On the automorphism group of a free group

Dedicated to Professor F. R. Cohen for his 60th birthday

Takao Satoh

Graduate School of Mathematical Sciences, The University of Tokyo

1 Twisted homology group of the automorphism group of a free group

Let F_n be a free group of rank n and Aut F_n the automorphism group of F_n . Let $\Sigma_{g,1}$ be a connected oriented surface of genus gwith one boundary and $\mathcal{M}_{g,1}$ the mapping class group of it. Nielsen showed that there is a natural inclusion map $\iota : \mathcal{M}_{g,1} \hookrightarrow \operatorname{Aut} F_{2g}$. We interested in the behavior of the homomorphisms on the twisted (co)homology groups induced from ι .

We denote by H and H^* the abelianized group of F_n and its dual group respectively. Let $\operatorname{Out} F_n$ be the outer automorphism group of F_n . The groups $\operatorname{Aut} F_n$ and $\operatorname{Out} F_n$ naturally act on these groups. Here we calculate the twisted first homology groups of these groups with coefficients in H and H^* . We have

Theorem 1 (S. 2002)

$$H_1(\operatorname{Aut} F_n,H) = egin{cases} 0 & ext{if} \ n \geq 4, \ \mathbb{Z}/2\mathbb{Z} & ext{if} \ n=3, \ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} & ext{if} \ n=2, \ \mathbb{H}_1(\operatorname{Out} F_n,H) = egin{cases} 0 & ext{if} \ n \geq 4, \ \mathbb{Z}/2\mathbb{Z} & ext{if} \ n=2, \ 3. \end{cases}$$

Theorem 2 (S. 2002)

$$H_1(\operatorname{Aut} F_n, H^*) = egin{cases} \mathbb{Z} & ext{if} \ n \geq 4, \ \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} & ext{if} \ n = 2, \ 3. \ H_1(\operatorname{Out} F_n, H^*) = egin{cases} \mathbb{Z}/(n-1)\mathbb{Z} & ext{if} \ n \geq 4, \ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} & ext{if} \ n = 3, \ \mathbb{Z}/2\mathbb{Z} & ext{if} \ n = 2. \ \end{cases}$$

To compute these homology group, we use a finite presentation for Aut F_n obtained by Gersten.

S. Morita [3] showed that $H_1(\mathcal{M}_{g,1}, H^*) \simeq \mathbb{Z}$ for $g \geq 2$ and We showed that the induced homomorphism

$$\iota_*: H_1(\mathcal{M}_{g,1}, H^*) \xrightarrow{\simeq} H_1(\operatorname{Aut} F_n, H^*)$$

is an isomorphism.

For the ring $A = \mathbb{Z}[\frac{1}{2}]$, set $H_A := H \otimes_{\mathbb{Z}} A$. Recently, we obtained

Theorem 3 (S. 2005) For $n \ge 6$,

 $H_2(\operatorname{Aut} F_n, H_A) = 0.$

To compute this second homology group, we also use the Gersten's presentation.

2 The Johnson homomorphism of the automorphism group of a free group

Let $\Gamma_n(1)$, $\Gamma_n(2)$,... be the lower central series of F_n . For each $k \geq 1$, set $\mathcal{L}_n(k) := \Gamma_n(k)/\Gamma_n(k+1)$. Let $\mathcal{A}_n(k)$ be the kernel of a natural homomorphism Aut $F_n \to \operatorname{Aut}(F_n/\Gamma_n(k+1))$ for each $k \geq 0$. Then we have a descending series

Aut
$$F_n = \mathcal{A}_n(0) \supset \mathcal{A}_n(1) \supset \mathcal{A}_n(2) \supset \cdots$$
.

S. Andreadakis [1] showed that this series is central. So $\operatorname{gr}^k(\mathcal{A}_n) := \mathcal{A}_n(k)/\mathcal{A}_n(k+1)$ is defined for $k \geq 1$.

We consider the $GL(n,\mathbb{Z})$ -equivariant injective homomorphism

$$au_n(k): \mathrm{gr}^k(\mathcal{A}_n) o H^* {\otimes_{\mathbb{Z}}} \, \mathcal{L}_n(k+1)$$

defined by $[\sigma] \mapsto ([x] \mapsto [x^{-1}x^{\sigma}])$. This map is called the *k*-th Johnson homomorphism of Aut F_n .

Problem Determine the structure of the cokernel of $\tau_n(k)$.

First, we obtained

Theorem 4 (S. 2004) For $n \geq 3$, we have $GL(n, \mathbb{Z})$ -equivariant exact sequences

$$egin{aligned} 0 o \operatorname{gr}^2(\mathcal{A}_n) & \xrightarrow{ au_n(2)} H^* & \otimes_{\mathbb{Z}} \mathcal{L}_n(3) o S^2 H o 0, \ 0 o \operatorname{gr}^3_{\mathbb{Q}}(\mathcal{A}_n) & \xrightarrow{ au_n(3)_{\mathbb{Q}}} H^*_{\mathbb{Q}} & \otimes_{\mathbb{Z}} \mathcal{L}^{\mathbb{Q}}_n(4) o S^3 H_{\mathbb{Q}} \oplus \Lambda^3 H_{\mathbb{Q}} o 0. \end{aligned}$$

Here the subscript \mathbb{Q} of a module means the tensor products with \mathbb{Q} of the module over \mathbb{Z} .

Recently, S. Morita introdued a certain $GL(n,\mathbb{Z})$ -equivariant surjective homomorphism $\operatorname{Tr}_{[k]} : H^* \otimes_{\mathbb{Z}} \mathcal{L}_n(k+1) \to S^k H$ which vanishes on the image of $\tau_n(k)$. Hence $S^k H_{\mathbb{Q}}$ appears in the cokernel of $\tau_n(k)_{\mathbb{Q}}$. The map $\operatorname{Tr}_{[k]}$ is called Morita's trace map.

Let $\mathcal{A}'_n(1), \mathcal{A}'_n(2), \ldots$ be the lower central series of $\mathcal{A}_n(1)$. Then we can also define a $\tau'_k : \operatorname{gr}^k(\mathcal{A}'_n) \to H^* \otimes_{\mathbb{Z}} \mathcal{L}_n(k+1)$. and also call it the Johnson homomorphism of Aut F_n . Since it is conjectured that $\mathcal{A}'_n(k)_{\mathbb{Q}} = \mathcal{A}_n(k)_{\mathbb{Q}}$ for all k, so it is important to consider the map τ'_k .

Recently, we introduced a certain $GL(n,\mathbb{Z})$ -equivariant surjective homomorphism

$$\mathrm{Tr}_{[1^k]}: H^* \otimes_{\mathbb{Z}} \mathcal{L}_n(k+1) o \Lambda^k H$$

such that $\operatorname{Tr}_{[1^k]} \circ \tau'_n(k) = 0$ for any odd k. Then we have

Theorem 5 (S. 2004) For any odd k,

$$\Lambda^k H_{\mathbb{Q}} \subset \operatorname{Cok}(\tau'_n(k)_{\mathbb{Q}}).$$

References

- [1] S. Andreadakis; On the automorphisms of free groups and free nilpotent groups, Proc. London Math. Soc. (3) 15 (1965), 239-268.
- [2] N. Kawazumi; Cohomological aspects of Magnus expansions, preprint UTMS, 2005-18.
- [3] S. Morita; Families of Jacobian manifolds and characteristic classes of surface bundles I, Ann. Inst. Fourier 39 (1989), 777-810.