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String topology:= intersection theory in loop

spaces (and spaces of paths) of a manifold. (Chas-

Sullivan, C., Jones, Godin, Ramirez.....)

Get homology operations associated to a sur-

face.

LetM be fixed n-dimensional closed manifold. Σg,p+q

a surface of genus g thought of a s a cobordism be-

tween p “incoming” circles to q “outgoing” circles:
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p circles
q circles

Figure 1: Σg,p+q

(LM)q
ρout←−− Map(Σg,p+q,M)

ρout−−→ (LM)p

Using graphs, other techniques, one constructs an

intersection or “umkehr map”

(ρin)! : h∗(LM
p)→ h∗+n·χ(Σ)−np(Map(Σg,p+q,M)
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Here h∗ = generalized homology theory (H∗,K-homology,

bordism) such that Mn is closed, h∗-oriented.

This defines a homology operation,

µΣ = ρout ◦ (ρin)! : h∗((LM)p)→ h∗+n·χ(Σ)−np(Map(Σg,p+q,M)

→ h∗+n·χ(Σ)−np((LM)q).

When Σ is the pair of pants, one gets the Chas-

Sullivan loop product,

µ : Hp(LM)⊗Hq(LM)→ Hp+q−n(LM)
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making H∗(LM) = H∗+n(LM) an associative, com-

mutative algebra.

These operations satisfy “gluing”

p circles
q circles

r circles

Figure 2: Σ1#Σ2

µΣ1#Σ2 = µΣ2 ◦ µΣ1 “Field theory”

There is also a relative or “open” theory using h∗(PM(D1, D2))

where Di ⊂ M and PM(D1, D2) = {γ : [0, 1] →
M, γ(0) ∈ D1, γ(1) ∈ D2}.

4



This is a topological theory.

Gromov-Witten theory: Count pseudo-holomorphic

curves in a symplectic manifold.

This is a geometric theory.

T ∗M = cotangent bundle, has canonical symplectic

structure:

p : T ∗M →M

x ∈M , v ∈ T ∗xM , have

α(x,v) : T(x,v)(T
∗M)

Dp−→ TxM
v−→ R.

α ∈ Ω1(T ∗M), ω = dα ∈ Ω2(T ∗M) is a symplec-

tic 2-form.

There are many compatible almost C-structures on

T ∗M , but given a Riemannian metric g on M one

gets a canonical

Jg : T (T ∗M)→ T (T ∗M)

with J2
g = −id.
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Goal: Understand the relationship between “String

Topology” and Gromov-Witten theory.

A first step is to devise a Morse theoretic approach

to string topology.

Strategy: Expand and generalize theory of graph

flows of C. and Betz for constructing classical (co)homology

invariants in algebraic topology. This is closely re-

lated to the work of K. Fukaya. Joint work with P.

Norbury, U. Melbourne.

The basic idea is to make “toy model” of Gromov-

Witten theory in which the role of surfaces are re-

placed by finite graphs. We develop a theory in which

we make the following replacements from classical

Gromov-Witten theory.

1. A smooth surface F is replaced by a finite, ori-

ented graph Γ.

2. The role of the genus of F is replaced by the first

Betti number, b = b1(Γ).
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3. The role of marked points in F is replaced by the

univalent vertices (or “leaves”) of Γ.

4. The role of a complex structure Σ on F is replace

by a metric on Γ.

5. The notion of a J -holomorphic map to a sym-

plectic manifold with compatible almost complex

structure, Σ → (N,ω, J), is replaced by the no-

tion of a “graph flow” γ : Γ → M which, when

restricted to each edge is a gradient trajectory of

a Morse function on M .

Definition 1. Define Cb,p+q to be the category of

oriented graphs (in R∞) of first Betti number b,

with

1. Each edge of the graph Γ has an orientation.

2. Γ has p + q univalent vertices, or “leaves”. p

of these are vertices of edges whose orientation

points away from the vertex, = “incoming” .
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The remaining q leaves are “outgoing”.

3. Γ comes equipped with a “basepoint”, which is

a nonunivalent vertex.

>

<

>

<

>

>

>

>v

Figure 3: An object Γ in C2,2+2

A morphism between objects φ : Γ1 → Γ2 is com-

binatorial map of graphs (cellular map) that sat-

isfies:

1. The inverse image of each vertex is a tree (i.e

a contractible subgraph).

2. The inverse image of each open edge is an open

edge.
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3. φ preserves the basepoints.

Notice a morphism φ : Γ1 → Γ2 is a combinatorial

map of graphs which is a homotopy equivalence.

We now fix a graph Γ (an object in Cb,p+q. Consider

the category of “graphs over Γ”, CΓ.

Definition 2. Define CΓ to be the category whose

objects are morphisms in Cb,p+q with target Γ: φ :

Γ0 → Γ. A morphism from φ0 : Γ0 → Γ to φ1 :

Γ1 → Γ is a morphism ψ : Γ0 → Γ1 in Cb,p+q with

the property that φ0 = φ1 ◦ ψ : Γ0 → Γ1 → Γ.

Notice the identity map id : Γ → Γ is a terminal

object in CΓ. So |CΓ| is contractible. But Aut(Γ) acts

freely (on objects by composition).

Corollary 1. |CΓ|/Aut(Γ) ' BAut(Γ).

The following ideas of Culler-Vogtman, Igusa as-

sociates to a point in |CΓ| a metric on a graph over

Γ.
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Recall that

|CΓ| =
⋃
k

∆k×{Γk
ψk−→ Γk−1

ψk−1−−→ Γk−2 → · · ·
ψ1−→ Γ0

φ−→ Γ}/ ∼

where the identifications come from the face and de-

generacy operations.

G

G G G G2 1 0

a b

a b

c d

a

c

b

a b a b

f f =2 1

Figure 4: A 2-simplex in |CΓ|.

Γk is in a sense a generalized subdivision of Γ,
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in that Γ is obtained from Γk by collapsing various

edges. We use the coordinates of ∆k of the simplex

∆k to define a metric on Γk

a b

c d

a

c

b

a b

G2

G1
G0

The length of  edge d
shrinks from 1 to 0

The length of edge c
shrinks from 1 to 0

Figure 5: A 2-simplex of metrics.

Define

S(Γ,M) = {(~t, ~ψ) ∈ |CΓ|, µ = labeling of each edge of Γk

by a distinct fi : M → R}.
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Note: S(Γ,M) is contractible with free action of

Aut(Γ) (finite group). Define

M(Γ) = S(Γ,M)/Aut(Γ) ' BAut(Γ)

= moduli space of metric graphs with Morse label-

ings = “structures”.

Graph flows in M :

M̃(Γ,M) = {(σ, γ) :σ ∈ S(Γ,M), γ : Γ0 →M

dγi
dt

+∇fi = 0, for all i}

M(Γ,M) = M̃(Γ,M)/Aut(Γ)

Theorem 2. When Γ is a tree,

M(Γ,M) ∼=M(Γ)×M
(σ, γ)→ σ × γ(v)
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Proof. Existence and uniqueness of solutions to ODE’s.

Theorem 3. For general Γ, there is a homotopy

pull-back diagram

M̃(Γ,M)
↪→−→ S(Γ,M)×My y

M b −→
∆b

(M 2)b.
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Idea when b = 1: Pick a maximal tree T ⊂ Γ

(remove edge)

v v
v

v v

v

1

2 2

1

T Γ

(σ, γ) ∈M(Γ)×M determines a flow γ̃ : T →M

by existence and uniqueness. Have

(γ̃(v1), γ̃(v2)) ∈M 2

γ̃ extends to γ : Γ → M iff γ̃(v1) and γ̃(v2) are

connected by a flow. This will imply that the above

diagram is homotopy cartesian.
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This allows the construction of a Thom collapse

map

τ :M(Γ)×M ' BAut(Γ)×M −→M(Γ,M)ν

ν = pull back of normal bundle of ∆b. Apply homol-

ogy and the Thom isomorphism, get umkehr map

e! : H∗(BAut(Γ))⊗H∗(M)→ H∗−nbM(Γ,M)

Given [N ] ∈ Hk(BAut(Γ)) can define virtual fun-

damental class

[M[N ](Γ,M)] = e!([N ]×[M ]) ∈ Hk+nχ(Γ)(M(Γ,M)).

Idea. Suppose have Aut(Γ)-equivariant, compact

manifold Ñ ⊂ S(Γ,M), define

N = Ñ/Aut(Γ) ⊂M(Γ).

Let

M[N ](Γ,M) = {(σ, γ) ∈ M̃(Γ,M) : σ ∈ Ñ}/Aut(Γ).

Smoothness???? Compactness??? If so one has

fundamental class

[M[N ](Γ,M)] ∈ H∗(M(Γ,M))
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and it is equal to e!([N ]× [M ]).

Play Gromov-Witten game:

ev : M̃(Γ,M)→M p ×M q

evaluation of the graph flow at the marked points

(univalent vertices)

Pull back cohomology classes, evaluate (“integrate”)

on the virtual fundamental class [M[N ](Γ,M)]. Us-

ing Poincare duality this defines operations

qΓ : H∗(BAut(Γ))⊗HΣp
∗ (M p)→ H

Σq
∗+χ(Γ)n−np(M

q)

respecting gluing, natural w.r.t morphisms of graphs.

“Morse Field Theory”
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Examples.

1. Consider the graph Γ =

Figure 6: The “Y-graph”

Aut(Γ) = Z/2. So the operation is a map

qΓ : H∗(BZ/2)⊗H∗(M)→ HΣ2
∗ (M ×M).

“Equivariant diagonal”

BZ/2×M → EZ/2×Z/2 (M ×M)

Use Z/2 coefficients. The Steenrod squares are

defined if we take the dual map in cohomology.

Namely, if α ∈ Hk(M), then

(qΓ)∗(α⊗ α) =

k∑
i=0

ak ⊗ Sqk−i(α).
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a ∈ H1(BZ/2; Z/2) ∼= Z/2 is the generator.

The Cartan and Adem relations for the Steenrod

squares follow from the homotopy invariance and

gluing properties.

2. Now consider the graph Γ

Aut(Γ) = Z/2.

qΓ : H∗(BZ/2)⊗H∗(M)→ Z/2,

or equivalently, qΓ ∈ H∗(BZ/2)⊗H∗(M).

qΓ =

d∑
i=0

ai ⊗ wd−i(M)
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where d = dim(M), and wj(M) ∈ Hj(M ; Z/2)

is the jth Stiefel-Whitney class of the tangent bun-

dle.

——————————————-

We now study the loop space, LM .

Let V : R/Z×M → R be a smooth map. “Poten-

tial function”. Give M a Riemannian metric. Define

energy function

SV : LM −→ R

γ −→
∫ 1

0

(
1

2
|dγ
dt
|2 + V (t, γ(t))

)
dt. (1)

For generic choice of V , SV is a Morse function

(J. Weber). Its critical points are those γ ∈ LM

satisfying the ODE

∇t
dγ

dt
= −∇Vt(x) (2)

where ∇Vt(x) is the gradient of the function Vt(x) =
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V (t, x), and∇t
dγ
dt is the Levi-Civita covariant deriva-

tive.

There is CW -complex with one cell for each critical

point ' LM , yielding Morse chain complex,

· · · −→ CV
q (LM)

∂−→ CV
q−1(LM)

∂−→ · · ·

To study graph flows in LM , we use “fat (ribbon)”

graphs.

A fat graph is a finite, combinatorial graph ( one

dimensional CW complex - no “leaves” ) such that

1. Vertices are at least trivalent

2. Each vertex has a cyclic order of the (half) edges.
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ORDER IS IMPORTANT!

G1
G2

thicken thicken

Do the combinatorics more precisely:

Let EG = set of edges of G, ẼG = set of oriented

edges. So each edge of G appears twice in ẼG: e, ē
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Have a partition of ẼG:

AB

C

D E

(A,B,C), (Ā, D̄, E, B̄,D, C̄, Ē)

Theorem 4. (Penner, Strebel) The space of met-

ric fat graphs of topological type (g, n) 'Mg,n.
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Given a fat graph G of type (g, n), designate p

boundary cycles as “incoming” and q = n−p bound-

ary cycles as “outgoing”.

Let Γ be a metric fat graph. Have parameteriza-

tions of the boundary cycles

α− :
∐
p

S1 −→ Γ, α+ :
∐
q

S1 −→ Γ.

By taking the circles to have circumference equal

to the sum of the lengths of the edges making up the

boundary cycle it parameterizes, each component of

α+ and α− is a local isometry.

Define the surface ΣΓ to be the mapping cylinder

of these parameterizations,

ΣΓ =

∐
p

S1 × (−∞, 0]

t
∐

q

S1 × [0,+∞)

 ⋃
Γ/ ∼

(3)

where (t, 0) ∈ S1 × (−∞, 0] ∼ α−(t) ∈ Γ, and

(t, 0) ∈ S1 × [0,+∞) ∼ α+(t) ∈ Γ
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G

A

B

....

...

....

S
G

Figure 7: ΣΓ

Definition 3. An LM-structure σ on Γ is a met-

ric and labeling of each boundary cylinder by a

distinct Vi : R/Z×M → R (or SVi).

Mσ(Γ, LM) = {γ : ΣΓ →M :
dγi
dt

+∇SVi = 0}

Using work of Kaufmann, these define operations

qΓ : H∗(Mg,p+q)⊗H∗(LM)⊗p → H∗(LM)⊗q

Theorem 5. (C.) These are the string topology

operations.
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(C., Godin) They respect gluing of surfaces and

define a positive boundary homological CFT.

————————————————————-

Back to T ∗M , with its symplectic form ω:

Have a symplectic action functional

A : L(T ∗M)→ R

Given γ ∈ LM and η(t) ∈ T ∗γ(t)M , then

A(γ, η) =

∫ 1

0

〈η(t), dγ
dt

(t)〉dt.

Jg-holomorphic cylinders S1×R→ T ∗M are gradi-

ent trajectories.

Floer: Do Morse theory with A. Perturb using

potential V : R/Z×M → R.

Define Hamiltonian,

HV : R/Z× T ∗M → R

(t, (x, v))→ 1

2
||v||2 − V (t, x)
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Perturbed symplectic action:

AV (γ, η) = A(γ, η) +

∫ 1

0

HV (t, γ(t), η(t)dt.

Critical points of AV =

{(γ, η) ∈ L(T ∗M) : γ is a critical point ofSV ,

η(t) = 〈dγ
dt
,−〉}

So the critical points of AV are in bijective corre-

spondence with the critical points of SV .
Have Floer complex, CF V

∗ (T ∗M)

· · · −→ CF V
q (LM)

∂−→ CF V
q−1(LM)

∂−→ · · ·

generated by the critical points of AV with bound-

ary maps computed by counting the trajectories be-

tween critical points. (cylinders S1×R→ T ∗M sat-

isfying perturbed Cauchy-Riemann equations- “Jg -

holomorphic cylinders with respect to V ”)

Theorem 6. (Viterbo, Salamon-Weber) The Morse

complex of SV is chain homotopy equivalent to the
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Floer complex of AV . Therefore

HF∗(T
∗M) ∼= H∗(LM).

Theorem 7. (C.) Can replace moduli spaceMσ(Γ, LM)

of graph flows in LM by

Mσ
hol(ΣΓ;T ∗M) = {φ : ΣΓ → T ∗M, Jg holomorphic

on the ith cylinder with respect to Vi.}

to define the string topology operations qΓ.

Moral of Story: String topology = Gromov-

Witten theory on T ∗M with very thin Riemann sur-

faces with cylindrical ends.

Consequence. (Abondondolo-Schwarz) The pair

of pants (quantum) product in HF∗(T
∗M)

corresponds to the Chas-Sullivan loop product in

H∗LM .
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