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1 Introduction

The aim of this article is to analize the space of knots
by means of loop spaces of configuration spaces. The
study of the topology of the space K3 of all (long)
knots in R

3 was initiated by V.Vassiliev [12] to ob-
tain the Vassiliev invariants (or finite type invariants)
for knots. Here a long knot is an embedding R

1 ↪→ R
3

with fixed properties at infinity. This theory might
be variously generalized. The matters become easier
when considering the space Kn, the space of embed-
dings R

1 ↪→ R
n, n ≥ 4 (for example, π0Kn = {0}).

Our approach is to generalize the notion of “closing
braids,” which is extremely important in the classical
knot theory, to the higher dimensional case. Here we
will regard ΩCm(Rn−1), the loop space of configura-
tion space of orderd m-tuples of distinguished points
in R

n−1, as the set of all geometric braids in R
n. By

closing pure braids suitably, we obtain a closing map

c : ΩC −→ Kn

here ΩC :=
⊔

m≥1 ΩCm(Rn−1). We would like to
think of this space as an “approximation” of Kn. In
particular we expect that this map might shed light
on the structure of (co)homology group of Kn. More-
over, this should give some new information about
Vassiliev invariants.

This article is organized as follows. In section 2 we
recall the (co)homology of ΩCm(Rn−1), introducing
some new description. The properties of the above
map c will be discussed in the third section. We will
consider the case of framed long knots in section 4,
there we will see another perspective of the famous
theorem due to Kontsevich.

acknowledgment. The author expresses his appre-

ciation for great support and useful advices of profes-
sor Toshitake Kohno, Frederick Cohen and my col-
leagues. The author is also grateful to Riccardo Lon-
goni for answering my questions.

2 Topology of ΩCm(Rn−1)

The Hopf algebra structure of H∗(ΩCm(Rl), Z), l =
n − 1, was studied by F.Cohen and S.Gitler [9]. It
can be regarded as a graded algebra Am := Dm/ ∼,
here Dm is an algebra generated by “horizontal chord
diagrams” {Xij}1≤i �=j≤m (with degree n − 3), and
relations are so-called “4-term relations.” As an ap-
proach to the cohomology, we can apply the singular-
ity theoretic method which Vassiliev used to analize
the space of knots [12]. The details are as follows.

Regard ΩCm(Rl) as a complement of the space of
singular braids in the space of all maps R

1 → Cm(Rl).
By the Alexander duality theorem (applied to the
infinite dimensional case), it suffices to analize the
topology of the space Σ of singular braids. This set
posesses a natural stratification via the depth of the
singularities. Hence we can construct a spectral se-
quence generated by the filtration and converging to
H∗(ΩCm(Rl), Z). Using homological results, we can
see that this spectral sequence behaves quite well.

Theorem 2.1. Suppose n ≥ 3. Then there is a sec-
ond quadrant spectral sequence Ep,q

r which converges
to H∗(ΩCm(Rn−1)) and degenerates at E1 term.
Moreover, only the “diagonal part” E

−i,(n−2)i
1 , whose

total degree is (n − 3)i, survive at E∞. The group
E

−i,(n−2)i
1 is isomorphic to certain kind of graph

homology group. Since the degeneration also holds
when n = 3, we have an isomorphism Ṽi/Ṽi−1

∼=
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H(n−3)i(ΩCm(Rn−1)), where Ṽi is the space of Vas-
siliev invariants of degree ≤ i for pure braids.

The statement about Vassiliev invariants for pure
braids in the theorem first appeared in [10]. It is
known [2] that all Vassiliev invariants for pure braids
distinguish all pure braids.

Since Cm(Rl) is (l − 2)-connected, H∗(ΩCm(Rl))
can be computed by using Chen’s iterated inte-
grals [8] if n > 3. Let B∗ be the bar complex
of M, the minimal model of the de Rham com-
plex Ω∗(Cm(Rl)). M is generated by the forms
{ωij} and {φijk}, here {ωij} give the generating sys-
tem of H∗(Cm(Rl)), and {φijk} are the relations,
ωijωjk + ωjkωki + ωkiωij = dφijk. The bar complex
is bigraded, B =

⊕
p≥(n−2)q>0 Bp,−q, here p is the

sum of the degree of forms, and q is the length of the
tensor products. The following is a restatement of a
theorem of Kohno [10].

Theorem 2.2 ([10]). Define the subcomplex of B∗

by

B′ :=
⊕
k≥0

⊕
l≥1

B(n−2)k−l,−k+l.

Then we can show H(n−3)k(B/B′) ∼= E
−k,(n−2)k
1 ,

hence B′ is acyclic. Any element of the homology
of (B/B′)∗ can be written as

∑
ai1j1...ikjk

ωi1j1 ⊗ · · · ⊗ ωikjk
,

where ai1j1...ikjk
∈ Z, 1 ≤ ip �= jp ≤ m satisfy the

“4-term relations.”

3 closing braids, and the space
of long knots

First we discuss the homological properties of the
map c mentioned in the introduction.

Let Ãk be the vector space spanned by all chord
diagrams with k chords. Corresponding to Γ ∈ Ãk,
we can construct an (n − 3)k-cycle sΓ : (Sn−3)k →
Kn, k ≥ 1. It is defined by blowing up the self-
intersections of the singular knot determined by the
chord diagrams Γ. Such cycles are nontrivial [7]. In

a similar way, given a horizontal chord diagram σ,
we have an (n − 3)k-cycle Bσ : (Sn−3)k → ΩCm(Rl)
(l = n− 1). The cycles Bσ gives an generators of the
homology of ΩCm(Rl).

Consider a “closing map” c̃ :
⊕

m Dk
m → Ãk which

is compatible with c. Then it is clear that, if Γ =
c̃(σ), then sΓ = c∗Bσ as a cycle of Kn.

Thus we relate the cycles sΓ to those of ΩCm(Rl).
Denote by Ak the space of chord diagrams with k
chords modulo the (ordinary) 4-term relations.

Proposition 3.1. Suppose that four chord diagrams
Γi (1 ≤ i ≤ 4) with k chords satisfy

∑
Γi = 0 by the

4T -relation in Ak. Then the four cycles sΓi , 1 ≤ i ≤
4, also satisfy the “4-term relation”

∑
sΓi = 0. In

other words, we have a linear map

s : Ak −→ H(n−3)k(Kn)

for each k ≥ 1.
Moreover, the map s preserves the Hopf algebra

structure. That is, for any Γ, Γ1, Γ2 ∈ A :=
⊕

k Ak,

sΓ1·Γ2 = sΓ1sΓ2 ,

∆(sΓ) = (s ⊗ s)∆(Γ),

here the Hopf algebra structure of A is defined as ex-
plained in [1].

Next we treat with the cohomology classes. The
following notions are introduced by Kohno [10]. Re-
call that the homology of ΩCm(Rl) is isomorphic to
an algebra generated by horizontal chord diagrams.
Since c̃ preserves the 4-term relations, we can regard
c̃ as a surjection c̃ :

⊕
m H∗(ΩCm(Rl)) → A. Dually,

we have an injection

c̃∗ : Wk −→ H(n−3)k(ΩC, R),

where Wk = A∗
k is the space of the weight systems

of degree k. This means that the space of Vassiliev
invariants for (framed) knots can be embedded into
the space of those for pure braids. Kohno asked in
[10] how we can characterize the image of c̃∗ geomet-
rically. For example,

Proposition 3.2. The space c̃∗(W1) ⊂ Hn−3(ΩC)
is one dimensional. A generator v :=

∑
i<j linkij is

a Vassiliev invariant for pure braids, where linkij is
the linking number of i-th and j-th strings.
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Below we will consider the question for general
k ≥ 1. Recall that A.Cattaneo, P.Cotta-Ramusino
and R.Longoni [7] generalized the method of R.Bott
and C.Taubes [3] and others to obtain some de Rham
cohomology classes of Kn. According to whether n
is even or odd, there are bigraded graph complices
(D∗

o , δ) and (D∗
e , δ) generated by Feynman diagrams,

and if n > 3, cochain maps I : Dk,q → Ω(n−3)k+q(Kn)
inducing injections I : Hk,0(D) → H

(n−3)k
DR (Kn).

This map is defined as the iterated integrals of
{ωij} associated to graph cocycles. In the case of
n = 3, such integrals (together with some correc-
tion terms) give integral expressions of finite type
invariants for knots. In such a sense the subspace
Vk := I(Hk,0(D∗)) ⊂ H(n−3)k(Kn) is a generaliza-
tion of the space of invariants of order k.

Under these preliminaries, we can state the follow-
ing proposition.

Proposition 3.3. The map c∗ : H(n−3)k(Kn) →
H(n−3)k(ΩC) is injective when restricted onto the
subspace Vk; ker c̃∗|Vk

= {0}. Moreover, im c∗ is a
proper subspace of c̃∗(W ).

At the beginning the author guessed that im c∗

would coincide with c̃∗(W ), but this turns out to be
wrong. This is because the map s of Proposition 3.1
is not injective (for example, s|A1 = 0), or, another
way of saying, we have not considered so-called fram-
ing independence. So our space of weight systems
should correspond to the framed (long) knots which
is the subject of the next section.

4 framed case

The framed knots in R
n are defined in [7]. A framing

of a knot γ is a map w : R
1 → SO(n) such that the

last column of w(t) is equal to the normalized deriva-
tive γ′(t)/|γ′(t)|. The space K̃n of all framed long
knot is a set of pairs (γ, w) with w being a framing
of γ ∈ Kn. Hence K̃n ⊂ Kn × ΩSO(n). Another
formulation has been done by R. Budney [4] and the
topology of K̃3 is studied by Budney and Cohen [4, 6].
As in the unframed case, we can construct a closing

map

c : ΩC −→ K̃n

by attaching some fixed “canonical framing” to the
original map c, and we can show im c∗ ⊂ c̃∗(W ).

Conjecture. In the framed case, im c∗ = c̃∗(W ).

It seems that this conjecture is true, but at the mo-
ment the author has no proof for this. The difficulty
comes from the fact that we do not know whether the
cochain map Ĩ : D̃k,q → Ω(n−3)k+q(K̃n), constructed
when n is odd, similarly as in the unframed case [7],
induces an injection Ĩ : Hk,0(D̃∗) ↪→ H(n−3)k(K̃n) or
not. But by combinatorial arguments, we can see

Lemma 4.1 ([7]). The group Hk,0(D̃∗) is isomor-
phic to Wk, k ≥ 1.

This lemma allows us to state the following.

Lemma 4.2. The above conjecture is true when n
is odd, if the injectivity of Ĩ on Hk,0(D̃) is proved
similarly as in the unframed case.

In the case n = 3, the set V of Vassiliev invariants
for framed knots are in one to one correspondence to
the space W of all weight systems, which is a result
due to Kontsevich [11]. The Bott-Taubes construc-
tion gives a formulation of the map Wk → Vk by
configuration space integrals. The inverse correspon-
dence Vk → Wk is easily constructed.

The subspace Ĩ(Hk,0(D̃∗)) is a “higher dimensional
generalization” of the Vassiliev invariants. In higher
dimensional case, the inverse correspondence Vk 	
v 
→ fv ∈ Wk becomes slightly subtle. The closing
map c should be such a inverse which is easily and
geometrically defined.

Problems. One of the aims of this research is to
pick up new cohomology classes of Kn which may not
correspond to finite type invarinats for knots. The
author does not know whole properties of the map c
right now. Beside proving the above conjecture, it is
important and interesting to determine ker c∗.

Recently R.Budney studies K3 in detail [5]. It is
also interesting to know to what extent we can do
similar investigations in the higher dimensional case.
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