Polynomial splittings of Ozsváth and Szabó's correction terms

Yuanyuan Bao

Tokyo Institute of Technology
18th November 2011

Outline

(1) Motivation and History

(2) Introduction

(3) Proof of Theorem 1

(4) Application

Section 1

Motivation and History

K_{1}, K_{2} : two knots in $S^{3} . K_{1}$ is said to be smoothly concordant to K_{2} $\left(K_{1} \sim K_{2}\right)$ if \exists a smooth embedding $S^{1} \times[0,1] \hookrightarrow S^{3} \times[0,1]$ s.t.

$$
\partial\left(S^{1} \times[0,1]\right)=S^{1} \times 0 \cup S^{1} \times 1=K_{1} \cup\left(-K_{2}\right)
$$

$C:=\left\{\right.$ knot in $\left.S^{3}\right\} / \sim$
\sharp : connected sum of knots.
Then (C, \sharp) is called the smooth concordance group of knots in S^{3}.
Question:
(1) Given a knot K, determine the order of K in C.
(2) (Independence Problem) Given K_{1} and K_{2}, determine whether they are independent or not in C.

Partial Answers to Q1

K: a knot in S^{3}

- Seifert surface of K : oriented surface in S^{3} with $\partial F=K$
- Seifert form

$$
\begin{aligned}
\theta: H_{1}(F) \times H_{1}(F) & \rightarrow \mathbb{Z} \\
(\alpha, \beta) & \mapsto \mathbb{I}\left(\alpha, \beta^{+}\right)
\end{aligned}
$$

- A Seifert form θ is said to be null-concordant if \exists a direct sum Z of $H_{1}(F)$ such that $\operatorname{rank}(Z)=\frac{1}{2} \operatorname{rank}\left(H_{1}(F)\right)$ and $\theta(Z, Z)=0$, and then Z is called a metabolizer of θ.

Partial Answers to Q1

Two Seifert forms θ_{1} and θ_{2} are algebraically concordant if $\theta_{1} \oplus-\theta_{2}$ is null-concordant.

Two knots K_{1} and K_{2} are algebraically concordant $\left(K_{1} \sim_{\text {alg }} K_{2}\right)$ if their Seifert forms are algebraically concordant.

Let $C_{a l g}=\{k n o t\} / \sim_{a l g}$. Then $\left(C_{a l g}, \sharp\right)$ is called algebraic concordance group.

Fact: If a knot K has order one in C (which is called smoothly slice knot), then K has order one in $C_{a l g}$ (which is called algebraically slice knot).

Partial Answers to Q1

There are other invariants which examine the order of a knot. For instance:

- Signature
- twisted Alexander polynomial
- Casson-Gordon Invariants
- Von Neumann ρ-invariant
- Rasmussen invariant
- Ozsváth-Szabó τ-invariant
- Ozsváth and Szabó's correction terms
- ...

Partial Answer to Q2

Q2: Given two knots K_{1} and K_{2}, and any two non-trivial integers n_{1} and n_{2}, check whether $K=\left(n_{1} K_{1}\right) \sharp\left(n_{2} K_{2}\right)$ is slice or not.
(1) Suppose the signatures of K_{i} are $\sigma\left(K_{i}\right)=a_{i}$, the Rasmussen inv. are $s\left(K_{i}\right)=b_{i}$, and the Ozsváth-Szabó τ-inv. are $\tau\left(K_{i}\right)=c_{i}$.
Then $\sigma(K)=n_{1} a_{1}+n_{2} a_{2}, s(K)=n_{1} b_{1}+n_{2} b_{2}$ and $\tau(K)=n_{1} c_{1}+n_{2} c_{2}$.
If there is no non-trivial $\left(n_{1}, n_{2}\right)$ s.t $\sigma(K)=s(K)=\tau(K)=0$, then K_{1} and K_{2} are independent in C.

Partial Answer to Q2

(2) (Polynomial Splitting) Suppose the Alexander polynomials of K_{1} and K_{2} are relatively prime in $\mathbb{Q}\left[t^{-1}, t\right]$.
\& (Levine) If K has vanishing Levine obstruction, so do $n_{1} K_{1}$ and $n_{2} K_{2}$.
\% (Se-Goo Kim) If K has vanishing Casson-Gordon-Gilmer obstruction, so do $n_{1} K_{1}$ and $n_{2} K_{2}$.
\& (Se-Goo Kim and Taehee Kim) If K has vanishing von Neumann ρ-invariants associated with certain metabelian representations, so do $n_{1} K_{1}$ and $n_{2} K_{2}$.
\& In today's talk, we introduce similar property for Ozsváth and Szabó's correction terms.

Section 2

Introduction

Correction Term

- $Y:$ a $\mathbb{Q} H S^{3}$
$\operatorname{Spin}^{c}(Y)$: the set of Spin^{c}-structures over Y
Ozsváth and Szabó defined invariants

$$
\begin{aligned}
d(Y, \quad): \operatorname{Spin}^{c}(Y) & \rightarrow \mathbb{Q} \\
s & \mapsto d(Y, s),
\end{aligned}
$$

which are called the correction terms or d-invariants of Y.

- K: a knot in S^{3}
$\Sigma^{q}(K)$: the q-fold cyclic branched cover of S^{3} along K
When q is a prime power (by which we mean $q=p^{r}$ for some prime number $p), \Sigma^{q}(K)$ is a $\mathbb{Q} H S^{3}$. So we can consider the d-invariants for it.

Properties

Correction terms have two important properties:

- (additivity) Let Y_{1} and Y_{2} be two $\mathbb{Q} H S^{3}$, and $s_{i} \in \operatorname{Spin}^{c}\left(Y_{i}\right)$ for $i=1,2$. Then

$$
d\left(Y_{1} \sharp Y_{2}, s_{1} \sharp s_{2}\right)=d\left(Y_{1}, s_{1}\right)+d\left(Y_{2}, s_{2}\right) .
$$

- (vanishing) If (Y, s) bounds a rational homology smooth 4-ball (W, t), then $d(Y, s)=0$.

Slice Obstruction

Theorem A (Ozsváth and Szabó)

Let q be a prime power. If K is a smoothly slice knot, then

- \exists a subgroup $M<H_{1}\left(\Sigma^{q}(K)\right)$ satisfying $|M|^{2}=\left|H_{1}\left(\Sigma^{q}(K)\right)\right|$
- $d\left(\Sigma^{q}(K), s\right)=0$ for any $s=s_{0}+m$ where $m \in M$.

Here s_{0} is the unique spin-structure over $\Sigma^{q}(K)$ under certain restriction.

Remark: $H_{1}\left(\Sigma^{q}(K)\right)$ acts on $\operatorname{Spin}^{c}\left(\Sigma^{q}(K)\right)$ freely and transitively. Under this setting, we identify these two sets, by sending $x \in H_{1}\left(\Sigma^{q}(K)\right)$ to $s_{0}+x \in \operatorname{Spin}^{c}\left(\Sigma^{q}(K)\right)$.

What is M ?

Let Δ be the slice disk of K in the 4-ball B^{4}, and $W^{q}(K)$ be the q-fold cyclic branched cover of B^{4} along Δ. Then consider the inclusion map

$$
j: H_{1}\left(\Sigma^{q}(K)\right) \hookrightarrow H_{1}\left(W^{q}(K)\right) .
$$

Then M is $\operatorname{Ker}(j)$.
A spin${ }^{c}$-structure s over $\Sigma^{q}(K)$ extends to $W^{q}(K)$ iff $s=s_{0}+m$ for some $m \in M$.

Theorem 1

Theorem (B)

$K=K_{1} \sharp K_{2}$. Suppose the Alexander polynomials of K_{1} and K_{2} are relatively prime in $\mathbb{Q}\left[t, t^{-1}\right]$.
(1) If K is smoothly slice, then for all but finitely many primes q (or any of its prime power), the following holds.
$\diamond \exists M_{i}<H_{1}\left(\Sigma^{q}\left(K_{i}\right)\right)$ satisfying $\left|M_{i}\right|^{2}=\left|H_{1}\left(\Sigma^{q}\left(K_{i}\right)\right)\right|$
\diamond the d-invariants $d\left(\Sigma^{q}\left(K_{i}\right), s\right)$ are constant on M_{i}, for both $i=1$ and 2.
(2) If K is ribbon, the conclusions above hold for any prime power q.

$\mathcal{D}_{p}^{q}(K)$ and $\mathcal{T}_{p}^{q}(K)$

Let (Y, L) be the pair of a $\mathbb{Q} H S^{3}$ and a null-homologous knot in Y. For each Spin ${ }^{c}$-structure s over Y, Grigsby, Ruberman and Strle defined the τ-invariant $\tau_{s}(Y, L)$ for (Y, L, s).

Let $K \subset S^{3}$ be a knot. Let q be a prime power and consider $\left(\Sigma^{q}(K), \tilde{K}\right)$ where \tilde{K} is the pre-image of K in $\Sigma^{q}(K)$. GRS proved:

Theorem
If K is slice, then $\tau_{s}\left(\Sigma^{q}(K), \tilde{K}\right)=0$ for any $s=s_{0}+m$ where $m \in M$.

$\mathcal{D}_{p}^{q}(K)$ and $\mathcal{T}_{p}^{q}(K)$

Suppose $f: A \rightarrow \mathbb{Q}$ is a function on a finite abelian group and $H<A$ is a subgroup. GRS defined

$$
S_{H}(f)=\sum_{h \in H} f(h)
$$

In this talk, A is $H_{1}\left(\Sigma^{q}(K)\right)$ and f is either d-invariant or τ-invariant.
Given a prime p, let \mathcal{G}_{p} be the set of all order p subgroups of A. GRS discussed the following invariants for the case $q=2$, but their methods work equally for any prime power.

$\mathcal{D}_{p}^{q}(K)$ and $\mathcal{T}_{p}^{q}(K)$

Let

$$
\left.\begin{array}{l}
\mathcal{T}_{p}^{q}(K)=\left\{\begin{array}{ll}
\min \left\{\left|\sum_{H \in \mathcal{G}_{p}} n_{H} S_{H}\left(\tau\left(\Sigma^{q}(K), \tilde{K}\right)\right)\right| \begin{array}{l}
n_{H} \in \mathbb{Z}_{\geqslant 0} \& \text { at least } \\
\text { one is non-zero }
\end{array}\right. \\
\text {;if } p \text { divides }\left|H_{1}\left(\Sigma^{q}(K)\right)\right|
\end{array}\right\} \\
\text {;otherwise }
\end{array}\right\}
$$

$\mathcal{D}_{p}^{q}(K)$ and $\mathcal{T}_{p}^{q}(K)$

GRS proved:
Theorem
Let p be a positive prime or 1. If K has finite order in C, then $\mathcal{T}_{p}^{q}(K)=\mathcal{D}_{p}^{q}(K)=0$.

Given a function $f: A \rightarrow \mathbb{Q}$, we define

$$
\begin{aligned}
\bar{f}: A & \rightarrow \mathbb{Q} \\
\alpha & \rightarrow f(\alpha)-f(0)
\end{aligned}
$$

Then we define $\overline{\mathcal{D}}_{p}^{q}(K)$ and $\overline{\mathcal{T}}_{p}^{q}(K)$ by taking $\bar{d}\left(\Sigma^{q}(K)\right)$ and $\bar{\tau}\left(\Sigma^{q}(K), \tilde{K}\right)$.

Theorem 2

We prove:
Theorem (B)
Let p be a positive prime or 1. Suppose the Alexander polynomials of K_{1} and K_{2} are relatively prime in $\mathbb{Q}\left[t, t^{-1}\right]$.
(1) If $n_{1} K_{1} \sharp n_{2} K_{2}$ is slice for some non-zero n_{1} and n_{2}, then for all but finitely many primes q (or any of its prime power), the following holds: $\overline{\mathcal{T}}_{p}^{q}\left(K_{i}\right)=\overline{\mathcal{D}}_{p}^{q}\left(K_{i}\right)=0$ for $i=1,2$.
(2) If $n_{1} K_{1} \sharp n_{2} K_{2}$ is ribbon for some non-zero n_{1} and n_{2}, the conclusions above hold for any prime power q.

Application

Proposition

Let T_{k} be the k-twist knot. Excluding the unknot, T_{1} (which is the figure-8 knot) and T_{2} (which is Stevedore's knot), no non-trivial linear combinations of twist knots are ribbon.

Remark: This property was also proved by Se-Goo Kim, using Casson-Gordon invariant.

Section 3

Proof of Theorem 1

Theorem B (Kervaire, Levine, Kim)

Given two knots K_{1} and K_{2}, let F_{i} be a Seifert surface of K_{i}, and θ_{i} be the Seifert form on $H_{1}\left(F_{i}\right)$ for $i=1,2$. Suppose the Alexander polynomials of K_{1} and K_{2} are relatively prime in $\mathbb{Q}\left[t^{-1}, t\right]$.

Then if $\theta_{1} \oplus \theta_{2}$ is null-concordant with a metabolizer Z, then θ_{i} is null-concordant with metabolizer $Z_{i}=Z \cap H_{1}\left(F_{i}\right)$ for both $i=1$ and 2 .

Proof of Theorem 1

- If K is smoothly slice, let Δ be the slice disk of K in the 4-ball B^{4}.
$F \cup \Delta$ bounds a 3-manifold R in B^{4}
Consider

$$
\iota: H_{1}(F) \rightarrow H_{1}(R) / \text { Tor }
$$

Then $Z:=\operatorname{Ker}(\iota) \subset H_{1}(F)$ is a metabolizer of the Seifert form on $H_{1}(F)$

- Let $W^{q}(K)$ be the q-fold cyclic branched cover of B^{4} along Δ. Then \exists the following CD (horizontal sequences are exact):
$\longrightarrow \bigoplus_{1 \leqslant i \leqslant q} H_{1}(F) \xrightarrow{f} \bigoplus_{1 \leqslant i \leqslant q} H_{1}(F) \xrightarrow{g} H_{1}\left(\Sigma^{q}(K)\right) \longrightarrow 0$

\star Fix a basis for $H_{1}(F)$. Then

$$
f=\left(\begin{array}{cccccc}
G & I-G & 0 & 0 & \cdots & 0 \\
0 & G & I-G & 0 & \cdots & 0 \\
0 & 0 & G & I-G & \cdots & 0 \\
& \vdots & & \vdots & & \\
I-G & 0 & 0 & 0 & \cdots & G
\end{array}\right)
$$

where $G=\left(A-A^{t}\right)^{-1} A$ while A is the Seifert matrix. It is known that f is a presentation matrix of $H_{1}\left(\Sigma^{q}(K)\right)$.

Defien f_{1} and f_{2} for K_{1} and K_{2}. Then $f=f_{1} \oplus f_{2}$.
$\star \bar{\imath}$ and j are induced by the inclusion maps.

- Let $M:=\operatorname{Ker}(j)$. Then by the commutativity of the diagram we have the following fact:

Let Tor denote the torsion part of $H_{1}(R)$. If \mid Tor \mid and $\left|H_{1}\left(\Sigma^{q}(K)\right)\right|$ are relatively prime, then $g\left(\bigoplus_{1 \leqslant i \leqslant q} Z\right)=M$.

Lemma

(1) If K is ribbon, R can be chosen to be a handlebody. Then $H_{1}(R)$ is torsion free.
(2) Given a knot K and a prime number p, \exists only finitely many prime numbers q for which p divides $H_{1}\left(\Sigma^{q^{r}}(K)\right)$ for some $r \in \mathbb{N}$.

Let S be the set of primes q for which \mid Tor \mid and $\left|H_{1}\left(\Sigma^{q^{r}}(K)\right)\right|$ are NOT relatively prime for some $r \in \mathbb{N}$. Then by the lemma above, it is a finite set. In particular, if K is ribbon, S is empty.

Theorem 1

Theorem

$K=K_{1} \sharp K_{2}$. Suppose the Alexander polynomials of K_{1} and K_{2} are relatively prime in $\mathbb{Q}\left[t, t^{-1}\right]$.
(1) If K is smoothly slice, then for all but finitely many primes q (or any of its prime power), the following holds.
$\diamond \exists M_{i}<H_{1}\left(\Sigma^{q}\left(K_{i}\right)\right)$ satisfying $\left|M_{i}\right|^{2}=\left|H_{1}\left(\Sigma^{q}\left(K_{i}\right)\right)\right|$
\diamond the d-invariants $d\left(\Sigma^{q}\left(K_{i}\right), s\right)$ are constant on M_{i}, for both $i=1$ and 2.
(2) If K is ribbon, the conclusions above hold for any prime power q.

Proof of Theorem 1

(1) Suppose K is smoothly slice. Then for all the prime powers except for those with prime numbers in $S, g\left(\bigoplus_{1 \leqslant i \leqslant q} Z\right)=M$. By Theorem B , Z decomposes as $Z=Z_{1} \oplus Z_{2}$. So $M=M_{1} \oplus M_{2}$, where $M_{i}=g\left(\bigoplus_{1 \leqslant i \leqslant q} Z_{i}\right)$.
It is not hard to see $\left|M_{i}\right|^{2}=\left|H_{1}\left(\Sigma^{q}\left(K_{i}\right)\right)\right|$ for $i=1,2$.
Moreover,

$$
\begin{array}{ll}
& \text { For any } m_{1} \in M_{1},\left(m_{1}, 0\right) \in M, \\
\Rightarrow \quad & d\left(\Sigma^{q}(K), s_{0}+\left(m_{1}, 0\right)\right)=0 \text { by Theorem } A \\
\Rightarrow \quad & d\left(\Sigma^{q}\left(K_{1}\right), s_{0}+m_{1}\right)+d\left(\Sigma^{q}\left(K_{2}\right), s_{0}\right)=0 \\
\Rightarrow \quad & d \text {-invariant of } \Sigma^{q}\left(K_{1}\right) \text { is constant on } M_{1} . \\
& \text { The same fact holds for } K_{2} .
\end{array}
$$

(2) If K is ribbon, the set S is empty.

Section 4

Application

Twist Knots

Twist knot T_{k} is

- of infinite order in the algebraic concordance group $C_{a l g}$ if $k<0$
- algebraically slice if $k \geq 0$ and $4 k+1$ is a square
- of finite order in $C_{a l g}$ otherwise

Proof of Application

The Alexander polynomial of k-twist knot is

$$
\Delta_{T_{k}}(t)=-k t^{2}+(2 k+1) t-k
$$

It is easy to check that for any two twist knots, their Alexander polynomials are relatively prime in $\mathbb{Q}\left[t^{-1}, t\right]$.

Excluding the unknot, 1-twist knot and 2-twist knot, suppose there $\operatorname{are}\left\{k_{i}\right\}_{i=1}^{\prime}$ and $\left\{n_{i}\right\}_{i=1}^{\prime}$ for which $K=\sharp_{i=1}^{\prime}\left(n_{i} T_{k_{i}}\right)$ is a ribbon knot. Then

- by Levine's splitting theorem, each $n_{i} T_{k_{i}}$ is algebraically slice.
- by our Theorem 2 , each $T_{k_{i}}$ has vanishing $\overline{\mathcal{D}}_{p}^{q}$ and $\overline{\mathcal{T}}_{p}^{q}$ for any prime p and prime power q.

We consider the case when $q=2$, namely the double branched covers of twist knots.

Proof of Application

It is known that T_{k} has infinite order in the algebraic concordance group $C_{\text {alg }}$ if $k<0$. So each k_{i} for $1 \leq i \leq I$ is a positive integer.
$\Sigma^{2}\left(T_{k}\right)=L(4 k+1,2)=: L_{k}$. Assume that $k \geq 0$.
Let p be a prime dividing $4 k+1$. Then

$$
\overline{\mathcal{D}}_{p}^{2}\left(T_{k}\right)=\left|\sum_{j=0}^{p-1} \bar{d}\left(L_{k}, s_{0}+j\right)\right|=\left|\sum_{j=0}^{p-1}\left(d\left(L_{k}, s_{0}+j\right)-d\left(L_{k}, s_{0}\right)\right)\right|
$$

There is formula of correction terms for lens spaces, which gives:

$$
d\left(L_{k}, s_{0}+j\right)=\frac{1}{4}-\frac{j^{2}}{8 k+2}+ \begin{cases}\frac{1}{4} & \text { if } j \text { is odd } \\ \frac{-1}{4} & \text { if } j \text { is even }\end{cases}
$$

for $0 \leq j \leq 2 k$.

Proof of Application

By calculation $d\left(L_{k}, s_{0}\right)=0$. So

$$
\overline{\mathcal{D}}_{p}^{2}\left(T_{k}\right)=\left|\sum_{j=0}^{p-1} d\left(L_{k}, s_{0}+j\right)\right|=\mathcal{D}_{p}^{2}\left(T_{k}\right)
$$

In GRS' paper, the authors discussed $\mathcal{D}_{\rho}^{2}\left(T_{k}\right)$ for $k>0$ and showed:

$$
\mathcal{D}_{p}^{2}\left(T_{k}\right)>0
$$

except for the case $k=0,1,2$.
Therefore those $T_{k_{i}}$ which make $\overline{\mathcal{D}}_{p}^{2}$ vanishes are restricted to T_{0}, T_{1} and T_{2}.

