Hyperplane Arrangements and Lefschetz's Hyperplane Section Theorem

Masahiko Yoshinaga*

Groups, Homotopy and Configuration Spaces 5th-11th July, 2005, Tokyo

The purposes

Recently Dimca-Papadima [1] and Randell [2] proved that the complement $M(\mathcal{A})$ of a complex hyperplane arrangement \mathcal{A} in \mathbb{C}^{ℓ} is homotopy equivalent to a minimal CWcomplex, namely, a CW-complex whose number of k-cells is equal to its k-th betti number for each $k \geq 0$.

The goal here is to provide

- a presentation for the fundamental group $\pi_1(\mathsf{M}(\mathcal{A}))$,
- a minimal chain complex computing local system homology

obtained from the study of attaching maps for a real arrangement \mathcal{A} .

We concentrate on 2-dimensional case. See [3] for details.

Counting chambers

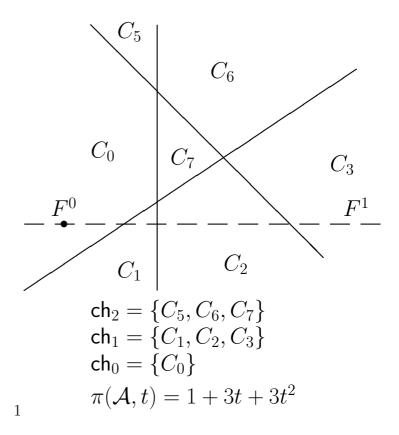
Let

$$F^0 \subset F^1 \subset F^2 = V_{\mathbb{R}} = \mathbb{R}^2$$

be a generic flag. And define

$$\mathsf{ch}_{k}(\mathcal{A}) = \left\{ C \middle| \begin{array}{c} C \cap F^{k-1} = \emptyset \\ C \cap F^{k} \neq \emptyset \end{array} \right\},\$$

where *C* is a chamber. **Fact:** $\sharp ch_k(\mathcal{A}) = b_k(\mathsf{M}(\mathcal{A})).$

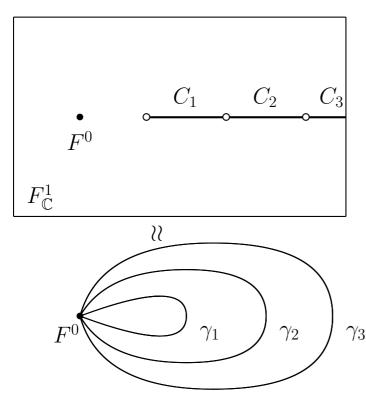


^{*}RIMS, Kyoto Univ., yosinaga@kurims.kyoto-u.ac.jp

The minimal CW-decomposition

 $ch_k(\mathcal{A})$ indexes *k*-cells.

 $\underline{k=1}.$



Cahmber: $C_i \longleftrightarrow 1$ -cell: γ_i .

 $\underline{k=2}$. Let Q be a defining equation of \mathcal{A} . Let f be a defining equation of the line F^1 . Then

$$\varphi = \left| \frac{f^{\lambda}}{Q} \right| : \mathsf{M}(\mathcal{A}) \to \mathbb{R}_{\geq 0}$$

is a Morse function. $C \in ch_2(\mathcal{A})$ is a stable manifold. The corresponding unstable manifold σ_C is the 2-cell attaching to $\mathsf{M}(\mathcal{A}) \cap F^1_{\mathbb{C}}$.

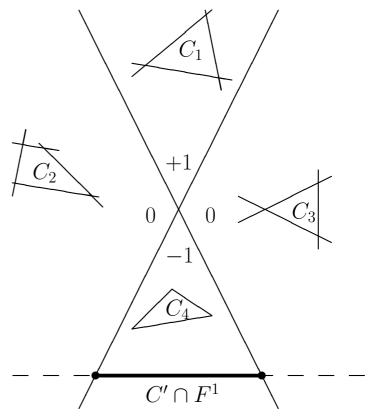
The degree map

The degree map is a map

 $\deg: \mathsf{ch}_2(\mathcal{A}) \times \mathsf{ch}_1(\mathcal{A}) \to \{-1, 0, 1\}$

defined below.

Let $C_1, \ldots, C_4 \in \mathsf{ch}_2(\mathcal{A})$ and $C' \in \mathsf{ch}_1(\mathcal{A})$.



 $deg(C_1, C') = 1$ $deg(C_2, C') = deg(C_3, C') = 0$ $deg(C_4, C') = -1.$

The degree map will be used to describe the fundamental group and the boundary map of twisted minimal chain complex.

Fundamental group

 $ch_1(\mathcal{A}) = \{C_1, \dots, C_n\}.$ Let $\gamma_1, \dots, \gamma_n$ be the corresponding 1-cells.

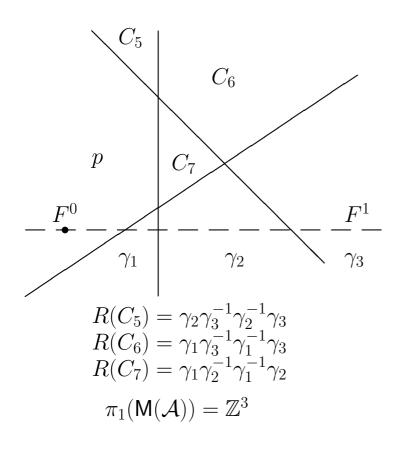
Given $C \in ch_2(\mathcal{A})$, define a word R(C) by

 $R(C) := \gamma_1^{e_1} \gamma_2^{e_2} \cdots \gamma_n^{e_n} \gamma_1^{-e_1} \cdots \gamma_n^{-e_n},$ where $e_i = \deg(C, C_i).$

<u>Theorem</u>

The fundamental group $\pi_1(M(\mathcal{A}))$ has the following presentation:

$$\langle \gamma_1, \ldots, \gamma_n | R(C); C \in \mathsf{ch}_2(\mathcal{A}) \rangle.$$



Local system

Let $\mathcal{A} = \{H_1, \ldots, H_n\}$. Choose a nonzero complex number $q_i \in \mathbb{C}^*$ for each $i = 1, \ldots, n$.

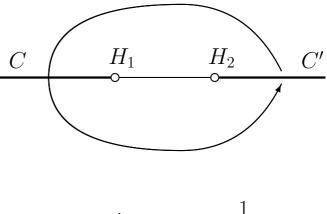
We consider the rank one local system \mathcal{L} on $M(\mathcal{A})$ such that the local monodromy around H_i is q_i^2 .

 $\frac{\text{Definition}}{\text{For two chambers } C \text{ and } C',$

$$Sep(C, C') := \{i | H_i \text{ separates } C, C'\}$$

And define

$$\Delta(C, C') := \prod_{i \in \operatorname{Sep}(C, C')} q_i - \prod_{i \in \operatorname{Sep}} q_i^{-1}$$



$$\Delta(C, C') = q_1 q_2 - \frac{1}{q_1 q_2}.$$

Twisted minimal chain complex

 $\mathcal{A} = \{H_1, \dots, H_n\},\ \mathsf{ch}_0(\mathcal{A}) = \{p\},\ \mathsf{ch}_1(\mathcal{A}) = \{\gamma_1, \dots, \gamma_n\}\$ as above. Put

$$\mathcal{C}_{0} := \mathbb{C}[p]$$

$$\mathcal{C}_{1} := \mathbb{C}[\gamma_{1}] \oplus \cdots \oplus \mathbb{C}[\gamma_{n}]$$

$$\mathcal{C}_{2} := \bigoplus_{C \in \mathsf{ch}_{2}} \mathbb{C}[\sigma_{C}]$$

and define $\partial : \mathcal{C}_k \to \mathcal{C}_{k-1}$ as

$$\partial([\gamma_i]) = \Delta(\gamma_i, p)[p]$$

$$\partial([\sigma_C]) = \sum_{i=1}^n \deg(C, \gamma_i) \Delta(C, \gamma_i)[\gamma_i].$$

<u>Theorem</u>

Then $(\mathcal{C}_{\bullet},\partial)$ is a chain complex, namely, $\partial^2=0$ and

$$H_k(\mathcal{C}_{\bullet},\partial) \cong H_k(\mathsf{M}(\mathcal{A}),\mathcal{L}).$$

Reference

- A. Dimca, S. Papadima, Hypersurface complements, Milor fibers and higher homotopy groups of arrangements. Ann. of Math. (2) 158 (2003), 473–507
- [2] R. Randell, Morse theory, Milnor fibers and minimality of hyperplane arrangements. Proc. Amer. Math. Soc. 130 (2002), 2737–2743
- [3] M. Yoshinaga, Hyperplane arrangements and Lefschetz's hyperplane section theorem. (Preprint)