NK₂ DOES NOT REDUCE TO FINITES

DANIEL JUAN-PINEDA

1. INTRODUCTION

Let Γ be a discrete group and $\mathbb{Z}\Gamma$ its integral group ring. The Farrell-Jones Isomorphism Conjecture predicts that the algebraic K-theory groups $K_i(\mathbb{Z}\Gamma)$ may be computed from the corresponding algebraic Ktheory of its virtually cyclic group rings. In case this Conjecture holds there have been explicit examples like [], and it has been the case that these computations may even be reduced to finite subgroups []. The groups that allow such reductions are the Nil groups of the finite groups involved in Γ . In this paper we show that, in principle, such reduction cannot be achieved for $K_2(\mathbb{Z}\Gamma)$. Our Main result is the following:

Theorem 1. Let n be natural number and C_n denote a finite cyclic group of order n. Then $NK_2(\mathbb{Z}C_n) \neq 0$.

As a corollary,

Corollary 2. $N^{j}K_{i}(\mathbb{Z}C_{n}) \neq 0$ for all $i \geq 2$ and $j \geq 1$.

As a consequence, we get the following:

Theorem 3. Let G be any finite group. Then $NK_i(\mathbb{Z}G) \neq 0$ for all $i \geq 2$.

Theorem 4. Let G be any finite group. Then $N^j K_i(\mathbb{Z}G) \neq 0$ for all $i, j \geq 2$.

Corollary 5. Higher K theory of integral group rings does not reduce to finites

Let G be an hyperbolic group with torsion. If IC holds for G then $K_i(\mathbb{Z}G)$ is not finitely generated for all $i \geq 2$.

This contrasts with $NK_1(\mathbb{Z}C_n)$ where it is known [B-M] that

 $NK_1(\mathbb{Z}C_n) = 0$ if and only if n is square free.

As the NK_2 terms are direct summands in the group $K_2(\mathbb{Z}[C_n \times T_s])$, where T_s is the free abelian group of rank $s, s \ge 1$, and it is known [Farr] that if NK_2 is nonzero then it is not finitely generated, we have the following corollary **Corollary 6.** Let C_n be a finite cyclic group and T_s a free abelian group of rank $s, s \ge 1$, then

 $K_2(\mathbb{Z}[C_n \times T_s])$

is not finitely generated.

On the other hand it was proved by Vorst that if $NK_2(R)$ is nonzero, then $NK_i(R) \neq 0$ for all $j \geq 2$. From this we have the following corollary

Corollary 7. Let C_n and T_s be a finite cyclic group of order $n, n \ge 2$, and the free abelian group of rank $s \ge 1$, respectively. Then

- (1) $N^{j}K_{i}(\mathbb{Z}C_{n}) \neq 0$ for all $j \geq 1$, and $i \geq 2$,
- (2) $K_i(\mathbb{Z}[C_n \times T_s] \text{ is not finitely generated for all } i \geq 2.$

Proposition 8. Let $G = C \rtimes H$ be an hyperelementary group. Then $NK_2(\mathbb{Z}[G]) \neq 0.$

Proof. Use the isomorphism $\mathbb{Z}[G] \cong (\mathbb{Z}C_p)_{\alpha}[H]$ to get a split ring epimomorphism $\epsilon : (\mathbb{Z}C_p)_{\alpha}[H] \to \mathbb{Z}[C_p]$. By functoriality, this gives that $NK_2(\mathbb{Z}[C_p])$ injects in $NK_2(\mathbb{Z}[G])$.

We have the following corollary

Corollary 9. Let $G = C \rtimes H$ be an hyperelementary group. Then

- (1) $N^i K_2(\mathbb{Z}[G]) \neq 0$, for all $i \ge 1$.
- (2) $N^i K_j(\mathbb{Z}[G]) \neq 0$, for all $i \ge 1, j > 2$.

The general results would follow from induction theory.

INSTITUTO DE MATEMÁTICAS, UNAM CAMPUS MORELIA, APARTADO POSTAL 61-3 (XANGARI), MORELIA, MICHOACÁN, MEXICO 58089 *E-mail address*: daniel@matmor.unam.mx

 $\mathbf{2}$