
A partial order in the knot table

Teruaki Kitano and Masaaki Suzuki

K : a prime knot

G(K) : the knot group of K i.e. G(K) = π1(E(K)) = π1(S
3 − K)

Definition.� �

K, K ′ : two prime knots

If there exists a surjective homomorphism G(K) −→−→ G(K ′),

K ≥ K ′

This relation “≥” is a partial order on the set of prime knots.
� �

We determine this partial order “≥” on the set of knots in Rolfsen’s knot

table, which lists all the prime knots of 10 crossings or less. The numbering of

the knots follows that of Rolfsen’s book.

Main Theorem.� �

The above partial order on the knots in Rolfsen’s table is given as below:

85, 810, 815, 818, 819, 820, 821, 91, 96, 916, 923, 924, 928, 940,

105, 109, 1032, 1040, 1061, 1062, 1063, 1064, 1065, 1066, 1076, 1077,

1078, 1082, 1084, 1085, 1087, 1098, 1099, 10103, 10106, 10112, 10114,

10139, 10140, 10141, 10142, 10143, 10144, 10159, 10164

≥ 31,

818, 937, 940, 1058, 1059, 1060, 10122, 10136, 10137, 10138 ≥ 41,

1074, 10120, 10122 ≥ 52.
� �
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Existence of surjective homomorphisms

we can construct explicitly a surjective homomorphism between the groups of

each pair of knots which appears in the list of the main theorem.

For example, we show a surjective homomorphism from G(937) to G(41).

937 = , 41 =

We fix presentations of G(937) and G(41) as follows:

G(937) =
〈

y1, y2, y3, y4, y5,

y6, y7, y8, y9

∣

∣

∣

∣

∣

y8y1y
−1

8
y−1

2
, y7y2y

−1

7
y−1

3
, y9y4y

−1

9
y−1

3
, y3y4y

−1

3
y−1

5
,

y1y6y
−1

1
y−1

5
, y5y6y

−1

5
y−1

7
, y2y7y

−1

2
y−1

8
, y4y9y

−1

4
y−1

8

〉

,
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The following mapping ϕ : G(937) → G(41) is a surjective homomorphism:

ϕ(y1) = x2, ϕ(y2) = x3, ϕ(y3) = x1x4x
−1

1
, ϕ(y4) = x3, ϕ(y5) = x1,

ϕ(y6) = x−1

1
x4x1, ϕ(y7) = x4, ϕ(y8) = x1, ϕ(y9) = x4.

Then we get

937 ≥ 41.
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Non-existence of surjective homomorphisms

we prove the non-existence of surjective homomorphisms by using the Alexan-

der polynomial and the twisted Alexander invariants.

(1) By the (classical) Alexander polynomial

∆K : the Alexander polynomial of a knot K

Fact.� �

If ∆K can not be divided by ∆K ′,

then there exists no surjective homomorphism ϕ : G(K) −→−→ G(K ′).
� �

For example, we consider whether there exists a surjective homomorphism

between G(41) and G(821).

41 = , 821 =

∆41
= t2 − 3t + 1, ∆821

= t4 − 4t3 + 5t2 − 4t + 1

Thus ∆41
can not be divided by ∆821

. We get 41 � 821. However, ∆821
can be

divided by ∆41
. In fact,

∆821

∆41

= t2 − t + 1.

Then we can not determine whether there exists a surjective homomorphism

from G(821) to G(41) by the Alexander polynomial.
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(2) By the twisted Alexander invariant

∆K,ρ : the twisted Alexander invariant of a knot K

associated to a representation ρ : G(K) → SL(2; Z/pZ)

∆N
K,ρ , ∆D

K,ρ : the numerator and the denominator of ∆K,ρ respectively

Theorem.(Kitano-Suzuki-Wada)� �

If there exists a representation ρ′ : G(K ′) → SL(2; Z/pZ) such that

for any representation ρ : G(K) → SL(2; Z/pZ),

∆N
K,ρ is not divisible by ∆N

K ′,ρ′
or ∆D

K,ρ 6= ∆D
K ′,ρ′

,

then there exists no surjective homomorphism ϕ : G(K) −→−→ G(K ′).
� �

For example, we prove the non-existence of a surjective homomorphism from

G(821) to G(41). We have a certain representation ρ′ : G(41) −→ SL(2; Z/3Z)

such that the twisted Alexander invariant is ∆N
41,ρ

′ = t4+t2+1, ∆D
41,ρ

′ = t2+t+1.

On the other hand, for any ρ : G(821) −→ SL(2; Z/3Z), there exists no

∆D
821,ρ

, ∆N
821,ρ

such that ∆D
821,ρ

= ∆D
41,ρ

′ and ∆N
821,ρ

can be divided by ∆N
41,ρ

′.

Then we get

821 � 41.

In fact, all the twisted Alexander invariants ∆D
821,ρ

, ∆N
821,ρ

are as follows:

∆N
821,ρi

∆D
821,ρi

ρ1 t8 + t4 + 1 t2 + 1

ρ2 t8 + t7 + 2t6 + 2t4 + 2t2 + t + 1 t2 + t + 1

ρ3 t8 + t7 + 2t6 + 2t4 + 2t2 + t + 1 t2 + 2t + 1

ρ4 t8 + 2t7 + 2t6 + 2t4 + 2t2 + 2t + 1 t2 + t + 1

ρ5 t8 + 2t7 + 2t6 + 2t4 + 2t2 + 2t + 1 t2 + 2t + 1
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