Conformal geometry of knots

Jun O'Hara Rémi Langevin

ohara@comp.metro-u.ac.jp

Remi.Langevin@u-bourgogne.fr

Department of Mathematics, Tokyo Metropolitan University Institut de Mathématiques de Bourgogne, Université de Bourgogne

 $COE \ 07/2005 - p.1/16$

• Energy of knots, $E_{\circ}^{(2)}$.

Generalization of electrostatic energy of charged knots.

- Energy of knots, $E_{\circ}^{(2)}$.
 - Generalization of electrostatic energy of charged knots.
 - \blacksquare $E_{\circ}^{(2)}$ is invariant under Möbius transformations.

- Energy of knots, $E_{\circ}^{(2)}$.
 - Generalization of electrostatic energy of charged knots.
 - \blacksquare $E_{\circ}^{(2)}$ is invariant under Möbius transformations.
- Conformal geometry (Joint work with R. Langevin).
 Infinitesimal cross ratio Ω, which is a complex valued 2-form on K × K \ △.

- Energy of knots, $E_{\circ}^{(2)}$.
 - Generalization of electrostatic energy of charged knots.
 - \blacksquare $E_{\circ}^{(2)}$ is invariant under Möbius transformations.
- Conformal geometry (Joint work with R. Langevin).
 Infinitesimal cross ratio Ω, which is a complex valued 2-form on K × K \ △.
 - **It is invariant under Möbius transformations.**

- Energy of knots, $E_{\circ}^{(2)}$.
 - Generalization of electrostatic energy of charged knots.
 - \blacksquare $E_{\circ}^{(2)}$ is invariant under Möbius transformations.
- Conformal geometry (Joint work with R. Langevin).
 Infinitesimal cross ratio Ω, which is a complex valued 2-form on K × K \ Δ.
 - It is invariant under Möbius transformations.
 - The meanings of its real and imaginary parts

 symplectic form and area elements

- Energy of knots, $E_{\circ}^{(2)}$.
 - Generalization of electrostatic energy of charged knots.
 - \blacksquare $E_{\circ}^{(2)}$ is invariant under Möbius transformations.
- Conformal geometry (Joint work with R. Langevin).
 Infinitesimal cross ratio Ω, which is a complex valued 2-form on K × K \ Δ.
 - It is invariant under Möbius transformations.
 - The meanings of its real and imaginary parts symplectic form and area elements
 - Tools: Minkowski space, semi-Riemannian structure of the space of 0-spheres in S³, and pencils of codimension 1 spheres.

Motivation of energy of knots

- Problem (Fukuhara, Sakuma)
 - Define an "energy" *e* on the space of knots.

Motivation of energy of knots

- Problem (Fukuhara, Sakuma)
 - **Define an "energy"** e on the space of knots.
 - Define a "canonical position" for each knot type, which is an embedding that attains the minimum value of the "energy" within its isotopy class.

Motivation of energy of knots

- Problem (Fukuhara, Sakuma)
 - \blacksquare Define an "energy" *e* on the space of knots.
 - Define a "canonical position" for each knot type, which is an embedding that attains the minimum value of the "energy" within its isotopy class.
 - We call it an <u>*e-minimizer*</u>.

A conceptual illustration

Problem (Fukuhara, Sakuma) Define an "energy" e on the space of knots. Define a "canonical position" for each knot type, which is an embedding that attains the minimum value of the "energy" within its isotopy class.

A conceptual illustration

The complement is the set of embeddings, i.e. the space of knots.

 $COE \ 07/2005 - p.4/16$

A conceptual illustration

Each "cell" corresponds to a knot type, as two points in the space of knots can be connected by a path if and only if two corresponding knots are ambient isotopic.

Our strategy

Given a knot.

COE 07/2005 - p.4/16

Our strategy

Deform it along the gradient flow of the "energy" $e: \{\text{knots}\} \rightarrow \mathbb{R}.$

 $COE \ 07/2005 - p.4/16$

Our strategy

If we are lucky the knot might reach an *e*-minimizer, which is a "canonical position" of that knot type.

 $COE \ 07/2005 - p.4/16$

Required property of our functional

In order to keep the knot type unchanged during the deformation process,

crossing changes should be avoided!

Required property of our functional

Definition. *e* is "*self-repulsive*"

def. \updownarrow

e(K) blows up as a knot K degenerates to a singular knot with double points.

We say that e is an <u>energy of knots</u> if it is self-repulsive.

• Electrostatic energy of charged knots: "E"(K) = $\int \int_{K \times K} \frac{dxdy}{|x - y|}$

• Electrostatic energy of charged knots: "E" $(K) = \iint_{K \times K} \frac{dxdy}{|x - y|} = \infty (\forall K)$

- Electrostatic energy of charged knots: "E" $(K) = \iint_{K \times K} \frac{dxdy}{|x - y|} = \infty (\forall K)$
- A trick " $\infty \infty$ " produces a finite valued functional $E^{(1)}$.

- Electrostatic energy of charged knots: "E" $(K) = \iint_{K \times K} \frac{dxdy}{|x - y|} = \infty (\forall K)$
- A trick " $\infty \infty$ " produces a finite valued functional $E^{(1)}$.
- But $E^{(1)}(\widehat{K}) < \infty$ for a singular knot \widehat{K} with double points.

- Electrostatic energy of charged knots: "E" $(K) = \iint_{K \times K} \frac{dxdy}{|x - y|} = \infty (\forall K)$
- A trick " $\infty \infty$ " produces a finite valued functional $E^{(1)}$.
- But $E^{(1)}(\widehat{K}) < \infty$ for a singular knot \widehat{K} with double points.
- Increase the power of |x y| in the integrand to produce a self-repulsive energy.

- Electrostatic energy of charged knots: "E" $(K) = \iint_{K \times K} \frac{dxdy}{|x - y|} = \infty (\forall K)$
- A trick " $\infty \infty$ " produces a finite valued functional $E^{(1)}$.
- But $E^{(1)}(\widehat{K}) < \infty$ for a singular knot \widehat{K} with double points.
- Increase the power of |x y| in the integrand to produce a self-repulsive energy.
- $2 \leq \text{the power} < 3 \implies \text{a well-defined energy.}$

Definition of $E_{\circ}^{(2)}$

• Let $\delta_K(x, y)$ denote the arc-length between x and y.

$$K = \sum_{y = |x - y|}^{x} \delta_{K}(x, y)$$

Definition of $E_{\circ}^{(2)}$

• Let $\delta_K(x, y)$ denote the arc-length between x and y.

Definition of $E_{\circ}^{(2)}$

• Let $\delta_K(x, y)$ denote the arc-length between x and y.

Theorem (Freedman-He-Wang) $E_{\circ}^{(2)}$ is conformally invariant, i.e. if *T* is a Möbius transformation of $\mathbb{R}^3 \cup \{\infty\}$ then $E_{\circ}^{(2)}(T(K)) = E_{\circ}^{(2)}(K) \quad \forall K.$

- **Theorem** (Freedman-He-Wang) $E_{\circ}^{(2)}$ is conformally invariant, i.e. if *T* is a Möbius transformation of $\mathbb{R}^3 \cup \{\infty\}$ then $E_{\circ}^{(2)}(T(K)) = E_{\circ}^{(2)}(K) \quad \forall K.$
- **Theorem** (Freedman-He-Wang) There exists an $E_{\circ}^{(2)}$ -minimizer for any *prime* knot type.

- **Theorem** (Freedman-He-Wang) $E_{\circ}^{(2)}$ is conformally invariant, i.e. if *T* is a Möbius transformation of $\mathbb{R}^3 \cup \{\infty\}$ then $E_{\circ}^{(2)}(T(K)) = E_{\circ}^{(2)}(K) \quad \forall K.$
- Theorem (Freedman-He-Wang) There exists an E₀⁽²⁾-minimizer for any *prime* knot type.
 Prime = Not composite. A composite knot:

- **Theorem** (Freedman-He-Wang) $E_{\circ}^{(2)}$ is conformally invariant, i.e. if *T* is a Möbius transformation of $\mathbb{R}^3 \cup \{\infty\}$ then $E_{\circ}^{(2)}(T(K)) = E_{\circ}^{(2)}(K) \quad \forall K.$
- **Theorem** (Freedman-He-Wang) There exists an $E_{\circ}^{(2)}$ -minimizer for any *prime* knot type.
 - **Conjecture** (Kusner-Sullivan) There are no

 $E_{\circ}^{(2)}$ -minimizers for any *composite* knot types. Numerical experiments imply

Numerical experiments by Kusner and Sullivan

Part II. Conformal geometry

Joint work with Rémi Langevin

• Geometric definition. Let $x, x + dx, y, y + dy \in K$.

• Geometric definition. Let $x, x + dx, y, y + dy \in K$.

Let $\Sigma = \Sigma(x, x + dx, y, y + dy)$ be a 2-sphere through x, x + dx, y, y + dy.

• Geometric definition. Let $x, x + dx, y, y + dy \in K$.

Let $\Sigma = \Sigma(x, x + dx, y, y + dy)$ be a 2-sphere through x, x + dx, y, y + dy. Identify $\Sigma \cong \mathbb{C} \cup \{\infty\}$ through a stereographic projection. These four points can be identified with four complex numbers $\tilde{x}, \tilde{x} + \tilde{dx}, \tilde{y}, \tilde{y} + \tilde{dy}$.

• Geometric definition. Let $x, x + dx, y, y + dy \in K$.

Let $\Sigma = \Sigma(x, x + dx, y, y + dy)$ be a 2-sphere through x, x + dx, y, y + dy. Identify $\Sigma \cong \mathbb{C} \cup \{\infty\}$ through a stereographic projection. These four points can be identified with four complex

Definition. Let the *infinitesimal cross ratio* of a knot,

 $\frac{\Omega_{CR}(x,y), \text{ be the cross ratio}}{(\tilde{x}+\tilde{dx})-\tilde{x}}_{(\tilde{x}+\tilde{dx})-(\tilde{y}+\tilde{dy})}: \frac{\tilde{y}-\tilde{x}}{\tilde{y}-(\tilde{y}+\tilde{dy})} \sim \frac{\tilde{dx}\tilde{dy}}{(\tilde{x}-\tilde{y})^2}.$

• Geometric definition. Let $x, x + dx, y, y + dy \in K$.

Let $\Sigma = \Sigma(x, x + dx, y, y + dy)$ be a 2-sphere through x, x + dx, y, y + dy. Identify $\Sigma \cong \mathbb{C} \cup \{\infty\}$ through a stereographic projection. These four points can be identified with four complex

numbers $\tilde{x}, \tilde{x} + dx, \tilde{y}, \tilde{y} + dy$. **Definition.** Let the *infinitesimal cross ratio* of a knot, $\Omega_{CR}(x, y)$, be the cross ratio $\frac{(\tilde{x} + d\tilde{x}) - \tilde{x}}{(\tilde{x} + d\tilde{x}) - (\tilde{y} + d\tilde{y})} : \frac{\tilde{y} - \tilde{x}}{\tilde{y} - (\tilde{y} + d\tilde{y})} \sim \frac{d\tilde{x}d\tilde{y}}{(\tilde{x} - \tilde{y})^2}$.

The four complex numbers are not uniquely determined. But the cross ratio is well-defined. We need the orientation of Σ .

Definition. (Doyle and Schramm)

Definition. (Doyle and Schramm)

• Let C(x, x, y) be a circle tangent to K at x though y.

Definition. (Doyle and Schramm)

• Let C(x, x, y) be a circle tangent to K at x though y.

• Let C(y, y, x) be a circle tangent to K at y through x.

Definition. (Doyle and Schramm)

• Let C(x, x, y) be a circle tangent to K at x though y.

• Let $\theta_K(x, y)$ be the angle between C(x, x, y) and C(y, y, x), and call it the *conformal angle* between x and y.

Definition. (Doyle and Schramm)

• Let C(x, x, y) be a circle tangent to K at x though y.

• Let $\theta_K(x, y)$ be the angle between C(x, x, y) and C(y, y, x), and call it the *conformal angle* between x and y.

• The absolute value of the infinitesimal cross ration Ω is equal to $\frac{dxdy}{|x-y|^2}$. The argument of Ω is equal to $\theta_K(x,y)$.

Definition. (Doyle and Schramm)

• Let C(x, x, y) be a circle tangent to K at x though y.

• Let $\theta_K(x, y)$ be the angle between C(x, x, y) and C(y, y, x), and call it the *conformal angle* between x and y.

The absolute value of the infinitesimal cross ration Ω is equal to $\frac{dxdy}{|x-y|^2}$. The argument of Ω is equal to $\theta_K(x,y)$.

• **Proposition.** $\Omega(x,y) = e^{i\theta_K(x,y)} \frac{dxdy}{|x-y|^2}.$

Proposition (Doyle and Schramm's cosine formula) $E_{\circ}^{(2)}(K) = \iint_{K \times K \setminus \triangle} \frac{1 - \cos \theta_K(x, y)}{|x - y|^2} \, dx \, dy.$

Proposition (Doyle and Schramm's cosine formula) $E_{\circ}^{(2)}(K) = \iint_{K \times K \setminus \bigtriangleup} \frac{1 - \cos \theta_K(x, y)}{|x - y|^2} dx dy.$ Recall $\Omega(x, y) = e^{i\theta_K(x, y)} \frac{dx dy}{|x - y|^2}.$

Proposition (Doyle and Schramm's cosine formula)
$$E_{\circ}^{(2)}(K) = \iint_{K \times K \setminus \Delta} \frac{1 - \cos \theta_K(x, y)}{|x - y|^2} \, dx \, dy.$$
Recall $\Omega(x, y) = e^{i\theta_K(x, y)} \frac{dx \, dy}{|x - y|^2}.$
Proposition
$$E_{\circ}^{(2)}(K) = \iint_{K \times K \setminus \Delta} (|\Omega_{CR}| - \Re \mathfrak{e} \, \Omega_{CR}).$$

• Recall every T^*M admits a "canonical symplectic form" (locally $\omega_M = \sum dq_i \wedge dp_i$), which is exact $(\omega_M = -d \sum p_i dq_i).$

- Recall every T*M admits a "canonical symplectic form" (locally \omega_M = \sum dq_i \wedge dp_i), which is exact (\omega_M = -d \sum p_i dq_i).
 S^3 \times S^3 \wedge \omega \leftarrow T*S^3 \overline \sum \left{\sum b} \leftarrow T*S^3 \overline \left{\sum b} \le
 - ω_{S^3} is invariant under the diagonal action of a Möbius transformation.

- Recall every T*M admits a "canonical symplectic form" (locally \omega_M = \sum dq_i \wedge dp_i), which is exact (\omega_M = -d \sum p_i dq_i).
 S^3 \times S^3 \wedge \omega \leftarrow T*S^3 \overline \sum \left{\sum b} \leftarrow T*S^3 \overline \left{\sum b} \le
- ω_{S^3} is invariant under the diagonal action of a Möbius transformation.
- Inclusion $\iota: K \times K \setminus \bigtriangleup \hookrightarrow S^3 \times S^3 \setminus \bigtriangleup$.

- Recall every T*M admits a "canonical symplectic form" (locally \omega_M = \sum dq_i \wedge dp_i), which is exact (\omega_M = -d \sum p_i dq_i).
 S^3 \times S^3 \wedge \omega \leftarrow T*S^3 \overline \left{\begin{subarray}{c} \delta \lefts \leftarrow T*S^3 \\ \overline \left{S}^3 \leftarrow \left{S}^3 \\ \delta \left{P}\right{}\) id \times stereo. \$\overline \left{\begin{subarray}{c} \delta \left{P}\right{}\times \left{S}^3 \\ \delta \left{P}\right{}\) \$\overline \left{S}^3 \\ \delta \left{P}\right{}\) \$\overline \left{S}^3 \\ \delta \left{P}\right{}\times \left{S}^3 \\ \delta \left{P}\right{}\) \$\overline \left{S}^3 \\ \delta \left{P}\right{}\text{P}\right{}\) \$\overline \left{S}^3 \\ \delta \left{P}\right{}\) \$\overline \left{S}^3 \\ \delta \left{P}\right{}\) \$\overline \left{S}^3 \\ \delta \left{P}\right{}\text{P}\right{}\text{P}\right{}\text{P}\right{}\\ \overline \left{S}^3 \\ \delta \left{P}\right{}\) \$\overline \left{S}^3 \\ \delta \left{P}\right{}\text{P}\right{}\text{P}\right{}\text{P}\right{}\\ \overline \left{P}\right{}\) \$\overline \left{P}\right{}\\ \delta \left{P}\right{}\text{P
 - ω_{S^3} is invariant under the diagonal action of a Möbius transformation.
- Inclusion $\iota: K \times K \setminus \bigtriangleup \hookrightarrow S^3 \times S^3 \setminus \bigtriangleup$.

• **Proposition**
$$\Re \, \Omega(x,y) = -\frac{1}{2} \iota^* \omega_{S^3}.$$

• Put $\mathcal{S}(3,0) := \{S^0 \subset S^3\} \cong S^3 \times S^3 \setminus \Delta$.

COE 07/2005 - p.14/16

• Put $\mathcal{S}(3,0) := \{S^0 \subset S^3\} \cong S^3 \times S^3 \setminus \Delta$.

Proposition \exists a semi-Riemannian structure (i.e. each $T_{\Sigma}\mathcal{S}(3,0)$ has an indefinite metric) of signature (3,3).

• Put $\mathcal{S}(3,0) := \{S^0 \subset S^3\} \cong S^3 \times S^3 \setminus \Delta$.

• **Proposition** \exists a semi-Riemannian structure (i.e. each $T_{\Sigma}S(3,0)$ has an indefinite metric) of signature (3,3).

It is invariant under Möbius transformations.

- Put $\mathcal{S}(3,0) := \{S^0 \subset S^3\} \cong S^3 \times S^3 \setminus \Delta$.
- **Proposition** \exists a semi-Riemannian structure (i.e. each $T_{\Sigma}S(3,0)$ has an indefinite metric) of signature (3,3).
- It is invariant under Möbius transformations.
- Proof: There are three ways.

- Put $\mathcal{S}(3,0) := \{S^0 \subset S^3\} \cong S^3 \times S^3 \setminus \Delta$.
- **Proposition** \exists a semi-Riemannian structure (i.e. each $T_{\Sigma}S(3,0)$ has an indefinite metric) of signature (3,3).
- It is invariant under Möbius transformations.
- Proof: There are three ways.
 - Homogeneous space $S(3,0) \cong SO(4,1)/SO(3) \times SO(1,1).$

• Put $\mathcal{S}(3,0) := \{S^0 \subset S^3\} \cong S^3 \times S^3 \setminus \Delta$.

Proposition ∃ a semi-Riemannian structure (i.e. each T_∑S(3,0) has an indefinite metric) of signature (3,3).
 Proof: There are three ways.

Plücker coordinates. Let $\mathbb{R}^{4,1}$ be the Minkowski space and V be the light cone. $S(3,0) \cong \{2\text{-plane } \Pi \subset \mathbb{R}^{4,1} \mid \mathbf{0} \in \Pi, \Pi \cap V \text{ transversely}\} \subset \mathbb{R}^{4,1} \land \mathbb{R}^{4,1} \cong \mathbb{R}^{4,6}.$

- Put $\mathcal{S}(3,0) := \{S^0 \subset S^3\} \cong S^3 \times S^3 \setminus \Delta$.
- **Proposition** \exists a semi-Riemannian structure (i.e. each $T_{\Sigma}S(3,0)$ has an indefinite metric) of signature (3,3).
- Proof: There are three ways.
 - 6 pencils of $S^0 \subset S^1$, 3 space-like and 3 time-like.

$\Re \mathfrak{e} \Omega$ as area form

• Let v be a composite

 $\boldsymbol{v}: K \times K \setminus \Delta \hookrightarrow S^3 \times S^3 \setminus \Delta \xrightarrow{\cong} \mathcal{S}(3,0).$ Then $\boldsymbol{v}(K \times K \setminus \Delta)$ is a surface in $\mathcal{S}(3,0)$.

$\Re \mathfrak{e} \Omega$ as area form

Let v be a composite

 $\boldsymbol{v}: K \times K \setminus \Delta \hookrightarrow S^3 \times S^3 \setminus \Delta \xrightarrow{\cong} \mathcal{S}(3,0).$ Then $\boldsymbol{v}(K \times K \setminus \Delta)$ is a surface in $\mathcal{S}(3,0).$

Theorem. Its "area element" w.r.t. the semi-Riem. str. is given by

$$\left| \begin{array}{cc} \langle \boldsymbol{v}_x, \boldsymbol{v}_x \rangle_{4,6} & \langle \boldsymbol{v}_x, \boldsymbol{v}_y \rangle_{4,6} \\ \langle \boldsymbol{v}_y, \boldsymbol{v}_x \rangle_{4,6} & \langle \boldsymbol{v}_y, \boldsymbol{v}_y \rangle_{4,6} \end{array} \right| \, dx dy = 2\sqrt{-1} \, \Re \mathfrak{e} \, \Omega.$$

$\Re \mathfrak{e} \Omega$ as area form

Let v be a composite

 $\boldsymbol{v}: K \times K \setminus \Delta \hookrightarrow S^3 \times S^3 \setminus \Delta \stackrel{\cong}{\to} \mathcal{S}(3,0).$ Then $\boldsymbol{v}(K \times K \setminus \Delta)$ is a surface in $\mathcal{S}(3,0).$

Theorem. Its "area element" w.r.t. the semi-Riem. str. is given by

$$\left| \begin{array}{cc} \langle \boldsymbol{v}_x, \boldsymbol{v}_x \rangle_{4,6} & \langle \boldsymbol{v}_x, \boldsymbol{v}_y \rangle_{4,6} \\ \langle \boldsymbol{v}_y, \boldsymbol{v}_x \rangle_{4,6} & \langle \boldsymbol{v}_y, \boldsymbol{v}_y \rangle_{4,6} \end{array} \right| \, dx dy = 2\sqrt{-1} \, \Re \mathfrak{e} \, \Omega.$$

Corollary. Let $\gamma_1 \cup \gamma_2$ be a 2-component link. Then the area of $\boldsymbol{v}(\gamma_1 \times \gamma_2) \subset \mathcal{S}(3,0)$ is equal to 0.

• The imaginary part $\Im \mathfrak{m} \Omega$ of the infinitesimal cross ratio does not have a nice global interpretation.

- The imaginary part $\Im \mathfrak{m} \Omega$ of the infinitesimal cross ratio does not have a nice global interpretation.
- $\Im m \Omega$ may be singular at $(x, y) \in K \times K \setminus \Delta$ where the conformal angle $\theta_K(x, y)$ vanishes. Recall $\Im m \Omega = \frac{\sin \theta_K(x, y) dx dy}{|x - y|^2}$.

- The imaginary part $\Im \mathfrak{m} \Omega$ of the infinitesimal cross ratio does not have a nice global interpretation.
- $\Im \mathfrak{m} \Omega$ may be singular at $(x, y) \in K \times K \setminus \Delta$ where the conformal angle $\theta_K(x, y)$ vanishes. Recall $\Im \mathfrak{m} \Omega = \frac{\sin \theta_K(x, y) dx dy}{|x - y|^2}$.
- If we consider S^3 as the boundary of the hyperbolic 4-space \mathbb{H}^4 , the imaginary part of the infinitesimal cross ratio is locally equal to the "transversal area form" of geodesics in \mathbb{H}^4 joining x and y.

- The imaginary part $\Im \mathfrak{m} \Omega$ of the infinitesimal cross ratio does not have a nice global interpretation.
- $\Im \mathfrak{m} \Omega$ may be singular at $(x, y) \in K \times K \setminus \Delta$ where the conformal angle $\theta_K(x, y)$ vanishes. Recall $\Im \mathfrak{m} \Omega = \frac{\sin \theta_K(x, y) dx dy}{|x - y|^2}$.
- If we consider S^3 as the boundary of the hyperbolic 4-space \mathbb{H}^4 , the imaginary part of the infinitesimal cross ratio is locally equal to the "transversal area form" of geodesics in \mathbb{H}^4 joining x and y.