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K : a prime knot in §3

@@ )

31141

* € O(K x D?) : a base point
G(K) : the knot group of K i.e. G(K) = m(S% — K, %)

pr € G(K) : meridian of K
i.e. ug = [OzK] s.t. ag ~* X 8D2, lk(K, aK) =1
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Definition.

K, K’ : two prime knots
K>K < 3p: GK) — G(K')

K>, K — F%: GK) —» G(K')
BK = MK

K> K —=K>K'

The relation “>" is a partial order on the set of prime knots.
e K > K

e K >K' K >K — K=K

e K >K' K >K" — K>K"

The relation “>," is also a partial order
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Theorem. (Kitano-S. Horie-Kitano-Matsumoto-S.)

The partial order “>," on the set of prime knots
with up to 11 crossings is given by

85, 810, 815, 818, 819, 820, 821, 91, 96, 916, 923, 924, 928, 940,

105, 109, 1032, 1049, 1061, 102, 1063, 1064, 10g5, 1066, 1076,
1077, 1078, 1082, 1084, 1085, 1087, 1098, 1099, 10103, 10106,
10112, 10114, 10139, 10140, 10141, 10142, 10143, 107144,

10159, 10164,

1lays, 11agq, 11aygg, 11ayg7, 11as7, 11ass, 11a71, 11avrs, 11azs,
11ai00, 11aio6, 11aio7, 11aios, 11a109, 11a117, 11ai4, 11a;3g,
11ais7, 11aies, 11aizi, 11aqrs, 11aize, 11aigs, 11aige, 11azos,
11a212, 11az16, 11ages, 11agsy, 11az32, 11azse, 11agaq, 11agys,
1Tage1, 11ages, 11ages, 11asse, 11ases, 11ases, 11asis, 11assz,
11@3387 11(1340, 11a351, 11&352, 11(1355, 117’L71, 111’L72, ]_17173,
117’L74, 117”[,757 11”767 111@77, 1177,78, 11”817 11TL85, 11n86, 1177,87,
117194, 11n104, 1171105, 11”1067 1171107, 117113(3, 11”1647 11n183,
117’L184, 117’L185
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818, 937, 940,

1058, 1059, 1060, 10122, 10136, 10137, 10138,

11615, 11(16, 11&51, 11&132, 11&239, 11a297, 11&348, 11&349,
1171,100, 11“1487 1171157, 11’)7,165

Zu 41

11n7s, 11nyyg >, 51

1074, 10120, 10122, 11071, 110185 >, 52

1lagse >, 61
1lazs1 >y 62

1layg7, 11agsg >, 63
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To determine the partial order >, on the set of prime knots

For each pair of two prime knots K, K’,
determine whether there exists an epimorphism

v: GK) —» G(K')
BK = BK

which preserves meridians.

The number of prime knots with up to 11 crossings is 801.
Then the number of cases to consider is gg1 P2 = 640, 800.
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existence J

We can construct such an epimorphism explicitly

Example. 818 >, 31 7

T1, T2, T3, | T4T1T4T2, T5TIT5T2, TETITEL 4,
G(818) = ( T4,T5,T6, | TTT5T7Ta, TYT5TT6, T1T7T1T6,
T7, 8 Tx7ToTR

G(31) = (Y1, y2, Y3 | Y3y193Y2, Y1y29173)
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Example. 818 > 317

T1,%2,T3, | T4T1T4T2,T5X3T5T2, TeX3T6T4,

G(813) = < T4, T5,T6, | TrT5T7T4, TIT5TRT6, L127L1T6, >
T7,x8 ToX7T2X8

G(31) = (y1, y2, y3 | Y3y1U3Y2, Y1Y25173)

Q : G(Slg) — G(31)

(1) =y, @(x2) =y2,  @a3) =y, @(xs) =ys,
o(rs) =y3, w(we) = y1ysy1, w(x7) =y3, @(xs) =y

o: G8ir) —» G(31)
90(M811) — H3q
818 = 31
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non-existence

(1) By the (classical) Alexander polynomial

K : a knot
Ag : the Alexander polynomial of K

K, K’ : two knots
If Ax can not be divided by Ay,
— there exists no epimorphism G(K) —» G(K’).
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Example. 41 ZH 821 ?

X
_t2—3t+1 Ag,, =4 —4t3 + 51> — 4t +1

Ay 2 —3t+1
Ag,, th—4t3 +5t2 -4t +1

Ag,, can not divide Ay,

41 # 8n
41 #, 8n
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Example. 821 Zﬂ 41 ?

S ©
Agy, =t —4t3 4+ 512 —4t +1, Ay =t —3t+1

A tt— 4¢3 2 _4t+1
821 _ AL S SR
A41 t2—3t—|—1

Ay, can divide Ag,, !

We cannot determine the existence of an epimorphism
from G(821) onto G(41) by the Alexander polynomial.
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non-existence

(1) By the (classical) Alexander polynomial
(2) By the twisted Alexander polynomial

Fix Wirtinger presentation of G(K)
Ak, 1 the twisted Alexander polynomial of K
A%p,A%p : the numerator and denominator of A ,

Theorem. (Kitano-S.-Wada)
If there exists a representation p' : G(K') — SL(2;Z/pZ) such that
AR, is not divisible by AR, , or AR # AR,

for any representation p : G(K) — SL(2;Z/pZ),
then there exists no epimorphism G(K) —» G(K’) which preseves
meridians.
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Example. 821 Zﬂ 41 ?

X
Agy, =t —4t3 4+ 512 —4t +1, Ay =t —3t+1

A tt— 4¢3 2 4t +1
821 _ AL S S
A41 t2—3t—|—1

A41 divides Agm!

We cannot determine the existence of an epimorphism
from G(821) onto G(41) by the Alexander polynomial.
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For a certain representation p' : G(41) — SL(2;Z/37Z),

AY =t 41, AP = +t+1

Table of the twisted Alexander polynomials of G(821)
for all representations p : G(821) — SL(2;Z/3Z)

N D
A821 P A8217Pi
pr | B+t 4+1 241

po | tB+tT 265 2t 22 41 2+t4+1
p3 |8 +tT+25 p2tt 22 e+ 1 |22t 41
py | 18 F2T 425 12 122 12+ 1 | 2+t 41
ps | 18 4+2t7 425 42 22 12+ 1 | 2+ 2t + 1

821 244
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To determine the partial order >, on the set of prime knots

For each pair of two prime knots K, K,
determine whether there exists an epimorphism

v: GIK) —» G(K')
BK = BKY
which preserves meridians.

The number of prime knots with up to 11 crossings is 801.

Then the number of cases to consider is gg; P2 = 640, 800.

146 cases: existence of an epimorphism
637,501 cases : non-existence by the Alexander polynomial
3,153 cases : non-existence by the twisted Alexander poly.
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Definition.

K, K’ : two prime knots
K>K < 3p: G(K) —» G(K)

K>, K — F: GK) —» G(K')
BK = MK

A

K> K = K>K'

Problem.

K>K 2 K>, K

|

Problem.

Does there exist an epimorphism between knot groups which does
not preserve meridians?

4
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Wirtinger presentation of G(K)

generators : x1,x9, ...

relators :

Tex2XeT1,
T1X6T1Ts5,
T3x9XT3T10,

23214723713,

121701218,
422174222,

where T; = x;” .

1

y L24

107271073,
T1727Z17%6,
121071711,
T17T14T17%15,
16719716718,
T1223T1722,

Masaaki Suzuki

T6T3T6T4,
232722378,
T22T12T22711,
18216218715,
24719724720,
T6X23T6T24,

T22T4T22T5,
132921378,
T6L13T6T12,
T6X1726T16,
12721712720,
1872471871

Epimorphisms between knot groups



Wirtinger presentation of G(31):

G(31) = (y1, 2 [ y1v2y1 = yayrye) = (1,2 121 = 212)

We define a map f : G(K) — G(31) as follows:

f(zy) = 12121, f(zo) = 121212122212121,
flxz) = 12121, f(z4) = 1212121212121,
flxs) = 21212121212, f(xg) = 121212121,

f(z7) = 12122212211222121, f(zg) = 121212121,

f(zg) = 121221212122121, flx1o) = 121212121,
f(z11) = 12211, f(r2) = 12212211221,
f(z13) = 12121, f(z1s) = 12122212121222121,
f(z15) = 12121, flz6) = 12212121221,
f(z17) = 121212121212121212121, flz1s) = 221,

f(z19) = 12212121222121221, flaz0) = 221,

f(xor) = 1212121212121212121212121, f(za) = 221,

f(za3) = 12121222121, f(zag) = 1212112212121
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Theorem

The above mapping f : G(K) — G(31) is an epimorphism

which does not map a meridian of K to a meridian of 3;.
Moreover, there does not exist an epimorphism from G(K) onto
G(31) which preserves meridians.

(1) f is a group homomorphism.

(2) f is surjective.

(3) f does not map a meridian of K to a meridian of 3;.

(4) There does not exist an epimorphism which preserves meridians.

Corollary.

K>K =K >, K’
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The relators of G(K) vanish under the mapping f.

f(xexaTey)
= 121212121 -121212122212121 - 121212121 - 12121
= e

f(x1022Z10Z3)
= 121212121 -121212122212121 - 121212121 - 12121
= e

f(x6x3%674)
= 121212121 -12121 121212121 - 1212121212121

= €
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We find elements of G(K) which are mapped to 1 and 2. J

f(z1826T1T1218%671)

f(z18) f(ze) f(21) f(z1) f(218) f (26) f (1)
= 221-121212121-12121-12121-221-121212121 - 12121

2121212121211 = 1211212112111 =1,

f(z1T6T180121806T1Z1218T6T1)

= 2
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Check the image of a meridian of K. J

z1 : meridian of K

7
1 : meridian of 3; = f(x1) # 17

p: G31) — SL(2;Z)

11
1 |—>(01)

plstan)) = p1zm) = (T3 7 )

tr p(f(z1)) # tr p(1) = f(z1) #1
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By making use of the twisted Alexander polynomial. ’

Fix Wirtinger representations of the knot groups.
Ak, 1 the twisted Alexander polynomial of K
AKp,AI%p : the numerator and denominator of Ag ,

Theorem. (Kitano-S.-Wada)
If there exists a representation p’' : G(K') — SL(2;Z/pZ) such that

AN

K.p is not divisible by AL, ' OF AR o7 AR, o

for any representation p : G(K) — SL(2;Z/pZ),
then there exists no epimorphism G(K) — G(K’) which preseves
meridians.
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For a certain representation p' : G(31) — SL(2;Z/57Z),

AY y=ttt28 42 + 2041, AP =t*+2+1

Table of the twisted Alexander polynomials of G(K)
for all representations p : G(K) — SL(2;Z/5Z)

A%Api Aﬁpi
p1 | 2430 £ 3t +3t2 + 1 241
pa | 8410 it 412 1 241
p3 | BB HtT 4 At At 1 2 +3t+1
pa | 3 +2T + 85+ 3t + 13+ 20+ 1 2 4+t+1
ps | B2 4+2T + 0 20 At 23 2 42t 1 | 2+t
pe | 15+ 3T+ 415 + 3t + 413 + 3t + 1 2+ 4t +1
pr | B+ 3T +t0 435 + 4t 33+ 243t +1 | 2+ 4t +1
pg | 18+ AtT 5 At 3 4t + 1 24241

K %431
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Theorem. (Kitano-S.-Wada)
If there exists a representation p' : G(K') — SL(2;Z/pZ) such that

A , is not divisible by Ag/

for any representation p : G(K) — SL(2;Z/pZ),
then there exists no epimorphism G(K) —» G(K').

Problem.

| A

Is the converse true?
If there exists no epimorphism G(K) —» G(K'), then does there
exist a prime number p and p’ : G(K') — SL(2;Z/pZ) such that

Af,p is not divisible by Ags v

forany p: G(K) — SL(2;Z/pZ)?

N
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