{=} \det(t\mathbf{1} - f_*) \quad ext{up to a factor } t^k \ (k \in \mathbb{Z}).$$

Introduction Once-punctured torus bundles over S¹ Main Theorem and Sketch of the proof Character varieties Example Explicit description and example

Review of once-punctured torus bundles

Let

- $\Sigma_{1,1}$ be the once-punctured torus and;
- $f: \Sigma_{1,1} \to \Sigma_{1,1}$ an ori. pres. diffeomorphism such that

$$f|_{\partial \Sigma_{1,1}} = id$$
 on $\partial \Sigma_{1,1}$.

• T_f the mapping torus of f, i.e., $T_f = \Sigma_{1,1} \times [0,1]/(x,1) \sim (f(x),0).$

Figure: Once-punctured torus bundle

Introduction Once-punctured torus bundles over S¹ Main Theorem and Sketch of the proof Character varieties Example Explicit description and example

Review of once-punctured torus bundles

Once–punctured torus bundles are classified by the induced isomorphism:

$$A_f: H_1(\Sigma_{1,1}; \mathbb{Z}) \simeq \mathbb{Z}^2 \to H_1(\Sigma_{1,1}; \mathbb{Z}) \simeq \mathbb{Z}^2.$$

Since *f* is ori. pres., $A_f \in SL_2(\mathbb{Z})$, generated by

$$R = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad L = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
 and $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$

For example, the figure knot exterior $E_{\mathcal{K}}$ corresponds to

$$LR = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

Introduction Main Theorem and Sketch of the proof Example Example Explicit description and example

The Alexander polynomial for once–punctured torus bundles

We can define the Alexander polynomial of T_f corresponding to

$$\varphi: \pi_1(T_f) \to \pi_1(S^1) = \langle t \rangle \quad (\leftrightarrow \widehat{T}_f: \text{ infinite cyclic cover of } T_f)$$

induced from the fibration.

The Alexander polynomial of T_f is expressed as

$$\Delta_{T_f}(t) = t^2 - (\operatorname{tr} A_f)t + 1$$

where $A_f : H_1(\Sigma_{1,1}; \mathbb{Z}) \to H_1(\Sigma_{1,1}; \mathbb{Z})$ induced from the monodromy *f*.

Introduction Once-punctured torus bundles over S¹ Main Theorem and Sketch of the proof Character varieties Example Explicit description and example

Relation to the character variety

We consider the composition $Ad \circ \rho$:

$$\begin{aligned} \pi_1(\mathcal{T}_f) &\xrightarrow{\rho} \mathrm{SL}_2(\mathbb{C}) \frown \mathfrak{sl}_2(\mathbb{C}) \quad \text{(adjoint action)} \\ \gamma &\mapsto \rho(\gamma) \qquad \rho(\gamma) \cdot \mathbf{v} = \rho(\gamma) \mathbf{v} \rho(\gamma)^{-1} \end{aligned}$$

where $\mathfrak{sl}_2(\mathbb{C})=\mathbb{C}\left(\begin{smallmatrix}0&1\\0&0\end{smallmatrix}\right)\oplus\mathbb{C}\left(\begin{smallmatrix}1&0\\0&-1\end{smallmatrix}\right)\oplus\mathbb{C}\left(\begin{smallmatrix}0&0\\1&0\end{smallmatrix}\right).$

Note that

•
$$Ad \circ \rho : \pi_1(T_f) \to SL_3(\mathbb{C}) \frown \mathbb{C}^3 \simeq \mathfrak{sl}_2(\mathbb{C}).$$

• If ρ is irreducible on $\pi_1(\Sigma_{1,1})$, then

$$H_1(\Sigma_{1,1};\mathfrak{sl}_2(\mathbb{C})_
ho)\simeq T^*_{[
ho]}X(\Sigma_{1,1})$$

 $(X(\Sigma_{1,1})$ the character variety of $\pi_1(\Sigma_{1,1}))$

The character variety $X(\Sigma_{1,1})$ of $\pi_1(\Sigma_{1,1})$ is

 $\textit{Hom}(\pi_1(\Sigma_{1,1}), SL_2(\mathbb{C})) / / conjugation.$

This space $X(\Sigma_{1,1})$ is identified with

$$\begin{split} X(\Sigma_{1,1}) \simeq \mathbb{C}^3 \\ [\rho] \mapsto (\operatorname{tr} \rho(\alpha), \operatorname{tr} \rho(\beta), \operatorname{tr} \rho(\alpha\beta)) \end{split}$$

where
$$\pi_1(\Sigma_{1,1}) = \langle \alpha, \beta \rangle$$
.

A diffeomorphism $f: \Sigma_{1,1} \to \Sigma_{1,1}$ induces

$$\begin{split} f^* : X(\Sigma_{1,1}) &\to X(\Sigma_{1,1}) \\ & [\rho] \mapsto [\rho \circ f_*] \quad \text{and}; \\ t^*(df^*) : T^*_{[\rho \circ f_*]} X(\Sigma_{1,1}) &\to T^*_{[\rho]} X(\Sigma_{1,1}) \simeq H_1(\Sigma_{1,1}; \mathfrak{sl}_2(\mathbb{C})_\rho) \end{split}$$

The character varieties of once-punctured torus bundles

If T_f is an once–punctured torus bundle over S^1 :

$$T_f = \Sigma_{1,1} imes [0,1]/(x,1) \sim (f(x),0),$$

then the fundamental group $\pi_1(T_f)$ has the presentation:

$$\langle \mu, \alpha, \beta \mid \mu \alpha \mu^{-1} = f_*(\alpha), \mu \beta \mu^{-1} = f_*(\beta) \rangle.$$

Hence every $\rho : \pi_1(T_f) \to SL_2(\mathbb{C})$ satisfies that

$$\operatorname{tr} \rho(\alpha) = \operatorname{tr} \rho(f_*(\alpha)), \operatorname{tr} \rho(\beta) = \operatorname{tr} \rho(f_*(\beta)), \operatorname{tr} \rho(\alpha\beta) = \operatorname{tr} \rho(f_*(\alpha\beta)).$$

This means that

$$X(T_f)(:= \mathit{Hom}(\pi_1(T_f), \operatorname{SL}_2(\mathbb{C})) / /\operatorname{conj.}) \subset \operatorname{Fix}(f^*)$$

in $X(\Sigma_{1,1}) \simeq \mathbb{C}^3$ $(f^* : \mathbb{C}^3 \to \mathbb{C}^3).$

If the $f \in Diff_+(\Sigma_{1,1}, \partial \Sigma_{1,1})$ is pseudo-Anosov, i.e., $|\operatorname{tr} A_f| > 2$, then

- T_f is a hyperbolic 3-manifold and;
- $\exists X_0 \subset X(T_f)$ such that

$$\dim X_0 = 1 \quad \& \quad X_0 \ni [\rho_0]$$

where $\rho_0 : \pi_1(T_f) \to SL_2(\mathbb{C})$ corresponding to the complete hyperbolic structure.

Hence the differential df^* at $[\rho] \in X_0 \subset Fix(f^*) \subset X(\Sigma_{1,1}) \simeq \mathbb{C}^3$:

$$df^*: T_{[\rho]}X(\Sigma_{1,1}) \rightarrow T_{[\rho]}X(\Sigma_{1,1})$$

has the eigenvalues 1, λ_1 and λ_2 .

Fact $\lambda_1 \lambda_2 = 1.$

The twisted Alexander poly. for hyperbolic fibered links

 Introduction
 Once-punctured torus bundles over S¹

 Main Theorem and Sketch of the proof
 Character varieties

 Example
 Explicit description and example

The twisted Alexander polynomial via Trace of df*

Summarized above, we have

$$\begin{split} \Delta_{T_{f},Ad\circ\rho}(t) &= \det(t\mathbf{1} - f_{*}) \\ &(f_{*}: H_{1}(\Sigma_{1,1}; \mathfrak{sl}_{2}(\mathbb{C})_{\rho}) \to H_{1}(\Sigma_{1,1}; \mathfrak{sl}_{2}(\mathbb{C})_{\rho})) \\ &= \det(t\mathbf{1} - t(df^{*})) \\ &(^{t}(df^{*}): T_{[\rho]}^{*}X(\Sigma_{1,1}) \to T_{[\rho]}^{*}X(\Sigma_{1,1})) \\ &= \det(t\mathbf{1} - df^{*}) \\ &(df^{*}: T_{[\rho]}X(\Sigma_{1,1}) \to T_{[\rho]}X(\Sigma_{1,1})) \\ &= \mathbf{t}^{3} - (\operatorname{tr} df^{*})\mathbf{t}^{2} + (\operatorname{tr} df^{*})\mathbf{t} - \mathbf{1}. \\ &(= (t-1)(t-\lambda_{1})(t-\lambda_{2})) \end{split}$$

 Introduction
 Once-punctured torus bundles over S¹

 Main Theorem and Sketch of the proof
 Character varieties

 Example
 Explicit description and example

Recursive formula for f^*

For every $f \in Diff_+(\Sigma_{1,1},\partial \Sigma_{1,1})$, we can compute

 $f^*: X(\Sigma_{1,1}) \rightarrow X(\Sigma_{1,1})$

from the presentation

$$A_f: H_1(\Sigma_{1,1}; \mathbb{Z}) \to H_1(\Sigma_{1,1}; \mathbb{Z})$$

as a word in $R = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $L = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ and $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$
The relation is given by

$$egin{aligned} &\mathcal{A}_f=\pm i d \Rightarrow f^*:(x,y,z)\mapsto (x,y,z),\ &\mathcal{A}_f=R\Rightarrow f^*:(x,y,z)\mapsto (x,z,xz-y),\ &\mathcal{A}_f=L\Rightarrow f^*:(x,y,z)\mapsto (z,y,yz-x). \end{aligned}$$

٠

Introduction Once-punctured torus bundles over S¹ Main Theorem and Sketch of the proof Character varieties Example Explicit description and example

Example of the figure eight knot exterior

If we consider the figure eight knot exterior E_K , then

 $A_f = LR$.

Hence the map f^* on $X(\Sigma_{1,1}) = \mathbb{C}^3$ is expressed as

$$f^{*}(x, y, z) = \begin{pmatrix} f_{1}^{*}(x, y, z) \\ f_{2}^{*}(x, y, z) \\ f_{3}^{*}(x, y, z) \end{pmatrix} = \begin{pmatrix} z \\ yz - x \\ yz^{2} - xz - y \end{pmatrix}$$

since $(x, y, z) \xrightarrow{L} (z, y, yz - x) \xrightarrow{R} (z, yz - x, z(yz - x) - y)$.

Twisted Alexander polynomial for 4_1 knot and $Ad \circ \rho$

From the Jacobi matrix, we can see that

$$\operatorname{tr}(df^*) = \operatorname{tr}\begin{pmatrix} 0 & 0 & 1 \\ -1 & z & y \\ -z & z^2 - 1 & 2yz - x \end{pmatrix} = z + 2yz - x.$$

Since

$$[\rho] \in X(E_{\mathcal{K}}) \subset \operatorname{Fix}(f^*) = \{(x, y, z) \in C^3 \mid x = z, x + y = xy\},\$$

we have

$$\operatorname{tr}(df^*) = 2(x + y) = 2(\operatorname{tr} \rho(\alpha) + \operatorname{tr} \rho(\beta)).$$

Hence for the figure eight knot K and $Ad \circ \rho : \pi_1(E_K) \to SL_3(\mathbb{C})$,

$$\Delta_{\mathcal{K},\mathcal{Ad}\circ\rho}(t) = t^3 - 2(\operatorname{tr}\rho(\alpha) + \operatorname{tr}\rho(\beta))t^2 + 2(\operatorname{tr}\rho(\alpha) + \operatorname{tr}\rho(\beta))t + 1.$$