Conformal geometry of knots

Jun O'Hara
Rémi Langevin
ohara@comp.metro-u.ac.jp
Remi. Langevin@u-bourgogne.fr

Department of Mathematics, Tokyo Metropolitan University Institut de Mathématiques de Bourgogne, Université de Bourgogne

Table of Contents

Energy of knots, $E_{\circ}^{(2)}$.
© Generalization of electrostatic energy of charged knots.

Table of Contents

Energy of knots, $E_{\circ}^{(2)}$.
(a) Generalization of electrostatic energy of charged knots. © $E_{0}^{(2)}$ is invariant under Möbius transformations.

Table of Contents

Energy of knots, $E_{\circ}^{(2)}$.
Generalization of electrostatic energy of charged knots.
I $E_{0}^{(2)}$ is invariant under Möbius transformations.
Conformal geometry (Joint work with R. Langevin).
a Infinitesimal cross ratio Ω, which is a complex valued 2-form on $K \times K \backslash \triangle$.

Table of Contents

Energy of knots, $E_{\circ}^{(2)}$.
Generalization of electrostatic energy of charged knots.
』 $E_{0}^{(2)}$ is invariant under Möbius transformations.
Conformal geometry (Joint work with R. Langevin).
Is Infinitesimal cross ratio Ω, which is a complex valued 2-form on $K \times K \backslash \triangle$.
I It is invariant under Möbius transformations.

Table of Contents

Energy of knots, $E_{\circ}^{(2)}$.
(a) Generalization of electrostatic energy of charged knots.

■ $E_{0}^{(2)}$ is invariant under Möbius transformations.
Conformal geometry (Joint work with R. Langevin).
a Infinitesimal cross ratio Ω, which is a complex valued 2-form on $K \times K \backslash \triangle$.
Is It is invariant under Möbius transformations.
a The meanings of its real and imaginary parts \Longleftarrow symplectic form and area elements

Table of Contents

Energy of knots, $E_{\circ}^{(2)}$.
Generalization of electrostatic energy of charged knots.
■ $E_{0}^{(2)}$ is invariant under Möbius transformations.
Conformal geometry (Joint work with R. Langevin).
Infinitesimal cross ratio Ω, which is a complex valued 2-form on $K \times K \backslash \triangle$.
Is It is invariant under Möbius transformations.
a The meanings of its real and imaginary parts \Longleftarrow symplectic form and area elements
Tools: Minkowski space, semi-Riemannian structure of the space of 0 -spheres in S^{3}, and pencils of codimension 1 spheres.

Motivation of energy of knots

Problem (Fukuhara, Sakuma)
Define an "energy" e on the space of knots.

Motivation of energy of knots

Problem (Fukuhara, Sakuma)
a Define an "energy" e on the space of knots.
Define a "canonical position" for each knot type, which is an embedding that attains the minimum value of the "energy" within its isotopy class.

Motivation of energy of knots

Problem (Fukuhara, Sakuma)
a Define an "energy" e on the space of knots.
D Define a "canonical position" for each knot type, which is an embedding that attains the minimum value of the "energy" within its isotopy class.
a We call it an e-minimizer.

Our strategy

A conceptual illustration

Our strategy

The complement is the set of embeddings, i.e. the space of knots.

Our strategy

Each "cell" corresponds to a knot type, as two points in the space of knots can be connected by a path if and only if two corresponding knots are ambient isotopic.

Our strategy

ع
 Our strategy

Given a knot.

Our strategy

- Our strategy

Deform it along the gradient flow of the "energy" $e:\{$ knots $\} \rightarrow \mathbb{R}$.

Our strategy

- Our strategy

If we are lucky the knot might reach an e minimizer, which is a "canonical position" of that knot type.

Our strategy

- Required property of our functional

In order to keep the knot type unchanged during the deformation process,

crossing changes should be avoided!

Our strategy

Required property of our functional

Definition.

e is "self-repulsive" def. $\mathbb{\imath}$
$e(K)$ blows up as a knot K degenerates to a singular knot with double points.
We say that e is an energy of knots if it is self-repulsive.

Electrostatic energy of charged knots

Electrostatic energy of charged knots:
$" E "(K)=\iint_{K \times K} \frac{d x d y}{|x-y|}$

Electrostatic energy of charged knots

Electrostatic energy of charged knots:
$" E "(K)=\iint_{K \times K} \frac{d x d y}{|x-y|}=\infty(\forall K)$

Electrostatic energy of charged knots

Electrostatic energy of charged knots:
" $E "(K)=\iint_{K \times K} \frac{d x d y}{|x-y|}=\infty(\forall K)$
A trick " $\infty-\infty$ " produces a finite valued functional $E^{(1)}$.

Electrostatic energy of charged knots

Electrostatic energy of charged knots:
" $E "(K)=\iint_{K \times K} \frac{d x d y}{|x-y|}=\infty(\forall K)$
A trick " $\infty-\infty$ " produces a finite valued functional $E^{(1)}$. But $E^{(1)}(\widehat{K})<\infty$ for a singular knot \widehat{K} with double points.

Electrostatic energy of charged knots

Electrostatic energy of charged knots:
$" E "(K)=\iint_{K \times K} \frac{d x d y}{|x-y|}=\infty(\forall K)$
A trick " $\infty-\infty$ " produces a finite valued functional $E^{(1)}$. But $E^{(1)}(\widehat{K})<\infty$ for a singular knot \widehat{K} with double points.

Increase the power of $|x-y|$ in the integrand to produce a self-repulsive energy.

Electrostatic energy of charged knots

Electrostatic energy of charged knots:
" E " $(K)=\iint_{K \times K} \frac{d x d y}{|x-y|}=\infty(\forall K)$
A trick " $\infty-\infty$ " produces a finite valued functional $E^{(1)}$.
But $E^{(1)}(\widehat{K})<\infty$ for a singular knot \widehat{K} with double points.

Increase the power of $|x-y|$ in the integrand to produce a self-repulsive energy.
$2 \leq$ the power $<3 \Longrightarrow$ a well-defined energy.

Definition of $E_{0}^{(2)}$

Let $\delta_{K}(x, y)$ denote the arc-length between x and y.

Definition of $E_{0}^{(2)}$

- Let $\delta_{K}(x, y)$ denote the arc-length between x and y.

$$
E_{\circ}^{(2)}(K)=\lim _{\varepsilon \rightarrow+0}\left(\iint_{\left\{\delta_{K}(x, y) \geq \varepsilon\right\} \subset K \times K} \frac{d x d y}{|x-y|^{2}}-\frac{2}{\varepsilon}\right)
$$

We assumed that Length $(K)=1$ in the above.

Definition of $E_{0}^{(2)}$

- Let $\delta_{K}(x, y)$ denote the arc-length between x and y.

$$
E_{\circ}^{(2)}(K)=\lim _{\varepsilon \rightarrow+0}\left(\iint_{\left\{\delta_{K}(x, y) \geq \varepsilon\right\} \subset K \times K} \frac{d x d y}{|x-y|^{2}}-\frac{2}{\varepsilon}\right)
$$

We assumed that Length $(K)=1$ in the above.

$$
E_{\circ}^{(2)}(K)=-4+\iint_{K \times K \backslash \triangle}\left(\frac{1}{|x-y|^{2}}-\frac{1}{\delta_{K}(x, y)^{2}}\right) d x d y .
$$

Properties of $E_{0}^{(2)}$

Theorem (Freedman-He-Wang) $E_{\circ}^{(2)}$ is conformally invariant, i.e. if T is a Möbius transformation of $\mathbb{R}^{3} \cup\{\infty\}$ then $E_{\circ}^{(2)}(T(K))=E_{\circ}^{(2)}(K) \quad \forall K$.

Properties of $E_{0}^{(2)}$

Theorem (Freedman-He-Wang) $E_{\circ}^{(2)}$ is conformally invariant, i.e. if T is a Möbius transformation of $\mathbb{R}^{3} \cup\{\infty\}$ then $E_{\circ}^{(2)}(T(K))=E_{\circ}^{(2)}(K) \quad \forall K$.

Theorem (Freedman-He-Wang) There exists an $E_{\circ}^{(2)}$-minimizer for any prime knot type.

Properties of $E_{0}^{(2)}$

Theorem (Freedman-He-Wang) $E_{\circ}^{(2)}$ is conformally invariant, i.e. if T is a Möbius transformation of $\mathbb{R}^{3} \cup\{\infty\}$ then $E_{\circ}^{(2)}(T(K))=E_{\circ}^{(2)}(K) \quad \forall K$.

Theorem (Freedman-He-Wang) There exists an $E_{\circ}^{(2)}$-minimizer for any prime knot type.
Prime $=$ Not composite. A composite knot:

Properties of $E_{0}^{(2)}$

Theorem (Freedman-He-Wang) $E_{\circ}^{(2)}$ is conformally invariant, i.e. if T is a Möbius transformation of $\mathbb{R}^{3} \cup\{\infty\}$ then $E_{\circ}^{(2)}(T(K))=E_{\circ}^{(2)}(K) \quad \forall K$.

Theorem (Freedman-He-Wang) There exists an $E_{\circ}^{(2)}$-minimizer for any prime knot type.

Conjecture (Kusner-Sullivan) There are no $E_{\circ}^{(2)}$-minimizers for any composite knot types. Numerical experiments imply

Numerical experiments by Kusner and Sullivan

. Joint work with Rémi Langevin

Infinitesimal cross ratio

- Geometric definition. Let $x, x+d x, y, y+d y \in K$.

Infinitesimal cross ratio

Geometric definition. Let $x, x+d x, y, y+d y \in K$.

$\Sigma(x, x+d x, y, y+d y)$

Let $\Sigma=\Sigma(x, x+d x, y, y+d y)$ be a 2 -sphere through $x, x+d x, y, y+d y$.

Infinitesimal cross ratio

- Geometric definition. Let $x, x+d x, y, y+d y \in K$.

Let $\Sigma=\Sigma(x, x+d x, y, y+d y)$ be a 2 -sphere through $x, x+d x, y, y+d y$. Identify $\Sigma \cong \mathbb{C} \cup\{\infty\}$ through a stereographic projection. These four points can be identified with four complex numbers $\tilde{x}, \tilde{x}+\widetilde{d x}, \tilde{y}, \tilde{y}+\widetilde{d y}$.

Infinitesimal cross ratio

- Geometric definition. Let $x, x+d x, y, y+d y \in K$.

Let $\Sigma=\Sigma(x, x+d x, y, y+d y)$ be a 2-sphere through $x, x+d x, y, y+d y$. Identify $\Sigma \cong \mathbb{C} \cup\{\infty\}$ through a stereographic projection. These four points can be identified with four complex numbers $\tilde{x}, \tilde{x}+\widetilde{d x}, \tilde{y}, \tilde{y}+\widetilde{d y}$.
Definition. Let the infinitesimal cross ratio of a knot, $\Omega_{C R}(x, y)$, be the cross ratio
$\frac{(\tilde{x}+\widetilde{d x})-\tilde{x}}{(\tilde{x}+\widetilde{d x})-(\tilde{y}+\widetilde{d y})}: \frac{\tilde{y}-\tilde{x}}{\tilde{y}-(\tilde{y}+\widetilde{d y})} \sim \frac{\widetilde{d x} \widetilde{d y}}{(\tilde{x}-\tilde{y})^{2}}$.

Infinitesimal cross ratio

- Geometric definition. Let $x, x+d x, y, y+d y \in K$.

Let $\Sigma=\Sigma(x, x+d x, y, y+d y)$ be a 2-sphere through $x, x+d x, y, y+d y$. Identify $\Sigma \cong \mathbb{C} \cup\{\infty\}$ through a stereographic projection. These four points can be identified with four complex numbers $\tilde{x}, \tilde{x}+\widetilde{d x}, \tilde{y}, \tilde{y}+\widetilde{d y}$.
Definition. Let the infinitesimal cross ratio of a knot, $\Omega_{C R}(x, y)$, be the cross ratio

$$
\frac{(\tilde{x}+\widetilde{d x})-\tilde{x}}{(\tilde{x}+\widetilde{d x})-(\tilde{y}+\widetilde{d y})}: \frac{\tilde{y}-\tilde{x}}{\tilde{y}-(\tilde{y}+\widetilde{d y})} \sim \frac{\widetilde{d x} \widetilde{d y}}{(\tilde{x}-\tilde{y})^{2}}
$$

The four complex numbers are not uniquely determined. But the cross ratio is well-defined. We need the orientation of Σ.

Conformal angle and Ω

Definition. (Doyle and Schramm)

Conformal angle and Ω

Definition. (Doyle and Schramm)

La Let $C(x, x, y)$ be a circle tangent to K at x though y.

Conformal angle and Ω

Definition. (Doyle and Schramm)

ㄸ Let $C(x, x, y)$ be a circle tangent to K at x though y.
as Let $C(y, y, x)$ be a circle tangent to K at y through x.

Conformal angle and Ω

Definition. (Doyle and Schramm)

s. Let $C(x, x, y)$ be a circle tangent to K at x though y.
La Let $\theta_{K}(x, y)$ be the angle between $C(x, x, y)$ and $C(y, y, x)$, and call it the conformal angle between x and y.

Conformal angle and Ω

Definition. (Doyle and Schramm)
wet $C(x, x, y)$ be a circle tangent to K at x though y.
as Let $\theta_{K}(x, y)$ be the angle between $C(x, x, y)$ and $C(y, y, x)$, and call it the conformal angle between x and y.

- The absolute value of the infinitesimal cross ration Ω is equal to $\frac{d x d y}{|x-y|^{2}}$. The argument of Ω is equal to $\theta_{K}(x, y)$.

Conformal angle and Ω

Definition. (Doyle and Schramm)
wet $C(x, x, y)$ be a circle tangent to K at x though y.
Lat $\theta_{K}(x, y)$ be the angle between $C(x, x, y)$ and $C(y, y, x)$, and call it the conformal angle between x and y.

- The absolute value of the infinitesimal cross ration Ω is equal to $\frac{d x d y}{|x-y|^{2}}$. The argument of Ω is equal to $\theta_{K}(x, y)$.
- Proposition. $\Omega(x, y)=e^{i \theta_{K}(x, y)} \frac{d x d y}{|x-y|^{2}}$.

Proposition (Doyle and Schramm's cosine formula)

$$
E_{\circ}^{(2)}(K)=\iint_{K \times K \backslash \triangle} \frac{1-\cos \theta_{K}(x, y)}{|x-y|^{2}} d x d y .
$$

Proposition (Doyle and Schramm's cosine formula)

$E_{\circ}^{(2)}(K)=\iint_{K \times K \backslash \triangle} \frac{1-\cos \theta_{K}(x, y)}{|x-y|^{2}} d x d y$.
Recall $\Omega(x, y)=e^{i \theta_{K}(x, y)} \frac{d x d y}{|x-y|^{2}}$.

Proposition (Doyle and Schramm's cosine formula)
$E_{\circ}^{(2)}(K)=\iint_{K \times K \backslash \triangle} \frac{1-\cos \theta_{K}(x, y)}{|x-y|^{2}} d x d y$.
$\operatorname{Recall} \Omega(x, y)=e^{i \theta_{K}(x, y)} \frac{d x d y}{|x-y|^{2}}$.
Proposition $E_{\circ}^{(2)}(K)=\iint_{K \times K \backslash \triangle}\left(\left|\Omega_{C R}\right|-\Re e \Omega_{C R}\right)$.

$\Re e \Omega$ and a canonical symplectic form

Recall every $T^{*} M$ admits a "canonical symplectic form"
(locally $\omega_{M}=\sum d q_{i} \wedge d p_{i}$), which is exact $\left(\omega_{M}=-d \sum p_{i} d q_{i}\right)$.

$\Re e \Omega$ and a canonical symplectic form

Recall every $T^{*} M$ admits a "canonical symplectic form" (locally $\omega_{M}=\sum d q_{i} \wedge d p_{i}$), which is exact $\left(\omega_{M}=-d \sum p_{i} d q_{i}\right)$. $S^{3} \times S^{3} \backslash \triangle \cong T^{*} S^{3}$
$\bigcup\{p\} \times\left(S^{3} \backslash\{p\}\right) \stackrel{\text { id } \times \text { stereo. }}{\cong}$.

$$
p \in S^{3}
$$

$$
\bigcup_{p \in S^{3}}\{p\} \times \mathbb{R}^{3} \cong \bigcup_{p \in S^{3}} T_{p}^{*} S^{3}
$$

- $\omega_{S^{3}}$ is invariant under the diagonal action of a Möbius transformation.

$\Re e \Omega$ and a canonical symplectic form

Recall every $T^{*} M$ admits a "canonical symplectic form" (locally $\omega_{M}=\sum d q_{i} \wedge d p_{i}$), which is exact $\left(\omega_{M}=-d \sum p_{i} d q_{i}\right)$. $S^{3} \times S^{3} \backslash \triangle \cong T^{*} S^{3}$
$\bigcup\{p\} \times\left(S^{3} \backslash\{p\}\right) \stackrel{\text { id } \times \text { stereo. }}{\approx}$.

$$
p \in S^{3}
$$

$$
\bigcup_{p \in S^{3}}\{p\} \times \mathbb{R}^{3} \cong \bigcup_{p \in S^{3}} T_{p}^{*} S^{3}
$$

$\omega_{S^{3}}$ is invariant under the diagonal action of a Möbius transformation. Inclusion $\iota: K \times K \backslash \triangle \hookrightarrow S^{3} \times S^{3} \backslash \triangle$.

$\Re e \Omega$ and a canonical symplectic form

Recall every $T^{*} M$ admits a "canonical symplectic form" (locally $\omega_{M}=\sum d q_{i} \wedge d p_{i}$), which is exact $\left(\omega_{M}=-d \sum p_{i} d q_{i}\right)$. $S^{3} \times S^{3} \backslash \triangle \cong T^{*} S^{3}$

$$
\bigcup\{p\} \times\left(S^{3} \backslash\{p\}\right) \stackrel{\text { id } \times \text { stereo. }}{\cong}
$$

$$
\bigcup_{p \in S^{3}}\{p\} \times \mathbb{R}^{3} \cong \bigcup_{p \in S^{3}} T_{p}^{*} S^{3}
$$

$p \in S^{3}$
$\omega_{S^{3}}$ is invariant under the diagonal action of a Möbius transformation. Inclusion $\iota: K \times K \backslash \triangle \hookrightarrow S^{3} \times S^{3} \backslash \triangle$.

Proposition $\Re \mathfrak{e} \Omega(x, y)=-\frac{1}{2} \iota^{*} \omega_{S^{3}}$.

Semi-Riemannian str. of $S^{3} \times S^{3} \backslash \triangle$

Put $\mathcal{S}(3,0):=\left\{S^{0} \subset S^{3}\right\} \cong S^{3} \times S^{3} \backslash \triangle$.

Semi-Riemannian str. of $S^{3} \times S^{3}$

Put $\mathcal{S}(3,0):=\left\{S^{0} \subset S^{3}\right\} \cong S^{3} \times S^{3} \backslash \triangle$.
Proposition \exists a semi-Riemannian structure (i.e. each $T_{\Sigma} \mathcal{S}(3,0)$ has an indefinite metric) of signature $(3,3)$.

Semi-Riemannian str. of $S^{3} \times S^{3}$

Put $\mathcal{S}(3,0):=\left\{S^{0} \subset S^{3}\right\} \cong S^{3} \times S^{3} \backslash \triangle$.
Proposition \exists a semi-Riemannian structure (i.e. each $T_{\Sigma} \mathcal{S}(3,0)$ has an indefinite metric) of signature $(3,3)$. It is invariant under Möbius transformations.

Semi-Riemannian str. of $S^{3} \times S^{3}$

Put $\mathcal{S}(3,0):=\left\{S^{0} \subset S^{3}\right\} \cong S^{3} \times S^{3} \backslash \triangle$.
Proposition \exists a semi-Riemannian structure (i.e. each $T_{\Sigma} \mathcal{S}(3,0)$ has an indefinite metric) of signature $(3,3)$. It is invariant under Möbius transformations.
Proof: There are three ways.

Semi-Riemannian str. of $S^{3} \times S^{3}$

Put $\mathcal{S}(3,0):=\left\{S^{0} \subset S^{3}\right\} \cong S^{3} \times S^{3} \backslash \triangle$.
Proposition \exists a semi-Riemannian structure (i.e. each $T_{\Sigma} \mathcal{S}(3,0)$ has an indefinite metric) of signature $(3,3)$.
It is invariant under Möbius transformations.
Proof: There are three ways.
Homogeneous space
$\mathcal{S}(3,0) \cong S O(4,1) / S O(3) \times S O(1,1)$.

Semi-Riemannian str. of $S^{3} \times S^{3} \backslash \triangle$

- Put $\mathcal{S}(3,0):=\left\{S^{0} \subset S^{3}\right\} \cong S^{3} \times S^{3} \backslash \triangle$.
- Proposition \exists a semi-Riemannian structure (i.e. each $T_{\Sigma} \mathcal{S}(3,0)$ has an indefinite metric) of signature $(3,3)$.
- Proof: There are three ways.

Plücker coordinates.
Let $\mathbb{R}^{4,1}$ be the Minkowski space and V be the light cone.
$\mathcal{S}(3,0) \cong\left\{2\right.$-plane $\Pi \subset \mathbb{R}^{4,1} \mid 0 \in$ $\Pi, \Pi \cap V$ transversely $\} \subset \mathbb{R}^{4,1} \wedge$ $\mathbb{R}^{4,1} \cong \mathbb{R}^{4,6}$.

Semi-Riemannian str. of $S^{3} \times S^{3} \backslash \triangle$

- Put $\mathcal{S}(3,0):=\left\{S^{0} \subset S^{3}\right\} \cong S^{3} \times S^{3} \backslash \triangle$.

Proposition \exists a semi-Riemannian structure (i.e. each $T_{\Sigma} \mathcal{S}(3,0)$ has an indefinite metric) of signature $(3,3)$. Proof: There are three ways.
a 6 pencils of $S^{0} \subset S^{1}, 3$ space-like and 3 time-like.

$\Re e \Omega$ as area form

Let v be a composite
$v: K \times K \backslash \triangle \hookrightarrow S^{3} \times S^{3} \backslash \triangle \stackrel{\cong}{\leftrightarrows} \mathcal{S}(3,0)$. Then $\boldsymbol{v}(K \times K \backslash \triangle)$ is a surface in $\mathcal{S}(3,0)$.

$\Re e \Omega$ as area form

Let v be a composite
$v: K \times K \backslash \triangle \hookrightarrow S^{3} \times S^{3} \backslash \triangle \stackrel{\cong}{\leftrightarrows} \mathcal{S}(3,0)$. Then $\boldsymbol{v}(K \times K \backslash \triangle)$ is a surface in $\mathcal{S}(3,0)$.

Theorem. Its "area element" w.r.t. the semi-Riem. str. is given by

$$
\sqrt{\left\lvert\, \begin{array}{cc}
\left\langle\boldsymbol{v}_{x}, \boldsymbol{v}_{x}\right\rangle_{4,6} & \left\langle\boldsymbol{v}_{x}, \boldsymbol{v}_{y}\right\rangle_{4,6} \\
\left\langle\boldsymbol{v}_{y}, \boldsymbol{v}_{x}\right\rangle_{4,6} & \left\langle\boldsymbol{v}_{y}, \boldsymbol{v}_{y}\right\rangle_{4,6}
\end{array}\right.} d x d y=2 \sqrt{-1} \Re \mathfrak{e} \Omega
$$

$\Re e \Omega$ as area form

Let \boldsymbol{v} be a composite

$v: K \times K \backslash \triangle \hookrightarrow S^{3} \times S^{3} \backslash \triangle \stackrel{\cong}{\leftrightarrows} \mathcal{S}(3,0)$. Then $\boldsymbol{v}(K \times K \backslash \triangle)$ is a surface in $\mathcal{S}(3,0)$.

Theorem. Its "area element" w.r.t. the semi-Riem. str. is given by

$$
\sqrt{\left\lvert\, \begin{array}{cc}
\left\langle\boldsymbol{v}_{x}, \boldsymbol{v}_{x}\right\rangle_{4,6} & \left\langle\boldsymbol{v}_{x}, \boldsymbol{v}_{y}\right\rangle_{4,6} \mid \\
\left\langle\boldsymbol{v}_{y}, \boldsymbol{v}_{x}\right\rangle_{4,6} & \left\langle\boldsymbol{v}_{y}, \boldsymbol{v}_{y}\right\rangle_{4,6}
\end{array}\right.} d x d y=2 \sqrt{-1} \Re \mathfrak{e} \Omega
$$

Corollary. Let $\gamma_{1} \cup \gamma_{2}$ be a 2 -component link. Then the area of $\boldsymbol{v}\left(\gamma_{1} \times \gamma_{2}\right) \subset \mathcal{S}(3,0)$ is equal to 0 .

$\Im m \Omega$ as area form

The imaginary part $\Im \mathfrak{m} \Omega$ of the infinitesimal cross ratio does not have a nice global interpretation.

厅m Ω as area form

The imaginary part $\Im \mathfrak{m} \Omega$ of the infinitesimal cross ratio does not have a nice global interpretation.
$\Im \mathfrak{m} \Omega$ may be singular at $(x, y) \in K \times K \backslash \triangle$ where the conformal angle $\theta_{K}(x, y)$ vanishes.
Recall $\Im \mathfrak{m} \Omega=\frac{\sin \theta_{K}(x, y) d x d y}{|x-y|^{2}}$.

$\Im m \Omega$ as area form

The imaginary part $\Im \mathfrak{m} \Omega$ of the infinitesimal cross ratio does not have a nice global interpretation.
$\Im \mathfrak{m} \Omega$ may be singular at $(x, y) \in K \times K \backslash \triangle$ where the conformal angle $\theta_{K}(x, y)$ vanishes.
Recall $\Im m \Omega=\frac{\sin \theta_{K}(x, y) d x d y}{|x-y|^{2}}$.
If we consider S^{3} as the boundary of the hyperbolic 4 -space \mathbb{H}^{4}, the imaginary part of the infinitesimal cross ratio is locally equal to the "transversal area form" of geodesics in \mathbb{H}^{4} joining x and y.

$\Im m \Omega$ as area form

The imaginary part $\Im \mathfrak{m} \Omega$ of the infinitesimal cross ratio does not have a nice global interpretation.
$\Im \mathfrak{m} \Omega$ may be singular at $(x, y) \in K \times K \backslash \triangle$ where the conformal angle $\theta_{K}(x, y)$ vanishes.
Recall $\Im m \Omega=\frac{\sin \theta_{K}(x, y) d x d y}{|x-y|^{2}}$.
If we consider S^{3} as the boundary of the hyperbolic 4 -space \mathbb{H}^{4}, the imaginary part of the infinitesimal cross ratio is locally equal to the "transversal area form" of geodesics in \mathbb{H}^{4} joining x and y.

