Polynomial splittings of Ozsváth and Szabó's correction terms

Yuanyuan Bao

Tokyo Institute of Technology

18th November 2011

Yuanyuan Bao (Tokyo Institute of Technolog/Polynomial splittings of Ozsváth and Szabó's

18th November 2011 1 / 33

Outline

2 Introduction

3 Proof of Theorem 1

Section 1

Motivation and History

 K_1, K_2 : two knots in S^3 . K_1 is said to be smoothly concordant to K_2 $(K_1 \sim K_2)$ if \exists a smooth embedding $S^1 \times [0, 1] \hookrightarrow S^3 \times [0, 1]$ s.t.

$$\partial(S^1 \times [0,1]) = S^1 \times 0 \cup S^1 \times 1 = K_1 \cup (-K_2)$$

$$C := \{$$
knot in $S^3\}/ \sim$

#: connected sum of knots.

Then (C, \sharp) is called the smooth concordance group of knots in S^3 .

Question:

- Given a knot K, determine the order of K in C.
- (Independence Problem) Given K_1 and K_2 , determine whether they are independent or not in C.

Partial Answers to Q1

K: a knot in S^3

- Seifert surface of K: oriented surface in S^3 with $\partial F = K$
- Seifert form

$$\begin{array}{rcl} \theta: H_1(F) \times H_1(F) & \to & \mathbb{Z} \\ & (\alpha, \beta) & \mapsto & \textit{lk}(\alpha, \beta^+) \end{array}$$

A Seifert form θ is said to be null-concordant if ∃ a direct sum Z of H₁(F) such that rank(Z) = ¹/₂ rank(H₁(F)) and θ(Z, Z) = 0, and then Z is called a metabolizer of θ.

Partial Answers to Q1

Two Seifert forms θ_1 and θ_2 are algebraically concordant if $\theta_1 \oplus -\theta_2$ is null-concordant.

Two knots K_1 and K_2 are algebraically concordant $(K_1 \sim_{alg} K_2)$ if their Seifert forms are algebraically concordant.

Let $C_{alg} = \{knot\} / \sim_{alg}$. Then (C_{alg}, \sharp) is called algebraic concordance group.

Fact: If a knot K has order one in C (which is called smoothly slice knot), then K has order one in C_{alg} (which is called algebraically slice knot).

Partial Answers to Q1

There are other invariants which examine the order of a knot. For instance:

- Signature
- twisted Alexander polynomial
- Casson-Gordon Invariants
- Von Neumann ρ-invariant
- Rasmussen invariant
- Ozsváth-Szabó τ-invariant
- Ozsváth and Szabó's correction terms

• • • •

Partial Answer to Q2

Q2: Given two knots K_1 and K_2 , and any two non-trivial integers n_1 and n_2 , check whether $K = (n_1 K_1) \sharp (n_2 K_2)$ is slice or not.

Partial Answer to Q2

- (Polynomial Splitting) Suppose the Alexander polynomials of K₁ and K₂ are relatively prime in Q[t⁻¹, t].
 - (Levine) If K has vanishing Levine obstruction, so do n_1K_1 and n_2K_2 .
 - (Se-Goo Kim) If K has vanishing Casson-Gordon-Gilmer obstruction, so do n_1K_1 and n_2K_2 .
 - (Se-Goo Kim and Taehee Kim) If K has vanishing von Neumann ρ -invariants associated with certain metabelian representations, so do n_1K_1 and n_2K_2 .
 - In today's talk, we introduce similar property for Ozsváth and Szabó's correction terms.

Section 2

Introduction

Correction Term

 Y: a QHS³ Spin^c(Y): the set of Spin^c-structures over Y Ozsváth and Szabó defined invariants

$$d(Y, \): {
m Spin}^c(Y) \ o \ {
m Q}$$

 $s \ \mapsto \ d(Y, s),$

which are called the correction terms or d-invariants of Y.

 K: a knot in S³ Σ^q(K): the q-fold cyclic branched cover of S³ along K When q is a prime power (by which we mean q = p^r for some prime number p), Σ^q(K) is a QHS³. So we can consider the d-invariants for it.

Properties

Correction terms have two important properties:

• (additivity) Let Y_1 and Y_2 be two $\mathbb{Q}HS^3$, and $s_i \in \operatorname{Spin}^c(Y_i)$ for i = 1, 2. Then

$$d(Y_1 \sharp Y_2, s_1 \sharp s_2) = d(Y_1, s_1) + d(Y_2, s_2).$$

• (vanishing) If (Y, s) bounds a rational homology smooth 4-ball (W, t), then d(Y, s) = 0.

Slice Obstruction

Theorem A (Ozsváth and Szabó)

Let q be a prime power. If K is a smoothly slice knot, then

- \exists a subgroup $M < H_1(\Sigma^q(K))$ satisfying $|M|^2 = |H_1(\Sigma^q(K))|$
- $d(\Sigma^q(K), s) = 0$ for any $s = s_0 + m$ where $m \in M$.

Here s_0 is the unique spin-structure over $\Sigma^q(K)$ under certain restriction.

Remark: $H_1(\Sigma^q(\mathcal{K}))$ acts on $\operatorname{Spin}^c(\Sigma^q(\mathcal{K}))$ freely and transitively. Under this setting, we identify these two sets, by sending $x \in H_1(\Sigma^q(\mathcal{K}))$ to $s_0 + x \in \operatorname{Spin}^c(\Sigma^q(\mathcal{K}))$.

What is M?

Let Δ be the slice disk of K in the 4-ball B^4 , and $W^q(K)$ be the q-fold cyclic branched cover of B^4 along Δ . Then consider the inclusion map

$$j: H_1(\Sigma^q(K)) \hookrightarrow H_1(W^q(K)).$$

Then M is Ker(j).

A spin^c-structure s over $\Sigma^{q}(K)$ extends to $W^{q}(K)$ iff $s = s_{0} + m$ for some $m \in M$.

Theorem 1

Theorem (B)

 $K = K_1 \sharp K_2$. Suppose the Alexander polynomials of K_1 and K_2 are relatively prime in $\mathbb{Q}[t, t^{-1}]$.

- If K is smoothly slice, then for all but finitely many primes q (or any of its prime power), the following holds.
 - $\Diamond \exists M_i < H_1(\Sigma^q(K_i))$ satisfying $|M_i|^2 = |H_1(\Sigma^q(K_i))|$
 - \diamond the d-invariants $d(\Sigma^q(K_i), s)$ are constant on M_i , for both i = 1 and 2.
- **2** If K is ribbon, the conclusions above hold for any prime power q.

$\mathcal{D}_p^q(K)$ and $\mathcal{T}_p^q(K)$

Let (Y, L) be the pair of a $\mathbb{Q}HS^3$ and a null-homologous knot in Y. For each Spin^c-structure *s* over Y, Grigsby, Ruberman and Strle defined the τ -invariant $\tau_s(Y, L)$ for (Y, L, s).

Let $K \subset S^3$ be a knot. Let q be a prime power and consider $(\Sigma^q(K), \tilde{K})$ where \tilde{K} is the pre-image of K in $\Sigma^q(K)$. GRS proved:

Theorem

If K is slice, then $\tau_s(\Sigma^q(K), \tilde{K}) = 0$ for any $s = s_0 + m$ where $m \in M$.

$$\mathcal{D}_p^q(K)$$
 and $\mathcal{T}_p^q(K)$

Suppose $f : A \to \mathbb{Q}$ is a function on a finite abelian group and H < A is a subgroup. GRS defined

$$S_H(f) = \sum_{h \in H} f(h)$$

In this talk, A is $H_1(\Sigma^q(K))$ and f is either d-invariant or τ -invariant.

Given a prime p, let \mathcal{G}_p be the set of all order p subgroups of A. GRS discussed the following invariants for the case q = 2, but their methods work equally for any prime power.

 $\mathcal{D}_p^q(K)$ and $\mathcal{T}_p^q(K)$

Let

$$\mathcal{T}_{p}^{q}(\mathcal{K}) = \begin{cases} \min \left\{ \left| \sum_{H \in \mathcal{G}_{p}} n_{H} S_{H}(\tau(\Sigma^{q}(\mathcal{K}), \tilde{\mathcal{K}})) \right| \middle| \begin{array}{c} n_{H} \in \mathbb{Z}_{\geq 0} \text{ \& at least} \\ \text{one is non-zero} \\ \text{; if } p \text{ divides } |H_{1}(\Sigma^{q}(\mathcal{K}))| \\ 0 \\ \text{; otherwise} \end{array} \right.$$

and

$$\mathcal{D}_{p}^{q}(K) = \begin{cases} \min \left\{ \left| \sum_{H \in \mathcal{G}_{p}} n_{H} \mathcal{S}_{H}(d(\Sigma^{q}(K))) \right| \middle| \begin{array}{c} n_{H} \in \mathbb{Z}_{\geq 0} \text{ \& at least} \\ \text{one is non-zero} \end{array} \right\} \\ \text{;if } p \text{ divides } |H_{1}(\Sigma^{q}(K))| \\ 0 \qquad \qquad \text{;otherwise} \end{cases} \end{cases}$$

 $\mathcal{D}_p^q(K)$ and $\mathcal{T}_p^q(K)$

GRS proved:

Theorem

Let p be a positive prime or 1. If K has finite order in C, then $\mathcal{T}_p^q(K) = \mathcal{D}_p^q(K) = 0.$

Given a function $f : A \to \mathbb{Q}$, we define

$$\overline{f}: A \rightarrow \mathbb{Q}$$

 $\alpha \rightarrow f(\alpha) - f(0)$

Then we define $\overline{\mathcal{D}}_p^q(K)$ and $\overline{\mathcal{T}}_p^q(K)$ by taking $\overline{d}(\Sigma^q(K))$ and $\overline{\tau}(\Sigma^q(K), \widetilde{K})$.

Theorem 2

We prove:

Theorem (B)

Let p be a positive prime or 1. Suppose the Alexander polynomials of K_1 and K_2 are relatively prime in $\mathbb{Q}[t, t^{-1}]$.

- If n₁K₁ #n₂K₂ is slice for some non-zero n₁ and n₂, then for all but finitely many primes q (or any of its prime power), the following holds: T
 ^q_p(K_i) = D
 ^q_p(K_i) = 0 for i = 1, 2.
- If n₁K₁\$n₂K₂ is ribbon for some non-zero n₁ and n₂, the conclusions above hold for any prime power q.

Application

Proposition

Let T_k be the k-twist knot. Excluding the unknot, T_1 (which is the figure-8 knot) and T_2 (which is Stevedore's knot), no non-trivial linear combinations of twist knots are ribbon.

Remark: This property was also proved by Se-Goo Kim, using Casson-Gordon invariant.

Section 3

Proof of Theorem 1

Theorem B (Kervaire, Levine, Kim)

Given two knots K_1 and K_2 , let F_i be a Seifert surface of K_i , and θ_i be the Seifert form on $H_1(F_i)$ for i = 1, 2. Suppose the Alexander polynomials of K_1 and K_2 are relatively prime in $\mathbb{Q}[t^{-1}, t]$.

Then if $\theta_1 \oplus \theta_2$ is null-concordant with a metabolizer Z, then θ_i is null-concordant with metabolizer $Z_i = Z \cap H_1(F_i)$ for both i = 1 and 2.

Proof of Theorem 1

If K is smoothly slice, let Δ be the slice disk of K in the 4-ball B⁴.
 F ∪ Δ bounds a 3-manifold R in B⁴
 Consider

$$\iota: H_1(F) \to H_1(R)/\mathrm{Tor}$$

Then $Z := Ker(\iota) \subset H_1(F)$ is a metabolizer of the Seifert form on $H_1(F)$

Let W^q(K) be the q-fold cyclic branched cover of B⁴ along Δ. Then
 ∃ the following CD (horizontal sequences are exact):

★ Fix a basis for $H_1(F)$. Then

$$f = \begin{pmatrix} G & I - G & 0 & 0 & \cdots & 0 \\ 0 & G & I - G & 0 & \cdots & 0 \\ 0 & 0 & G & I - G & \cdots & 0 \\ \vdots & \vdots & \vdots & & \\ I - G & 0 & 0 & 0 & \cdots & G \end{pmatrix},$$

where $G = (A - A^t)^{-1}A$ while A is the Seifert matrix. It is known that f is a presentation matrix of $H_1(\Sigma^q(K))$.

Defien f_1 and f_2 for K_1 and K_2 . Then $f = f_1 \oplus f_2$.

 \star $\bar{\iota}$ and j are induced by the inclusion maps.

• Let M := Ker(j). Then by the commutativity of the diagram we have the following fact:

Let Tor denote the torsion part of $H_1(R)$. If |Tor| and $|H_1(\Sigma^q(K))|$ are relatively prime, then $g(\bigoplus_{1 \le i \le q} Z) = M$.

Lemma

If K is ribbon, R can be chosen to be a handlebody. Then $H_1(R)$ is torsion free.

Q Given a knot K and a prime number p, ∃ only finitely many prime numbers q for which p divides H₁(Σ^{q^r}(K)) for some r ∈ N.

Let S be the set of primes q for which |Tor| and $|H_1(\Sigma^{q^r}(K))|$ are NOT relatively prime for some $r \in \mathbb{N}$. Then by the lemma above, it is a finite set. In particular, if K is ribbon, S is empty.

26 / 33

Theorem 1

Theorem

 $K = K_1 \sharp K_2$. Suppose the Alexander polynomials of K_1 and K_2 are relatively prime in $\mathbb{Q}[t, t^{-1}]$.

- If K is smoothly slice, then for all but finitely many primes q (or any of its prime power), the following holds.
 - $\Diamond \exists M_i < H_1(\Sigma^q(K_i))$ satisfying $|M_i|^2 = |H_1(\Sigma^q(K_i))|$
 - \diamond the d-invariants $d(\Sigma^q(K_i), s)$ are constant on M_i , for both i = 1 and 2.
- **2** If K is ribbon, the conclusions above hold for any prime power q.

Proof of Theorem 1

Suppose K is smoothly slice. Then for all the prime powers except for those with prime numbers in S, g(⊕_{1≤i≤q} Z) = M. By Theorem B, Z decomposes as Z = Z₁ ⊕ Z₂. So M = M₁ ⊕ M₂, where M_i = g(⊕_{1≤i≤q} Z_i).

It is not hard to see $|M_i|^2 = |H_1(\Sigma^q(K_i))|$ for i = 1, 2. Moreover,

For any
$$m_1 \in M_1$$
, $(m_1, 0) \in M$,

$$\Rightarrow$$
 $d(\Sigma^q(K), s_0 + (m_1, 0)) = 0$ by Theorem A

$$\Rightarrow \quad d(\Sigma^q(K_1), s_0 + m_1) + d(\Sigma^q(K_2), s_0) = 0$$

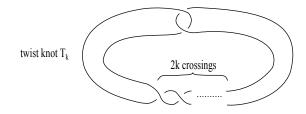
$$\Rightarrow \quad d\text{-invariant of } \Sigma^q(K_1) \text{ is constant on } M_1.$$

The same fact holds for K_2 .

Section 4

Application

Twist Knots



Twist knot T_k is

- of infinite order in the algebraic concordance group C_{alg} if k < 0
- algebraically slice if $k \ge 0$ and 4k + 1 is a square
- of finite order in C_{alg} otherwise

30 / 33

Proof of Application

The Alexander polynomial of k-twist knot is

$$\Delta_{T_k}(t) = -kt^2 + (2k+1)t - k.$$

It is easy to check that for any two twist knots, their Alexander polynomials are relatively prime in $\mathbb{Q}[t^{-1}, t]$.

Excluding the unknot, 1-twist knot and 2-twist knot, suppose there are $\{k_i\}_{i=1}^l$ and $\{n_i\}_{i=1}^l$ for which $K = \sharp_{i=1}^l(n_i T_{k_i})$ is a ribbon knot. Then

- by Levine's splitting theorem, each $n_i T_{k_i}$ is algebraically slice.
- by our Theorem 2, each T_{ki} has vanishing D
 ^q_p and T
 ^q_p for any prime p and prime power q.

We consider the case when q = 2, namely the double branched covers of twist knots.

Proof of Application

It is known that T_k has infinite order in the algebraic concordance group C_{alg} if k < 0. So each k_i for $1 \le i \le l$ is a positive integer.

 $\Sigma^2(T_k) = L(4k + 1, 2) =: L_k$. Assume that $k \ge 0$. Let p be a prime dividing 4k + 1. Then

$$ar{\mathcal{D}}_p^2(T_k) = \left|\sum_{j=0}^{p-1} ar{d}(L_k, s_0 + j)
ight| = \left|\sum_{j=0}^{p-1} (d(L_k, s_0 + j) - d(L_k, s_0))
ight|$$

There is formula of correction terms for lens spaces, which gives:

$$d(L_k, s_0 + j) = \frac{1}{4} - \frac{j^2}{8k+2} + \begin{cases} \frac{1}{4} & \text{if } j \text{ is odd} \\ \frac{-1}{4} & \text{if } j \text{ is even} \end{cases}$$

for $0 \le j \le 2k$.

Proof of Application

By calculation $d(L_k, s_0) = 0$. So

$$\bar{\mathcal{D}}_p^2(T_k) = \left|\sum_{j=0}^{p-1} d(L_k, s_0 + j)\right| = \mathcal{D}_p^2(T_k)$$

In GRS' paper, the authors discussed $\mathcal{D}_p^2(T_k)$ for k > 0 and showed:

$$\mathcal{D}_p^2(T_k) > 0$$

except for the case k = 0, 1, 2.

Therefore those T_{k_i} which make \overline{D}_p^2 vanishes are restricted to T_0 , T_1 and T_2 .