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« Infinitesimal cross ratio €2, which i1s a complex valued
2-formon K x K \ A.

« It 1s invariant under Mobius transformations.

« The meanings of its real and imaginary parts
<— symplectic form and area elements

=« Tools: Minkowski space, semi-Riemannian structure of

the space of 0-spheres in S?, and pencils of
codimension 1 spheres.
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Motivation of energy of knots

Problem (Fukuhara, Sakuma)
« Define an “energy” e on the space of knots.

=« Define a “canonical position” for each knot type, which
IS an embedding that attains the minimum value of the
“energy” within its isotopy class.

« We call it an e-minimizer.
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Our strategy

A conceptual illustration

Problem
(Fukuhara, Sakuma)

Define an “energy” e on
the space of knots.

Define a “canonical po-
sition” for each knot
type, which Is an em-
bedding that attains the

minimum value of the
“energy” within Its 1so-
topy class.

{immersion}
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Our strategy

A conceptual illustration

The complement is the
set of embeddings, I.e.
the space of knots.

{non-embedding}

{immersion}
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Our strategy

A conceptual illustration

Each “cell” corresponds
to a knot type, as two
points In the space of
Knots can be connected
oy a path 1If and only
If two corresponding
knots are ambient Iso-

topic.

{non-embedding}

knot type [K] {immersion}
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Our strategy

Our strategy

Given a knot.

{non-embedding}

knot type [K] {immersion}
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Our strategy

Our strategy

e
| P

Deform it along the gra-
dient flow of the “en-
ergy” e : {knots} — R.

{non-embedding}

knot type [K] {immersion}
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Our strategy

Our strategy

If we are lucky the
knot might reach an e-
L minimizer, which Is a
&) e-minimizer £ “canonical position” of
e(Ky) = K@lél[f;{]e(K) =: e[ K] p
that knot type.

{non-embedding}

knot type [K] {immersion}
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Our strategy

Required property of our functional

In order to keep the
knot type unchanged
during the deformation
process,

. crossing changes
{non-embedding} :
should be avoided!

1 C@)e—minimizer K,

-~
knot type [K] {immersion}
COE 07/2005 — p.4/16




Our strategy

Required property of our functional

Definition.
e 1S “self-repulsive”

def. {

e( K') blows up as a knot

/> e-minimizer K degenerates tO a Sln-
- gular knot with double

points.

We say that e Is an
energy of knots If It Is

self-repulsive.

C?-topology

knot type [K] {immersion}
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Electrostatic energy of charged knots

Electrostatic energy of charged knots:

i [ i
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“B"(K) = / l{ 2 _ o (vVK)

x K ‘ZIZ—y‘

COE 07/2005 — p.5/16



Electrostatic energy of charged knots

Electrostatic energy of charged knots:

“B"(K) = / [{ 2 _ o (vVK)

x K ‘Clj—y‘

A trick “oco — oo” produces a finite valued functional £,

COE 07/2005 — p.5/16



Electrostatic energy of charged knots

Electrostatic energy of charged knots:

“B"(K) = / [{ 2 _ o (vVK)

x K ‘CIJ—y‘
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A trick “oco — oo” produces a finite valued functional £,
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Electrostatic energy of charged knots

Electrostatic energy of charged knots:

“B"(K) = / [{ 2 _ o (vVK)

x K ‘Clj—y‘

A trick “oco — oo” produces a finite valued functional £,

But £()(K) < oo for a singular knot K with double
points.

Increase the power of |z — y| in the integrand to produce a
self-repulsive energy.

2 < the power < 3 = a well-defined energy.

COE 07/2005 — p.5/16



Definition of E?

Let 5 (x,y) denote the arc-length between x and y.
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Definition of E?

Let 5 (x,y) denote the arc-length between x and y.

I d
dxd 2

E(g = lim (// ° y2 )
e—+0 O (x,y)>e}CK XK ‘ZIZ _ y‘ €

We assumed that Length (K') = 1 in the above.
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Definition of E?

Let 5 (x,y) denote the arc-length between x and y.

I d
dxd 2

E(g = lim (// ° y2 )
e—+0 O (x,y)>e}CK XK ‘ZIZ _ y‘ €

We assumed that Length (K) = 1 in the above.

B 4+// ( 1 )d d
=— rdy.
kxr\a \ T —y|*  Ok(T,y)?
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Properties of E?

Theorem (Freedman-He-Wang) B s conformally
invariant, i.e. if 7' is a Mobius transformation of R® U {co}

then E2(T(K)) = E?(K) VK.
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Properties of E?

Theorem (Freedman-He-Wang) B s conformally
invariant, i.e. if 7' is a Mobius transformation of R® U {co}

then E2(T(K)) = E?(K) VK.
Theorem (Freedman-He-Wang) There exists an

E®-minimizer for any prime knot type.
Prime = Not composite. A composite knot:
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Properties of E?

Theorem (Freedman-He-Wang) B s conformally
invariant, i.e. if 7' is a Mobius transformation of R® U {co}

then E2(T(K)) = E?(K) VK.

Theorem (Freedman-He-Wang) There exists an
E®)-minimizer for any prime knot type.
Conjecture (Kusner-Sullivan) There are no

£ -minimizers for any composite knot types.
Numerical experiments imply
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Part |1. Conformal geometry

=2 Joint work with Rémi Langevin
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| nfinitessimal crossratio
Geometric definition. Let x, x + dx, y,y + dy € K.
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| nfinitessimal crossratio
Geometric definition. Let x, x + dx, y,y + dy € K.

Let X = Y(z,x + dz,y,y + dy) be a
2-sphere through =, x + dz, vy, y + dy.
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| nfinitessmal crossratio

Geometric definition. Let x, x + dx, y,y + dy € K.
S(oat de g+ Let ) = Y(x,x + dx,y,y + dy) be a
2-sphere through =, x + dx, y, y + dy.
ldentify 3 = CuU{oo} through a stere-
ographic projection. These four points
can be identified with four complex

numbers z, x + Zl\:z}, Y,y + E@
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| nfinitessmal crossratio

Geometric definition. Let x, x + dx, y,y + dy € K.
R —— Let ) = Y(x,x + dx,y,y + dy) be a
2-sphere through =, x + dx, y, y + dy.
ldentify 3 = CuU{oo} through a stere-
ographic projection. These four points
can be identified with four complex

o numbers z, & + dz, §, § + dy.
Definition. Let the infinitessimal cross ratio of a knot,

Qcr(x,y), be the cross ratio

(&+dz)—3 G- i dzdy

Y

(Z+dr) — (§+dy) §—(G+dy) (F=9)

5
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| nfinitessmal crossratio

Geometric definition. Let x, x + dx, y,y + dy € K.
R —— Let ) = Y(x,x + dx,y,y + dy) be a
2-sphere through =, x + dx, y, y + dy.
ldentify 3 = CuU{oo} through a stere-
ographic projection. These four points
can be identified with four complex

o numbers z, & + dz, §, § + dy.
Definition. Let the infinitessimal cross ratio of a knot,

Qcr(x,y), be the cross ratio

(&+dz)—3 G- i dzdy
(i +do) = (G+dy) §—(G+dy) (T-9)
The four complex numbers are not uniquely determined. But the cross
ratio is well-defined. We need the orientation of J.

5
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Conformal angle and

Definition. (Doyle and Schramm)
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Definition. (Doyle and Schramm)

« Let C'(z, z,y) be a circle tangent
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Conformal angle and

Definition. (Doyle and Schramm)

« Let C'(z, z,y) be a circle tangent
to K at x though v.

« Let C'(y, y, x) be acircle tangent
to K at y through z.
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Conformal angle and

Definition. (Doyle and Schramm)

« Let C'(x, x,y) be a circle tangent
to K at x though v.

« Let Ok (x,y) be the angle between

C(x,z,y)and C(y,y,z), and call
It the conformal angle between «

and v.
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Conformal angle and

Definition. (Doyle and Schramm)

« Let C'(x, x,y) be a circle tangent
to K at x though v.

Let O (x,y) be the angle between

C(x,z,y)and C(y,y,z), and call
It the conformal angle between «

and v.

The absolute value of the infinitesimal cross ration €2 is equal to
dxdy

‘ 2 The argument of €2 is equal to Ox (x, y).
L —Y
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Conformal angle and

Definition. (Doyle and Schramm)

« Let C'(x, x,y) be a circle tangent
to K at x though v.

Let O (x,y) be the angle between

C(x,z,y)and C(y,y,z), and call
It the conformal angle between «

and v.

The absolute value of the infinitesimal cross ration €2 is equal to
dxdy

‘ 2 The argument of €2 is equal to Ox (x, y).
L —Y

dxdy

z —y|?

Proposition. Q(z,y) = % (=¥
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Proposition (Doyle and Schramm’s cosine formula)

1 —cosf
EP(K) = // cos Ok (, y) dxdy.
K x K\

z — y|?
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Proposition (Doyle and Schramm’s cosine formula)

— v,
// COS K(Q»’E,y) dedy.
K x K\ ‘CI? _ y‘

dxdy
z —y|*

Recall Q(z,y) = e¥x @)
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Proposition (Doyle and Schramm’s cosine formula)

— v,
// COS K(Q»’E,y) dedy.
K x K\ ‘CI? _ y‘

dxdy
z —y|*

Proposition FE!? // (|1Q0r| — e Qcr).
K x K\

Recall Q(z,y) = e¥x @)
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e {2 and a canonical symplectic form

Recall every 7™ M admits a “canonical symplectic form”
(locally wy; = Z dg; A dp;), which is exact

(wy = —d Y pidgy).
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e {2 and a canonical symplectic form

Recall every 7™ M admits a “canonical symplectic form”
(locally wy; = Z dg; A dp;), which is exact

(wy = —d ) pidg,).

f;3)<;93\\1l Eéjhfsﬁ
Tof% ,
U {p} x (53 \ {pr}) | Stgereo U {p} x R3 = U T*SS

peSs peS3 peS3
wgs IS Invariant under the diagonal action of a Mdobius transformation.
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e {2 and a canonical symplectic form

Recall every 7™ M admits a “canonical symplectic form”
(locally wy; = Z dg; A dp;), which is exact

(wy = —d ) pidg,).

f;3)<;93\\1l Eéjhfsﬁ
Tof% ,
U {p} x (53 \ {pr}) | Stgereo U {p} x R3 = U T*SS

peSs peS3 peS3
wgs IS Invariant under the diagonal action of a Mdobius transformation.

Inclusion : : K x K\ A «— S? x S5\ A,

o |
Proposition ReQ(z,y) = —§L*w53.
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Semi-Riemannian str. of S? x 5%\ A

PUt S(3,0) == {50 C $3) = §3 x S8\ A.
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Semi-Riemannian str. of S° x S°\ A
Put S(3,0) := {S% € S} = S5 x S5\ A.

Proposition 4 a semi-Riemannian structure (i.e. each
TxS(3,0) has an indefinite metric) of signature (3, 3).
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Semi-Riemannian str. of S° x S°\ A
Put S(3,0) := {S% € S} = S5 x S5\ A.

Proposition 4 a semi-Riemannian structure (i.e. each
TxS(3,0) has an indefinite metric) of signature (3, 3).
It is invariant under Maobius transformations.

Proof: There are three ways.
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Semi-Riemannian str. of S° x S°\ A
Put S(3,0) := {S° € S°} = 55 x S3\ A.
Proposition 4 a semi-Riemannian structure (i.e. each
TxS(3,0) has an indefinite metric) of signature (3, 3).

It IS Invariant under Mobius transformations.

Proof: There are three ways.

« Homogeneous space
S(3,0) = S0O(4,1)/S0O(3) x SO(1,1).

COE 07/2005 - p.14/16



Semi-Riemannian str. of S° x S°\ A
Put S(3,0) := {S% € S} = S5 x S5\ A.

Proposition 4 a semi-Riemannian structure (i.e. each
TxS(3,0) has an indefinite metric) of signature (3, 3).
Proof: There are three ways.

Pllcker coordinates.
Let R*! be the Minkowski space
and V' be the light cone.

S(3,0) = {2-plane IT c R*!|0 ¢
II,IT N V transversely} c R A
Rél,l e R4’6.

COE 07/2005 - p.14/16



Semi-Riemannian str. of S? x 5%\ A
Put S(3,0) := {S° € S°} = 55 x S3\ A.
Proposition 4 a semi-Riemannian structure (i.e. each
TxS(3,0) has an indefinite metric) of signature (3, 3).

Proof: There are three ways.
= 6 pencils of SY c S!, 3 space-like and 3 time-like.
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Je () asareaform
Let v be a composite

v K x K\ A <53 xS\ A= 8(3,0). Then
v(K x K\ A)isasurface in §(3,0).
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Je () asareaform
Let v be a composite

v K x K\ A <53 xS\ A= 8(3,0). Then
v(K x K\ A)isasurface in §(3,0).

Theorem. Its “area element” w.r.t. the semi-Riem. str. IS
given by

<’Uy, vx>4,6 <vy7 vy>4,6
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Let v be a composite

v K x K\ A <53 xS\ A= 8(3,0). Then
v(K x K\ A)isasurface in §(3,0).

Theorem. Its “area element” w.r.t. the semi-Riem. str. IS
given by

/

<’Ua;, ’Ua;>4,6 <Ua;7 ’Uy>4,6
<’Uy, vx>4,6 <vy7 vy>4,6

e () asarea form

dxdy = 2v/—1 Re Q).

Corollary. Let; U, be a 2-component link. Then the area of
v(11 X 72) C S(3,0) is equal to 0.
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Sm () asareaform

The imaginary part Sm €2 of the infinitesimal cross ratio
does not have a nice global interpretation.
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Sm () asareaform

The imaginary part Sm €2 of the infinitesimal cross ratio
does not have a nice global interpretation.

Sm 2 may be singular at (z,y) € K x K \ A where the
conformal angle 6 (x, y) vanishes.

sin Ok (x, y)dxdy

Recall Sm () = >
z — 9
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Sm () asareaform

The imaginary part Sm €2 of the infinitesimal cross ratio
does not have a nice global interpretation.

Sm 2 may be singular at (z,y) € K x K \ A where the
conformal angle 6 (x, y) vanishes.

sin Ok (x, y)dxdy
z—y*
If we consider S® as the boundary of the hyperbolic 4-space

H*, the imaginary part of the infinitesimal cross ratio is
locally equal to the “transversal area form” of geodesics In

H* joining x and v.

Recall Sm ) =
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