A Reduction Theorem for Fusion Systems of Blocks

Radha Kessar and Radu Stancu

The Ohio State University

COE Conference – Groups, Homotopy and Configuration Spaces, Tokyo, July 9, 2005

1. Introduction

- 1. Introduction
- 2. Fusion Systems
- 3. Brauer Category
- 4. Main Result

Let p be a prime number.

Fusion systems:

- Puig, 1990: full Frobenius systems
- Broto, Levi, Oliver, 2000: saturated fusion systems
 - provide an axiomatic framework for studying p-fusion in finite groups
 - useful in determining many properties of finite groups and of the p-completion of their classifying spaces
 - underlie the theory of p-local finite groups

2. Fusion Systems

- Introduction
- 2. Fusion Systems
- 3. Brauer Category
- 4. Main Result

Definition: A category \mathcal{F} on a finite p-group P

objects: the subgroups of P

morphisms: between Q and R, is the set $\text{Hom}_{\mathcal{F}}(Q, R)$ of injective group homomorphisms from Q to R, with the following properties:

- (a) if $Q \leq R$ then the inclusion of Q in R is a morphism in $\text{Hom}_{\mathcal{F}}(Q, R)$.
- (b) for any $\phi \in \text{Hom}_{\mathcal{F}}(Q, R)$ the induced isomorphism $Q \simeq \phi(Q)$ and its inverse are morphisms in \mathcal{F} .
- (c) composition of morphisms in \mathcal{F} is the usual composition of group homomorphisms.

Definition. A fusion system \mathcal{F} on P is a category on P satisfying:

- 1. Introduction
- 2. Fusion Systems
- 3. Brauer Category
- 4. Main Result
- (1) $\operatorname{Hom}_P(Q,R) \subset \operatorname{Hom}_{\mathcal{F}}(Q,R)$ for all $Q,R \leq P$.
- (2) $\operatorname{Aut}_P(P)$ is a Sylow *p*-subgroup of $\operatorname{Aut}_{\mathcal{F}}(P)$.
- (3) Every $\phi \in \text{Iso}_{\mathcal{F}}(Q, R)$ such that $N_P(R)$ is maximal in the \mathcal{F} -isomorphism class of R extends to $\text{Hom}_{\mathcal{F}}(N_P(Q), N_P(R))$ (up to modifying ϕ by an element of $\text{Aut}_{\mathcal{F}}(R)$)

Example. Let G be a finite group and $P \in \operatorname{Syl}_p(G)$. Then $\mathcal{F} := \mathcal{F}_P(G)$ is a fusion system on P (objects: subgroups of P; morphisms: the conjugations by elements of G).

3. Brauer Category

- Introduction
- 2. Fusion Systems
- 3. Brauer Category
- 4. Main Result

Let k be an algebraically closed field of characteristic p.

The group algebra kG decomposes into block algebras

$$kG = kGb_1 \bigoplus kGb_2 \bigoplus \cdots \bigoplus kGb_n$$

 b_i is called a *block* of kG; it is a central primitive idempotent (i.e. $b_i \in Z(kG)$ and $b_ib_i = b_i$).

To every block b of kG we associate up to isomorphism a defect group P which is a p-subgroup of G maximal under the assumption that $\operatorname{Br}_P(b) \neq 0$ $(\operatorname{Br}_P: (kG)^P \to kC_G(P))$ is the Brauer morphism).

Definition. [Brauer, Broué]

- Introduction
 Fusion Systems
- 3. Brauer Category
 - 4. Main Result

- A b-Brauer pair (Q, e_Q) consists of:
- a p-subgroup Q of G, $Br_Q(b) \neq 0$;
- a block e_Q of $kC_G(Q)$, $Br_Q(b)e_Q \neq 0$.

There exists a partial order \leq on the set of b-Brauer pairs. Here are some of its important properties:

- (a) there exists e_P such that (P, e_P) is maximal with respect to this partial order iff P is a b-defect.
- (b) if $(Q, e_Q) \leq (R, e_R)$ then $Q \leq R$.
- (c) for any b-Brauer pair (R, e_R) and $Q \leq R$ there exists an unique b-Brauer pair $(Q, e_Q) \leq (R, e_R)$.

- 1. Introduction
- 2. Fusion Systems
- 3. Brauer Category
- 4. Main Result

 $g(P, e_P) = (g_P, g_{e_P})$ is also a b-Brauer pair, so G acts by conjugation on the set of b-Brauer pairs. The maximal b-Brauer pairs are in the same G-conjugacy class.

Proposition. The category $\mathcal{F}_{(P,e_P)}(G,b)$ of b-Brauer pairs contained in a maximal b-Brauer pair (P,e_P) , with the action of G by conjugation is a fusion system on P.

Definition. We say that b is a \mathcal{F} -block if $\mathcal{F}_{(P,e_P)}(G,b)$ is isomorphic to \mathcal{F} .

4. Main Result

- 1. Introduction
- 2. Fusion Systems
- 3. Brauer Category
- 4. Main Result

Let \mathcal{F} be a fusion system on a finite p-group P and $P' \leq P$.

Definition. We say that P' is $strongly \mathcal{F}\text{-}closed$ if for any subgroup R of P' and any morphism $\phi \in \operatorname{Hom}_{\mathcal{F}}(R, P)$ we have $\phi(R) \leq P'$.

Definition. Let \mathcal{F}' a fusion subsystem of \mathcal{F} on P'. We say that \mathcal{F}' is normal in \mathcal{F} if P' is strongly \mathcal{F} -closed and if for every $\phi \in \text{Iso}_{\mathcal{F}}(Q, Q')$ and any two subgroups R, R' of $Q \cap P'$ we have

$$\phi \circ \operatorname{Hom}_{\mathcal{F}'}(R, R') \circ \phi^{-1} \subseteq \operatorname{Hom}_{\mathcal{F}'}(\phi(R), \phi(R'))$$
.

- 1. Introduction
- 2. Fusion Systems
- 3. Brauer Category
- 4. Main Result

Theorem 1 [Kessar, S. 05]. Let \mathcal{F}_1 and \mathcal{F}_2 be two fusion systems on P, \mathcal{F}_1 containing \mathcal{F}_2 . Suppose that:

- a) P has no proper non-trivial strongly \mathcal{F}_2 -closed subgroup.
- b) if \mathcal{F} is a fusion system on P containing \mathcal{F}_2 , then $\mathcal{F} = \mathcal{F}_1$ or $\mathcal{F} = \mathcal{F}_2$.
- c) if \mathcal{F} is a non-trivial fusion system normal in \mathcal{F}_1 or \mathcal{F}_2 then $\mathcal{F} = \mathcal{F}_1$ or $\mathcal{F} = \mathcal{F}_2$.

If there exists a finite group G having an \mathcal{F}_1 or an \mathcal{F}_2 -block then there exists a quasi-simple group L with Z(L) a p'-group having an \mathcal{F}_1 or an \mathcal{F}_2 -block.

- 1. Introduction
- 2. Fusion Systems
- 3. Brauer Category
- 4. Main Result

Ruiz and Viruel [2000] classified all possible fusion systems on extra-special p-groups of order p^3 for p odd.

They found three exotic fusion systems on the extraspecial 7-group of order 7^3 and exponent 7.

exotic = not from the p-local structure of a finite group.

Theorem 2 [Kessar, S. 05]. Let \mathcal{F} be an exotic fusion system on the extra-special group of order 7^3 and exponent 7. Then \mathcal{F} is not a fusion system of a 7 block of any finite group.

- 1. Introduction
- 2. Fusion Systems
- 3. Brauer Category
- 4. Main Result

- Settings for the proof of Theorem 1:
- k be an algebraically closed field of characteristic p,
- G a finite group,
- N a normal subgroup of G,
- c a G-stable block of kN (i.e. fixed by G-conjugation).

Definition. A (c,G)-Brauer pair is a pair (Q,e_Q)

- Q is a p-subgroup of G, $Br_Q^N(c) \neq 0$
- e_Q is a block of $kC_N(Q)$, $Br_Q^N(c)e_Q \neq 0$.

When G = N, a (c, G)-Brauer pair is a c-Brauer pair.

Let (P, e_P) a maximal (c, G)-Brauer pair. Similarly to the case of the Brauer category we define the *generalized Brauer* category $\mathcal{F}_{(P,e_P)}(G, N, c)$. This is a fusion system on P.

Proof of the Theorem 1 (sketch).

- 1. Introduction
- 2. Fusion Systems
- 3. Brauer Category
- 4. Main Result

Let G be a minimal order group having an \mathcal{F}_1 or an \mathcal{F}_2 -block b.

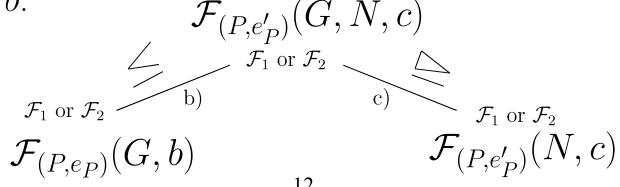
P is a b-defect group and let $H := \langle gP | g \in G \rangle$.

Step 1: prove that G = H.

Let d be a block of kH covered by b.

Intermediate step: Consider $N := \ker(G \to \operatorname{Out}(kHd))$

Step 1a: prove that N = G. Let c be a block of kN covered by b. $\mathcal{F}_{(R, \ell)}(G, N, c)$



- 1. Introduction
- 2. Fusion Systems
- 3. Brauer Category
- 4. Main Result

As b and d have the same defect group P and

G acts on kHd by inner automorphisms, using a result of Külshammer, we have that kGb and kHd have isomorphic source algebras, so d is also a \mathcal{F}_1 or \mathcal{F}_2 -block.

Step 2. Now $G = \langle {}^{g}P | g \in G \rangle$. Let M be a proper normal subgroup of G. Then $P \cap M$ is a strongly \mathcal{F}_1 or \mathcal{F}_2 -closed subgroup.

- a) $P \cap M = P$. Then G = M as all the G-conjugated of P are contained in M; contradiction.
- b) $P \cap M = 1$. A variation of Fong reduction allows us to deduce that there is a central p'-extension G' of G/M having an \mathcal{F}_1 or \mathcal{F}_2 -block.