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Section 1

Motivation and History
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K1,K2: two knots in S3. K1 is said to be smoothly concordant to K2

(K1 ∼ K2) if ∃ a smooth embedding S1 × [0, 1] ↪→ S3 × [0, 1] s.t.

∂(S1 × [0, 1]) = S1 × 0 ∪ S1 × 1 = K1 ∪ (−K2)

C := {knot in S3}/ ∼
#: connected sum of knots.
Then (C , #) is called the smooth concordance group of knots in S3.

Question:

1 Given a knot K , determine the order of K in C .

2 (Independence Problem) Given K1 and K2, determine whether they
are independent or not in C .
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Partial Answers to Q1

K : a knot in S3

Seifert surface of K : oriented surface in S3 with ∂F = K

Seifert form

θ : H1(F )× H1(F ) → Z
(α,β) '→ lk(α,β+)

A Seifert form θ is said to be null-concordant if ∃ a direct sum Z of

H1(F ) such that rank(Z ) =
1

2
rank(H1(F )) and θ(Z ,Z ) = 0, and

then Z is called a metabolizer of θ.
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Partial Answers to Q1

Two Seifert forms θ1 and θ2 are algebraically concordant if θ1 ⊕−θ2 is
null-concordant.

Two knots K1 and K2 are algebraically concordant (K1 ∼alg K2) if their
Seifert forms are algebraically concordant.

Let Calg = {knot}/ ∼alg . Then (Calg , #) is called algebraic concordance
group.

Fact: If a knot K has order one in C (which is called smoothly slice
knot), then K has order one in Calg (which is called algebraically slice
knot).

Yuanyuan Bao (Tokyo Institute of Technology)Polynomial splittings of Ozsváth and Szabó’s correction terms18th November 2011 6 / 33



Partial Answers to Q1

There are other invariants which examine the order of a knot. For
instance:

Signature

twisted Alexander polynomial

Casson-Gordon Invariants

Von Neumann ρ-invariant

Rasmussen invariant

Ozsváth-Szabó τ -invariant

Ozsváth and Szabó’s correction terms

· · ·
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Partial Answer to Q2

Q2: Given two knots K1 and K2, and any two non-trivial integers n1 and
n2, check whether K = (n1K1)#(n2K2) is slice or not.

1 Suppose the signatures of Ki are σ(Ki ) = ai ,
the Rasmussen inv. are s(Ki ) = bi ,
and the Ozsváth-Szabó τ -inv. are τ(Ki ) = ci .
Then σ(K ) = n1a1 + n2a2, s(K ) = n1b1 + n2b2 and
τ(K ) = n1c1 + n2c2.
If there is no non-trivial (n1, n2) s.t σ(K ) = s(K ) = τ(K ) = 0, then
K1 and K2 are independent in C .
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Partial Answer to Q2

2 (Polynomial Splitting) Suppose the Alexander polynomials of K1 and
K2 are relatively prime in Q[t−1, t].

♣ (Levine) If K has vanishing Levine obstruction, so do n1K1 and
n2K2.

♣ (Se-Goo Kim) If K has vanishing Casson-Gordon-Gilmer
obstruction, so do n1K1 and n2K2.

♣ (Se-Goo Kim and Taehee Kim) If K has vanishing von Neumann
ρ-invariants associated with certain metabelian representations,
so do n1K1 and n2K2.

♣ In today’s talk, we introduce similar property for Ozsváth and
Szabó’s correction terms.
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Section 2

Introduction
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Correction Term

Y : a QHS3

Spinc (Y ): the set of Spinc-structures over Y
Ozsváth and Szabó defined invariants

d(Y , ) : Spinc(Y ) → Q
s '→ d(Y , s),

which are called the correction terms or d -invariants of Y .

K : a knot in S3

Σq(K ): the q-fold cyclic branched cover of S3 along K
When q is a prime power (by which we mean q = pr for some prime
number p), Σq(K ) is a QHS3. So we can consider the d -invariants
for it.
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Properties

Correction terms have two important properties:

(additivity) Let Y1 and Y2 be two QHS3, and si ∈ Spinc(Yi) for
i = 1, 2. Then

d(Y1#Y2, s1#s2) = d(Y1, s1) + d(Y2, s2).

(vanishing) If (Y , s) bounds a rational homology smooth 4-ball
(W , t), then d(Y , s) = 0.
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Slice Obstruction

Theorem A (Ozsváth and Szabó)

Let q be a prime power. If K is a smoothly slice knot, then

∃ a subgroup M < H1(Σq(K )) satisfying |M|2 = |H1(Σq(K ))|
d(Σq(K ), s) = 0 for any s = s0 +m where m ∈ M.

Here s0 is the unique spin-structure over Σq(K ) under certain restriction.

Remark: H1(Σq(K )) acts on Spinc(Σq(K )) freely and transitively. Under
this setting, we identify these two sets, by sending x ∈ H1(Σq(K )) to
s0 + x ∈ Spinc(Σq(K )).
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What is M ?

Let ∆ be the slice disk of K in the 4-ball B4, and W q(K ) be the q-fold
cyclic branched cover of B4 along ∆. Then consider the inclusion map

j : H1(Σ
q(K )) ↪→ H1(W

q(K )).

Then M is Ker(j).

A spinc -structure s over Σq(K ) extends to W q(K ) iff s = s0 +m for some
m ∈ M.
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Theorem 1

Theorem (B)

K = K1#K2. Suppose the Alexander polynomials of K1 and K2 are
relatively prime in Q[t, t−1].

1 If K is smoothly slice, then for all but finitely many primes q (or any
of its prime power), the following holds.

♦ ∃Mi < H1(Σq(Ki )) satisfying |Mi |2 = |H1(Σq(Ki ))|
♦ the d-invariants d(Σq(Ki ), s) are constant on Mi , for both i = 1

and 2.

2 If K is ribbon, the conclusions above hold for any prime power q.
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Dq
p(K ) and T q

p (K )

Let (Y , L) be the pair of a QHS3 and a null-homologous knot in Y . For
each Spinc-structure s over Y , Grigsby, Ruberman and Strle defined the
τ -invariant τs(Y , L) for (Y , L, s).

Let K ⊂ S3 be a knot. Let q be a prime power and consider (Σq(K ), K̃ )
where K̃ is the pre-image of K in Σq(K ). GRS proved:

Theorem

If K is slice, then τs(Σq(K ), K̃ ) = 0 for any s = s0 +m where m ∈ M.
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Dq
p(K ) and T q

p (K )

Suppose f : A → Q is a function on a finite abelian group and H < A is a
subgroup. GRS defined

SH(f ) =
∑

h∈H
f (h)

In this talk, A is H1(Σq(K )) and f is either d -invariant or τ -invariant.

Given a prime p, let Gp be the set of all order p subgroups of A. GRS
discussed the following invariants for the case q = 2, but their methods
work equally for any prime power.
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Dq
p(K ) and T q

p (K )

Let

T q
p (K ) =






min

{
|
∑

H∈Gp
nHSH(τ(Σq(K ), K̃ ))|

∣∣∣∣∣
nH ∈ Z"0 & at least

one is non-zero

}

;if p divides |H1(Σq(K ))|
0 ;otherwise

and

Dq
p(K ) =






min

{
|
∑

H∈Gp
nHSH(d(Σq(K )))|

∣∣∣∣∣
nH ∈ Z"0 & at least

one is non-zero

}

;if p divides |H1(Σq(K ))|
0 ;otherwise
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Dq
p(K ) and T q

p (K )

GRS proved:

Theorem
Let p be a positive prime or 1. If K has finite order in C, then
T q
p (K ) = Dq

p(K ) = 0.

Given a function f : A → Q, we define

f̄ : A → Q
α → f (α)− f (0)

Then we define D̄q
p(K ) and T̄ q

p (K ) by taking d̄(Σq(K )) and τ̄(Σq(K ), K̃ ).
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Theorem 2

We prove:

Theorem (B)

Let p be a positive prime or 1. Suppose the Alexander polynomials of K1

and K2 are relatively prime in Q[t, t−1].

1 If n1K1#n2K2 is slice for some non-zero n1 and n2, then for all but
finitely many primes q (or any of its prime power), the following
holds: T̄ q

p (Ki ) = D̄q
p(Ki ) = 0 for i = 1, 2.

2 If n1K1#n2K2 is ribbon for some non-zero n1 and n2, the conclusions
above hold for any prime power q.
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Application

Proposition

Let Tk be the k-twist knot. Excluding the unknot, T1 (which is the
figure-8 knot) and T2 (which is Stevedore’s knot), no non-trivial linear
combinations of twist knots are ribbon.

Remark: This property was also proved by Se-Goo Kim, using
Casson-Gordon invariant.
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Section 3

Proof of Theorem 1
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Theorem B (Kervaire, Levine, Kim)

Given two knots K1 and K2, let Fi be a Seifert surface of Ki , and θi be the
Seifert form on H1(Fi) for i = 1, 2. Suppose the Alexander polynomials of
K1 and K2 are relatively prime in Q[t−1, t].

Then if θ1 ⊕ θ2 is null-concordant with a metabolizer Z , then θi is
null-concordant with metabolizer Zi = Z ∩ H1(Fi ) for both i = 1 and 2.

Yuanyuan Bao (Tokyo Institute of Technology)Polynomial splittings of Ozsváth and Szabó’s correction terms18th November 2011 23 / 33



Proof of Theorem 1

If K is smoothly slice, let ∆ be the slice disk of K in the 4-ball B4.
F ∪ ∆ bounds a 3-manifold R in B4

Consider
ι : H1(F ) → H1(R)/Tor

Then Z := Ker(ι) ⊂ H1(F ) is a metabolizer of the Seifert form on
H1(F )

Let W q(K ) be the q-fold cyclic branched cover of B4 along ∆. Then
∃ the following CD (horizontal sequences are exact):

⊕
1#i#q H1(F )

⊕
1#i#q H1(F ) H1(Σq(K )) 0

⊕
1#i#q H1(R)

⊕
1#i#q H1(R) H1(W q(K )) 0

f g

h

⊕
1#i#q ῑ j
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$ Fix a basis for H1(F ). Then

f =





G I − G 0 0 · · · 0
0 G I − G 0 · · · 0
0 0 G I − G · · · 0

...
...

I − G 0 0 0 · · · G




,

where G = (A− At)−1A while A is the Seifert matrix. It is known

that f is a presentation matrix of H1(Σq(K )).

Defien f1 and f2 for K1 and K2. Then f = f1 ⊕ f2.

$ ῑ and j are induced by the inclusion maps.
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Let M := Ker(j). Then by the commutativity of the diagram we have
the following fact:

Let Tor denote the torsion part of H1(R). If |Tor| and |H1(Σq(K ))|
are relatively prime, then g(

⊕
1#i#q Z ) = M.

Lemma
1 If K is ribbon, R can be chosen to be a handlebody. Then H1(R) is

torsion free.

2 Given a knot K and a prime number p, ∃ only finitely many prime
numbers q for which p divides H1(Σqr (K )) for some r ∈ N.

Let S be the set of primes q for which |Tor| and |H1(Σqr (K ))| are NOT
relatively prime for some r ∈ N. Then by the lemma above, it is a finite
set. In particular, if K is ribbon, S is empty.
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Theorem 1

Theorem
K = K1#K2. Suppose the Alexander polynomials of K1 and K2 are
relatively prime in Q[t, t−1].

1 If K is smoothly slice, then for all but finitely many primes q (or any
of its prime power), the following holds.

♦ ∃Mi < H1(Σq(Ki )) satisfying |Mi |2 = |H1(Σq(Ki ))|
♦ the d-invariants d(Σq(Ki ), s) are constant on Mi , for both i = 1

and 2.

2 If K is ribbon, the conclusions above hold for any prime power q.
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Proof of Theorem 1

1 Suppose K is smoothly slice. Then for all the prime powers except for
those with prime numbers in S , g(

⊕
1#i#q Z ) = M. By Theorem B,

Z decomposes as Z = Z1 ⊕ Z2. So M = M1 ⊕M2, where
Mi = g(

⊕
1#i#q Zi).

It is not hard to see |Mi |2 = |H1(Σq(Ki ))| for i = 1, 2.

Moreover,

For any m1 ∈ M1, (m1, 0) ∈ M,

⇒ d(Σq(K ), s0 + (m1, 0)) = 0 by Theorem A

⇒ d(Σq(K1), s0 +m1) + d(Σq(K2), s0) = 0

⇒ d -invariant of Σq(K1) is constant on M1.

The same fact holds for K2.

2 If K is ribbon, the set S is empty.
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Section 4

Application

Yuanyuan Bao (Tokyo Institute of Technology)Polynomial splittings of Ozsváth and Szabó’s correction terms18th November 2011 29 / 33



Twist Knots

..........

2k crossings
twist knot Tk 

Twist knot Tk is

of infinite order in the algebraic concordance group Calg if k < 0

algebraically slice if k ≥ 0 and 4k + 1 is a square

of finite order in Calg otherwise
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Proof of Application

The Alexander polynomial of k-twist knot is

∆Tk
(t) = −kt2 + (2k + 1)t − k .

It is easy to check that for any two twist knots, their Alexander
polynomials are relatively prime in Q[t−1, t].

Excluding the unknot, 1-twist knot and 2-twist knot, suppose there
are{ki}li=1 and {ni}li=1 for which K = #li=1(niTki ) is a ribbon knot. Then

by Levine’s splitting theorem, each niTki is algebraically slice.

by our Theorem 2, each Tki has vanishing D̄q
p and T̄ q

p for any prime p
and prime power q.

We consider the case when q = 2, namely the double branched covers of
twist knots.
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Proof of Application

It is known that Tk has infinite order in the algebraic concordance group
Calg if k < 0. So each ki for 1 ≤ i ≤ l is a positive integer.

Σ2(Tk) = L(4k + 1, 2) =: Lk . Assume that k ≥ 0.
Let p be a prime dividing 4k + 1. Then

D̄2
p(Tk) =

∣∣∣∣∣∣

p−1∑

j=0

d̄(Lk , s0 + j)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

p−1∑

j=0

(d(Lk , s0 + j)− d(Lk , s0))

∣∣∣∣∣∣

There is formula of correction terms for lens spaces, which gives:

d(Lk , s0 + j) =
1

4
− j2

8k + 2
+






1

4
if j is odd

−1

4
if j is even

for 0 ≤ j ≤ 2k .
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Proof of Application

By calculation d(Lk , s0) = 0. So

D̄2
p(Tk) =

∣∣∣∣∣∣

p−1∑

j=0

d(Lk , s0 + j)

∣∣∣∣∣∣
= D2

p(Tk)

In GRS’ paper, the authors discussed D2
p(Tk) for k > 0 and showed:

D2
p(Tk) > 0

except for the case k = 0, 1, 2.

Therefore those Tki which make D̄2
p vanishes are restricted to T0,T1 and

T2.
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