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String topology:= intersection theory in loop
spaces (and spaces of paths) of a manifold. (Chas-

Sullivan, C., Jones, Godin, Ramirez.....)

Get homology operations associated to a sur-

face.

Let M be fixed n-dimensional closed manifold. X,
a surface of genus g thought of a s a cobordism be-

tween p “incoming’ circles to ¢ “outgoing’ circles:



- q circles
p circles

Figure 1: X, 44

(LM)? & Map(Xgpiq, M) — 5 (LM

Using graphs, other techniques, one constructs an

intersection or “umkehr map”
(ﬂin)! : h*<LM ) — Ny x(X)—n <Map<zg,p+m M)
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Here h, = generalized homology theory ( H,, K-homology,
bordism) such that M" is closed, h,-oriented.
This defines a homology operation,
s = Pout © (Pin)t = M ((LM)P) — h*+n-x(2)—np<Map<Zg,p+qa M)
— h*+n-x(2)—np<<LM>q>'

When X is the pair of pants, one gets the Chas-

Sullivan loop product,

po: Hy(LM) @ Hy(LM) — Hyqn(LM)
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making H,(LM) = H,.,(LM) an associative, com-
mutative algebra.

These operations satisty “gluing”

r circles

q circles

Figure 2: 31#3>5

py, 45, = s, © py,  “Field theory”
There is also a relative or “open” theory using h,(Py(D1, D3))
where D; C M and Py(Dy1,Dy) = {v : |0,1] —
M, ~(0) € Dy, (1) € Dy}
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This is a topological theory.

Gromov-Witten theory: Count pseudo-holomorphic

curves in a symplectic manifold.
This is a geometric theory.

T* M = cotangent bundle, has canonical symplectic

structure:

p:T"M — M
x e M,veT;M,have
Vo) Tiway(T"M) 25 T, M 25 R.
a € QYT*M), w = da € Q*(T*M) is a symplec-
tic 2-form.

There are many compatible almost C-structures on
T*M, but given a Riemannian metric g on M one

gets a canonical
J, :T(T"M) — T(T*M)
with Jg = —id.



Goal: Understand the relationship between “String
Topology” and Gromov-Witten theory.

A first step is to devise a Morse theoretic approach
to string topology.

Strategy: Expand and generalize theory of graph
flows of C. and Betz for constructing classical (co)homology
invariants in algebraic topology. This is closely re-
lated to the work of K. Fukaya. Joint work with P.
Norbury, U. Melbourne.

The basic idea is to make “toy model” of Gromov-
Witten theory in which the role of surfaces are re-
placed by finite graphs. We develop a theory in which
we make the following replacements from classical

Gromov-Witten theory:.

1. A smooth surface F'is replaced by a finite, ori-

ented graph T'.

2. The role of the genus of F'is replaced by the first
Betti number, b = by(I').
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3. The role of marked points in F' is replaced by the

univalent vertices (or “leaves”) of T".

4. The role of a complex structure X on F'is replace

by a metric on I

5. The notion of a J-holomorphic map to a sym-
plectic manifold with compatible almost complex
structure, ¥ — (N, w, J), is replaced by the no-
tion of a “graph flow” v : I' — M which, when
restricted to each edge is a gradient trajectory of

a Morse function on M.

Definition 1. Define Cy 4, to be the category of
oriented graphs (in R*>) of first Betti number b,
with

1. FEach edge of the graph I' has an orientation.

2.1 has p + q univalent vertices, or “leaves”. p
of these are vertices of edges whose orientation

oints away from the vertex, = “mcoming”’ .
)
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The remaining q leaves are “outgoing”.

3. 1" comes equipped with a “basepoint”, which 1is

a nonunivalent vertex.

Figure 3: An object I' in Cy 249

A morphism between objects ¢ : I'y — I'y 15 com-

binatorial map of graphs (cellular map) that sat-

1sfies:

1. The inverse image of each vertez is a tree (i.e

a contractible subgraph,).

2. The inverse image of each open edge s an open

edge.



3. ¢ preserves the basepoints.

Notice a morphism ¢ : I'y — I'y is a combinatorial

map of graphs which is a homotopy equivalence.

We now fix a graph I" (an object in Cp 1. Consider

the category of “graphs over I, Cr.

Definition 2. Define Cr to be the category whose
objects are morphisms in Cy i, with target I': ¢
'y — I'. A morphism from ¢y : I'g — I to ¢y :
['y = I' is @ morphism ¢ : I'y — 'y in Cp prq with
the property that oo = 1oy : 'y = 1"y —= T,

Notice the identity map id : I' — I' is a terminal
object in Cp. So |Cr| is contractible. But Aut(I") acts

freely (on objects by composition).
Corollary 1. |Cp|/Aut(l') ~ BAut(T').

The following ideas of Culler-Vogtman, Igusa as-

sociates to a point in |Cp| a metric on a graph over
I



Recall that

Cr| = UMx{rk e LT, Ly ST ~

where the identifications come from the face and de-

generacy operations.

¥

r

<><(><$><>

Ar%r
¢, *

Figure 4: A 2-simplex in |Cr|.
[, is in a sense a generalized subdivision of I,

10



in that I' is obtained from I'; by collapsing various
edges. We use the coordinates of A* of the simplex

A to define a metric on T,

Iy

7%
A

The length of edge d
shrinks from 1 to 0

‘ The length of edge ¢ ‘
shrinks from 1 to 0

Figure 5: A 2-simplex of metrics.

Define

S(D, M) = {(t,¢) € |Cr|, p = labeling of each edge of T
by a distinct f; : M — R}.
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Note: S(I', M) is contractible with free action of
Aut(T") (finite group). Define

M) =8, M)/Aut(I") ~ BAut(I)

= moduli space of metric graphs with Morse label-

ings = “structures”.

Graph flows in M:

~

MIT,M)=A{(o,7) :0 € S(I', M), y: Ty = M

di .
d—ZJeri =0, for all¢}

~

M(T, M) = M(T, M)/ Aut(T)

Theorem 2. When I' is a tree,
MIT, M) = M(T) x M
(0,7) = 0 x7(v)
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Proof. Existence and uniqueness of solutions to ODE’s.
[]

Theorem 3. For general I', there 1s a homotopy

pull-back diagram
M@, M) = S(I,M)x M

l l

MP — (M2,
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Idea when b = 1: Pick a maximal tree T" C T’

(remove edge)

o /\YZ . /\VZ
V\J. V\J./
V1 Vl
T r

(0,7) € M(I') x M determines a flow 5 : T"— M

by existence and uniqueness. Have

(F(v1), 3(v2)) € M?

7 extends to v : ' — M iff ¥(vy) and (vs) are
connected by a flow. This will imply that the above

diagram is homotopy cartesian.
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This allows the construction of a Thom collapse

map
7: M) x M ~ BAut(I') x M — M(I', M)”
v = pull back of normal bundle of A’. Apply homol-

ogy and the Thom isomorphism, get umkehr map
er: H (BAut(l") ® H, (M) — H,_,, M(I', M)
Given [N] € Hi(BAut(I')) can define virtual fun-

damental class
MU, M)] = e([N]X[M]) € Hypny ) (M(T, M)).

Idea. Suppose have Aut(I')-equivariant, compact
manifold N C S(I", M), define

N = N/Aut(I') ¢ M(I).

Let
MM M) = {(0,7) € M(T, M) : o € N}/Aut(T).
Smoothness????  Compactness??? If so one has

fundamental class

MM, M) e H(M(D, M))
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and it is equal to e;([N] x [M]).

Play Gromov-Witten game:

ev: M(T, M) — MP x M
evaluation of the graph flow at the marked points

(univalent vertices)

Pull back cohomology classes, evaluate ( “integrate”)
on the virtual fundamental class [MWI(T", M)]. Us-

ing Poincare duality this defines operations

gr : H(BAut(I)) @ H,"(MP) — H "

x+x(I)n—np

(M)

respecting gluing, natural w.r.t morphisms of graphs.

“Morse Field Theory”
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Examples.

1. Consider the graph I' =

>H.

Figure 6: The “Y-graph”

Aut(I") = Z /2. So the operation is a map
H,.(BZ/2)® H. (M) — H>(M x M).
“Equivariant diagonal”
BZ[2x M — EZ]2 X795 (M x M)

Use Z/2 coefficients. The Steenrod squares are

defined if we take the dual map in cohomology.

Namely, if o € H*(M), then

(qr)"(a ® a) Zak@)qul
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a € HYBZ/2;7/2) = 7/2 is the generator.
The Cartan and Adem relations for the Steenrod
squares follow from the homotopy invariance and

gluing properties.

2. Now consider the graph I’

N

Aut(l') = Z /2.
qr : H(BZ/2) @ H.(M) — Z/2,
or equivalently, gqp € H*(BZ/2) ® H*(M).

d
qr = Z CLi X ’wd_@(M)

1=0
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where d = dim(M), and w;(M) € H?(M;Z/2)
is the j" Stiefel-Whitney class of the tangent bun-
dle.

We now study the loop space, LM.
Let V : R/Z x M — R be a smooth map. “Poten-
tial function”. Give M a Riemannian metric. Define

energy function

Sy: LM —R

- /(\ P VA)) i (1

For generic choice of V', Sy is a Morse function
(J. Weber). Its critical points are those v € LM
satisfying the ODE

dry
Vi— p = —VW(CI?) (2>

where VV;(z) is the gradient of the function Vi(x) =
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V(t,z), and V,ffl—z is the Levi-Civita covariant deriva-
tive.
There is C'W-complex with one cell for each critical

point ~ LM, yielding Morse chain complex,
0 0
. — O/ (LM) = C/_{(LM) = -

To study graph flows in LM, we use “fat (ribbon)”
graphs.

A fat graph is a finite, combinatorial graph ( one

dimensional CW complex - no “leaves” ) such that
1. Vertices are at least trivalent

2. Each vertex has a cyclic order of the (half) edges.
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ORDER IS IMPORTANT!

thicken thicken

® &

Do the combinatorics more precisely:

Let Eg = set of edges of G, Eg = set of oriented

edges. So each edge of G appears twice in Fg: e, e
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Have a partition of Eg:

Theorem 4. (Penner, Strebel) The space of met-
ric fat graphs of topological type (g,n) ~ M,,,.
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Given a fat graph G of type (g,n), designate p
boundary cycles as “incoming” and ¢ = n—p bound-
ary cycles as “outgoing’.

Let I' be a metric fat graph. Have parameteriza-

tions of the boundary cycles
of:HSl—>F, a+:HSl—>F.
p q

By taking the circles to have circumference equal
to the sum of the lengths of the edges making up the
boundary cycle it parameterizes, each component of
at and o is a local isometry.

Define the surface X to be the mapping cylinder

of these parameterizations,

Sr= | []S" x (=00,0] JU[ J]S" x[0,+00) | | T/ ~
p q (3)

where (£,0) € S' x (—00,0] ~ a~(t) € T, and
(t,0) € St x [0,400) ~at(t) el
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;ji ;8 ) -

Figure 7: Xr
Definition 3. An LM -structure o on 1" 1s a met-

ric and labeling of each boundary cylinder by a
distinct V; : R/Z x M — R (or Sy.).

di
MO, LM) ={~:%r - M : d—Z—FVSx/Z.:O}

Using work of Kautmann, these define operations
ar : Ho(Myypeg) ® HA(LM)? — H,(LM)*

Theorem 5. (C.) These are the string topology
operations.

24



(C., Godin) They respect gluing of surfaces and
define a positive boundary homological CEF'T.

Back to T* M, with its symplectic form w:
Have a symplectic action functional
A:L(T"M) - R

Given v € LM and n(t) € T~ M, then

(?)
Aty = [ ), e

J,~-holomorphic cylinders S* x R — T*M are gradi-
ent trajectories.

Floer: Do Morse theory with A. Perturb using
potential V : R/Z x M — R.

Define Hamiltonian,

Hy R/Zx T*M — R

(. (2,0)) = Il = V£,
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Perturbed symplectic action:

Ay (7,1) = / Hy (£ ~(8). (1)t

Critical points of Ay =
{(v,m) € L(T*M) :~is a critical point of Sy,

at) = (5. -))

So the critical points of Ay are in bijective corre-

spondence with the critical points of Sy .
Have Floer complex, CF) (T*M)

D — CFV(LM) = CF,_ (a2
generated by the critical points of Ay with bound-
ary maps computed by counting the trajectories be-
tween critical points. (cylinders S* xR — T*M sat-

isfying perturbed Cauchy-Riemann equations- “Jj -

holomorphic cylinders with respect to V)
Theorem 6. (Viterbo, Salamon-Weber) The Morse

complex of Sy is chain homotopy equivalent to the
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Floer complex of Ay . Therefore
HF.(T"M)= H.(LM).
Theorem 7. (C.) Can replace moduli space M (1", LM)
of graph flows in LM by
ro 2 T M) ={¢ : Xr — T"M, J, holomorphic
on the i'" cylinder with respect to V;.}
to define the string topology operations qr.

Moral of Story: String topology = Gromov-
Witten theory on 1M with very thin Riemann sur-

faces with cylindrical ends.

Consequence. (Abondondolo-Schwarz) The pair
of pants (quantum) product in H F,(T*M)
corresponds to the Chas-Sullivan loop product in
H,.LM.
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