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Abstract

The usual Poincaré map is defined for a four-web admitting three
independent Abelian relations, and gives a natural projective model of
the web where the leaves are straight lines. This model thus proves that
the web is associated with a quartic curve in the dual projective plane.

We shall present a generalization of this situation to the case of five-
webs for which every extracted three-web carries an Abelian relation. This
generalization takes into account not only the Abelian relations of the web,
but also the spaces of Abelian relations of the extracted sub-webs. This
way we prove the following theorem of G.Bol:

If all extracted three-webs of a five-web admit an Abelian relation,
then the web is diffeomorphic either to five pencils of straight lines, or to
Bol’s exceptional example.

The main tool used in the separation of cases is a careful investigation
of the configuration formed by the spaces of relations of the extracted
sub-webs in the space of relations of the whole web.

The author is extremely grateful to the organizers of this conference, and
especially Toshitake Kohno, for giving him the opportunity to explain the rela-
tions that exist between webs and configuration spaces. These will be explained
through a proof of the following theorem:

Theorem 1 (G.Bol, 1936)
If a five-web (a family of five foliations in an open subset U ⊂ C2) satisfies

the property that every extracted three-web admits a (nonzero) Abelian relation,
then either it is locally diffeomorphic to five pencils of lines, or it is locally
diffeomorphic to Bol’s exceptional example.

Abelian relations will be defined, as well as many other elementary tools
concerning webs, in the second part of this talk. The first part is a complete
description of Bol’s web including its relations to the space of configurations of
five points in the projective line. The third part generalizes some of the tools
of part two, and explains the connections between totally hexagonal five-webs
and the description of Bol’s web obtained at the end of part one.
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1 Bol’s web

1.1 Historical background

The starting point is in the beginning of the nineteenth century, where people
found the five-term relation satisfied by Euler’s dilogarithm

Li2(z) =
∞∑

n=1

zn

n2
= −

∫ z

0

log(1− t)
dt

t
.

This equation can be written in many different ways (cf. [4]). The following
one is due to Abel (1830) and holds for x, y < 1

Li2(
x

1− x

y

1− y
) = Li2(

x

1− y
) + Li2(

y

1− x
)

− Li2(x)− Li2(y)− log(1− x) log(1− y).

The technique used to prove such a relation consists in differentiating it:
one obtains a sum of expressions which are logarithms multiplied by rational
functions; one needs only gather the terms corresponding to the same logarithm
and check that the rational functions cancel.

An improvement of this result has been found by Rogers in 1907: in fact he
proved that, replacing the function Li2 in the equation by

L(z) =
1
2
(Li2(z)− Li2(1− z))

gives equations involving only dilogarithms. He thus obtains for 0 < x, y < 1

L(x) + L(y) = L(xy) + L(
x(1− y)
1− xy

) + L(
y(1− x)
1− xy

).

The holomorphic setting is chosen here in order to get rid of assumptions
such as x, y < 1, so the equations will always be supposed to hold somewhere,
and we’ll use analytic continuation to obtain equations elsewhere.

1.2 Bol’s presentation

In 1936, in the same paper [2] in which he proves theorem 1, Bol remarks that
the level sets of the five functions occurring as arguments of the dilogarithm in
Abel’s equation (after changing y with 1− y)

U1 = x, U2 = y, U3 = x/y, U4 =
1− x

1− y
, U5 =

y(1− x)
x(1− y)

,

correspond to four pencils of lines passing through four points of CP2 in general
position and a pencil of conics passing through these four points, as shown in
figure 1.
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Figure 1: Four pencils of lines and a pencil of conics

Since the group PGL(3,C) of projective transformations of CP2 acts tran-
sitively on configurations of four points in general position, we obtain a group
of projective transformations (and hence diffeomorphisms) which is isomorphic
to S4, and which sends the web to itself.

Moreover, the action of the Cremona transformation (x, y) 7→ (1/x, 1/y)
sends

U1 ↔ 1/U1, U2 ↔ 1/U2, U3 ↔ 1/U3, U4 ↔ U5.

Therefore the automorphism group of the web is the extension of S4 by
this Cremona transformation, acting as the transposition t45. This group is
therefore isomorphic to S5 and the whole picture consists of five projective
planes, with four distinguished points on each, and transition maps which are
Cremona transformations, as shown in figure 2.

1.3 Relations with a space of configurations

Then, in 1982, Gelfand and MacPherson [3] remark that these five functions
represent the cross-ratios of four points out of (∞, 0, 1, x, y) in CP1. There-
fore, these functions can be interpreted as functions on the space X(5) of non-
degenerate configurations of five points in a projective line.

The cross-ratio can be extended by setting (for x, y and z distinct)

cr(x, y, z, x) = ∞, cr(x, y, z, y) = 0, cr(x, y, z, z) = 1,
cr(x, y, y, z) = ∞, cr(x, y, x, z) = 0, cr(x, x, y, z) = 1,
cr(x, y, y, x) = ∞, cr(x, y, x, y) = 0, cr(x, x, y, y) = 1.
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Figure 2: Five projective planes representing Bol’s web
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This gives an extension of the functions, and hence of the web, to the com-
pactification X(5) of X(5) obtained by adding the degenerate configurations
with one or two double points, but no triple point. This is the same as blowing-
up the four basis points of the pencils in figure 1.

Another relation between Bol’s web and the configuration space X(5) is
the surprising fact that the configuration in the projectified tangent space at
point (x, y) formed by the five tangents to leaves of the foliations at that point
is equivalent to the configuration (∞, 0, 1, x, y).

2 Webs, Abelian relations, Poincaré map

This part is intended to provide material of elementary web theory. The main
reference here is Blaschke and Bol’s book [1].

2.1 Definitions

Definition 1 The main definitions are the following:

1. A d-web W in an open subset U ⊂ C2 is a family of d nonsingular folia-
tions (F1, . . . ,Fd) of U that intersect transversally at every point in U .

2. An Abelian relation of the web W is a family of d one-forms (α1, . . . , αd)
satisfying

• the tangent space of the leaf of the foliation Fi at point (x, y) ∈ U is
in the kernel of αi(x, y),

• the one-forms αi are closed, and

• the sum α1 + · · ·+ αd is zero.

3. If α = (α1, . . . , αd) is a Abelian relation of the web W, then the support
of α is the extracted sub-web {Fi, 1 ≤ i ≤ d | αi 6= 0}.

The space Ab(W) of Abelian relations of W is a finite dimensional subspace
of Ω1(U)d, and its dimension is controlled by the following result

Theorem 2 (W.Blaschke, G.Bol, 1932)
The dimension of Ab(W), also called the rank of W, is less than or equal

to (d− 1)(d− 2)/2.

In particular, the rank of a three-web is 0 or 1, the rank of a four-web is
less than 3, and that of a five-web is less than 6. A three-web admitting a
nonzero Abelian relation is said to be hexagonal, and a d-web whose extracted
three-webs are all hexagonal is said to be totally hexagonal.

If W ′ is an extracted sub-web of W, then every Abelian relation of W ′

extends to a relation of W, so that we have an inclusion of Ab(W ′) in Ab(W)
[this is the same as considering relations whose support is a sub-web of W ′].
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Let Abk(W) be the subspace of Ab(W) spanned by all the Ab(W ′), whereW ′

varies over all the extracted k-webs of W. This defines a filtration

0 = Ab1(W) = Ab2(W) ⊂ Ab3(W) ⊂ · · · ⊂ Abd(W) = Ab(W).

Define ρk(W) = dimAbk(W)− dimAbk−1(W).

Definition 2 The weave of W is the family (ρ3(W), . . . , ρd(W)). Its rank
is ρ3(W) + · · ·+ ρd(W).

2.2 Poincaré map for four-webs

Assume that W is a four-web in U admitting three linearly independent Abelian
relations, so that it has maximal rank 3.

For a point (x, y) ∈ U , define P (x, y) as the subspace of Abelian relations
vanishing at that point

P (x, y) = {α = (α1, . . . , α4) ∈ Ab(W) | α1(x, y) = · · · = α4(x, y) = 0}.

This subspace is defined by four equations, but since the sum of the one-
forms is zero, two of them are redundant, hence the codimension of P (x, y)
in Ab(W) is 4− 2 = 2; therefore, the dimension of P (x, y) is 3− 2 = 1.

Definition 3 The Poincaré map is the map defined by

P :
{

U −→ PAb(W) ' CP2

(x, y) 7−→ P (x, y).

The local inversion theorem proves that this map is a local diffeomorphism.
Its main interest is the following proposition:

Proposition 1 The map P sends leaves of the foliations of W into straight
lines.

Proof: Let (α, β, γ) be a basis of Ab(W), (x0, y0) a point in U , and 1 ≤ i ≤ 4.
We can assume that the one-form αi is nonzero; since it is closed, we can in-

tegrate it in a neighborhood of (x0, y0) to obtain a function Ui which is constant
over the leaves of the foliation Fi.

Since βi and γi are closed and have the same kernel as αi, they can be
expressed as λi(Ui) dUi and µi(Ui) dUi. Therefore, the i-th equation becomes
(if (a, b, c) designate the coordinates inAb(W) with respect to the basis (α, β, γ))

a + bλi(Ui(x, y)) + cµi(Ui(x, y)) = 0.

Now, if the point (x, y) is made to vary on a leaf of the foliation Fi, then the
function Ui(x, y) is constant, so also λi(Ui(x, y)) and µi(Ui(x, y)). Therefore
the previous equation is the equation of a fixed plane in Ab(W), i.e. of a fixed
projective line in PAb(W).
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2.3 Totally hexagonal four-webs

The previous proposition can be used to prove that every four-web with maximal
rank 3 is associated with a quartic curve in the dual projective plane. We will
not prove this result but a more elementary one

Theorem 3 (K.Mayrhofer, K.Reidemeister, 1928)
If a four-web is such that each of its extracted three-webs admits a (nonzero)

Abelian relation, then it is locally diffeomorphic to four pencils of lines.

Proof: If the space Ab(W) has dimension 3, then we can use the previous
result; moreover, if we choose γ to be a relation of the extracted three-web Wi

obtained by removing the foliation Fi, then we have γi = 0 and the equation
becomes

a + bλi(Ui(x, y)) = 0.

As (x, y) varies, this equation varies over equations of the form a + λb = 0,
i.e. equations of planes containing the c-axis, or equations of projective lines
passing through the point PAb(Wi). This finishes the proof if dimAb3(W) = 3.

The only remaining case is when dimAb3(W) = 2; in that case, the equations
of the four three-webs can be written as

α2 + α3 + α4 = 0, α1 − α2 + (t− 1)α4 = 0,
α1 + α3 + tα4 = 0, α1 − tα2 + (1− t)α3 = 0.

If (U1, . . . , U4) are local primitives of (α1, . . . , α4) vanishing at (x0, y0), they
satisfy U2 = −U3 − U4 and U1 = −U3 − tU4. Then we also have the equality
U2

1 − tU2
2 = (1− t)U2

3 + t(1− t)U2
4 , so that there is another Abelian relation

U1 dU1 − tU2 dU2 + (t− 1)U3 dU3 + t(1− t)U4 dU4 = 0.

This last equation proves that we always have dimAb(W) = 3, and hence
finishes the proof.

We can thus distinguish three types of such four-webs according to alignment
properties of the configuration of the points PAb(Wi) in PAb(W) (cf. figure 3):

Type 1 Type 2 Type 3

Figure 3: Three types of configurations of four points in the plane
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• type 1 if the points are in general position,

• type 2 if three points are on the same line and the other isn’t,

• type 3 if all four points are on the same line.

Note that the second part of the proof is needed only in the type 3 case,
since in the other two cases, we have dimAb3(W) = 3.

3 Generalizations

3.1 Generalization of the Poincaré map

Assume W is a d-web for which we know a space Ab0(W) of Abelian relations
of dimension r ≥ d − 1. For a point (x, y) ∈ U , define as before P (x, y) to be
the subspace of Abelian relations in Ab0(W) vanishing at that point

P (x, y) = {α = (α1, . . . , αd) ∈ Ab0(W) | α1(x, y) = · · · = αd(x, y) = 0}.

This subspace is defined by d equations, but two of them are redundant,
hence the codimension of P (x, y) in Ab0(W) is d − 2; therefore, the dimension
of P (x, y) is r − d + 2 ≥ 1. It is thus (in general) not in a projective space, but
in a Grassmanian manifold.

Definition 4 The Poincaré map is defined by

P :
{

U −→ G(r − d + 2,Ab0(W)) ' G(r − d + 2, r)
(x, y) 7−→ P (x, y).

The local inversion theorem proves that this map is an immersion.

Example: Bol’s web

The five functions defining the web are

U1 = x, U2 = y, U3 = x/y, U4 =
1− y

1− x
, U5 =

x(1− y)
y(1− x)

.

The relations of the extracted three-webs can be written explicitly using
logarithmic differentials. The following five form a basis

dU1

1− U1
− dU2

1− U2
− dU4

U4
= 0,

− dU1

U1(1− U1)
+

dU3

U3(1− U3)
− dU4

1− U4
= 0,

dU1

U1
+

dU4

U4(1− U4)
− dU5

U5(1− U5)
= 0,

dU2

U2(1− U2)
− dU3

1− U3
+

dU4

U4(1− U4)
= 0,

− dU2

U2
− dU4

1− U4
+

dU5

1− U5
= 0.
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Therefore, if (a, b, c, d, e) are the coordinates in this basis, the equations are

ax− b + c(1− x) = −ay + d− e(1− y) = by − dx =
−a(y − x)− (b + e)(1− y) + (c + d)(1− x) = −cy(1− x) + ex(1− y) = 0.

We get therefore b = λx, d = λy, c = µx/(x−1), e = µy/(y−1) and a = λ+µ,
so that the plane P (x, y) is

P (x, y) = C(1, x, 0, y, 0)⊕C(1, 0, x/(x− 1), 0, y/(y − 1)).

3.2 Proof of Bol’s theorem

We can now proceed with the proof of Bol’s theorem. Assume that W is a five-
web for which every extracted three-web admits a (nonzero) Abelian relation,
then certainly every extracted four-web satisfies the hypotheses of theorem 3.
Hence each four-web is locally diffeomorphic to four pencils of lines and can be
assigned a type according to figure 3.

Therefore, there are numerous cases to be taken into account, most of them
giving rise to five pencils of lines, so we will add two extra hypotheses to get rid
of those cases, and prove only

Theorem 4 If a five-web W satisfies the properties that

• every extracted three-web admits a (nonzero) Abelian relation,

• every extracted four-web has type 1,

• the dimension of Ab3(W) = Ab4(W) is 5,

then W is locally diffeomorphic to Bol’s web.

Proof: Let Wi denote the extracted four-web obtained by omitting foli-
ation Fi and Wij denote the extracted three-web obtained by omitting the
foliations Fi and Fj .

The projective space PAb3(W) ' CP4 contains five planes Pi = PAb(Wi).
The intersections Pi ∩Pj = PAb(Wij) = Aij are points, so that each of the five
planes contains four distinguished points.

Therefore, the situation is almost the same as in figure 2. We only have to
prove that the transition maps from one plane to another are Cremona trans-
formations.

In order to prove this, we will use Poincaré maps: for 1 ≤ i ≤ 5, the Poincaré
map pi of the sub-web Wi is a local diffeomorphism from U to Pi.

Using the generalization of the Poincaré map to the space Ab3(W) of dimen-
sion r = 5, we obtain a family of projective lines D(x, y) = PP (x, y) intersecting
all five planes Pi in the points pi(x, y). We will see that there is only one con-
figuration of five planes satisfying this requirement.

Indeed, the assumptions we made ensure that the points A12, A13, A14, A23,
A24 and A34 are in general position, and hence form a projective basis. Using
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this projective basis, we obtain a system of coordinates (x, y, u, v) in which the
first four planes have the equations

P1 : u = v = 0, P2 : x = y = 0, P3 : x = u = 1, P4 : y = v = 1.

Therefore, the family of lines must be of the form

(λx, λy, (1− λ)u(x, y), (1− λ)v(x, y)).

The intersections with P3 and P4 thus correspond to λ3 = 1/x and λ4 = 1/y,
and we must have

u(x, y) =
1

1− λ3
=

x

x− 1
, v(x, y) =

1
1− λ4

=
y

y − 1
.

The transition map from P1 to P2 is therefore (x, y) 7→ (u(x, y), v(x, y)) =
(x/(x− 1), y/(y − 1)) which is a Cremona transformation.

Further, the fifth plane has a pair of equations of the form

u = ax + by + c, v = a′x + b′y + c′.

We must have λ5 satisfying

(1− λ5)
x

x− 1
= λ5(ax + by) + c, (1− λ5)

y

y − 1
= λ5(a′x + b′y) + c′.

This means that

λ5 =
x− c(x− 1)

(ax + by)(x− 1) + x
=

y − c′(y − 1)
(a′x + b′y)(y − 1) + y

.

The only solution is c = c′ = 1, a = b′ = 0 and b = a′ = −1, so that a pair
of equations of the fifth plane is x + v = y + u = 1 and the corresponding value
of the parameter is λ5 = 1/(x + y − xy).

Thus, we obtained a map into the Grassmanian manifold G(2, 5), but more-
over to every point (x, y) ∈ U , we can associate the configuration in X(5) of the
five points pi(x, y) in the line D(x, y).

Choosing coordinates as above, this configuration is equivalent to

(λ1, . . . , λ5) = (1, 0,
1
x

,
1
y
,

1
x + y − xy

) ≡ (∞, 1, y, x, 0).
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