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Motivation of energy of knots
Problem (Fukuhara, Sakuma)

Define an “energy” � on the space of knots.

Define a “canonical position” for each knot type, which
is an embedding that attains the minimum value of the
“energy” within its isotopy class.

We call it an �-minimizer.
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Our strategy
A conceptual illustration

Problem
(Fukuhara, Sakuma)

Define an “energy” � on
the space of knots.

Define a “canonical po-
sition” for each knot
type, which is an em-
bedding that attains the
minimum value of the
“energy” within its iso-
topy class.
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Our strategy
A conceptual illustration

The complement is the
set of embeddings, i.e.
the space of knots.
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Our strategy
A conceptual illustration

Each “cell” corresponds
to a knot type, as two
points in the space of
knots can be connected
by a path if and only
if two corresponding
knots are ambient iso-
topic.
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Our strategy
Our strategy

Given a knot.
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Our strategy
Our strategy

Deform it along the gra-
dient flow of the “en-
ergy” � � �knots� � � .
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Our strategy
Our strategy

If we are lucky the
knot might reach an �-
minimizer, which is a
“canonical position” of
that knot type.
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Our strategy
Required property of our functional

In order to keep the
knot type unchanged
during the deformation
process,
crossing changes
should be avoided!
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Our strategy
Required property of our functional

Definition.

� is “self-repulsive”

def. �

���� blows up as a knot
� degenerates to a sin-

gular knot with double
points.

We say that � is an
energy of knots if it is
self-repulsive.
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Electrostatic energy of charged knots
Electrostatic energy of charged knots:

“�”��� �
� �
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����
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 ����
A trick “
	
” produces a finite valued functional ����.
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Electrostatic energy of charged knots
Electrostatic energy of charged knots:

“�”��� �
� �

���

����

��	 �� �
 ����
A trick “
	
” produces a finite valued functional ����.

But ����� ��� �
 for a singular knot �� with double
points.

Increase the power of ��	 �� in the integrand to produce a
self-repulsive energy.

� � the power � � � a well-defined energy.

COE 07/2005 – p.5/16



Definition of E���
Æ

Let Æ���� �� denote the arc-length between � and �.
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Properties of E���
Æ

Theorem (Freedman-He-Wang) ����
Æ is conformally

invariant, i.e. if � is a Möbius transformation of � � � �
�

then ����
Æ �� ���� � �

���
Æ ��� ��
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Theorem (Freedman-He-Wang) There exists an

�
���
Æ -minimizer for any prime knot type.

Prime � Not composite. A composite knot:

COE 07/2005 – p.7/16



Properties of E���
Æ

Theorem (Freedman-He-Wang) ����
Æ is conformally

invariant, i.e. if � is a Möbius transformation of � � � �
�

then ����
Æ �� ���� � �

���
Æ ��� ��


Theorem (Freedman-He-Wang) There exists an

�
���
Æ -minimizer for any prime knot type.

Conjecture (Kusner-Sullivan) There are no

�
���
Æ -minimizers for any composite knot types.

Numerical experiments imply
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Numerical experiments by Kusner and Sullivan
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Part II. Conformal geometry
Joint work with Rémi Langevin
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Geometric definition. Let �� � ��� �� �  �� � �.
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Geometric definition. Let �� � ��� �� �  �� � �.

Let � � ���� �  ��� �� �  ��� be a

�-sphere through �� �  ��� �� �  ��.
Identify� �� � ��
� through a stere-
ographic projection. These four points
can be identified with four complex

numbers ��, �����, ��� �� ���.
Definition. Let the infinitesimal cross ratio of a knot,

������ ��, be the cross ratio

�������	 ��

�������	 ��� ���� � �� 	 ��

�� 	 ��� ���� � ������
���	 ����
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Infinitesimal cross ratio
Geometric definition. Let �� � ��� �� �  �� � �.

Let � � ���� �  ��� �� �  ��� be a

�-sphere through �� �  ��� �� �  ��.
Identify� �� � ��
� through a stere-
ographic projection. These four points
can be identified with four complex

numbers ��, �����, ��� �� ���.
Definition. Let the infinitesimal cross ratio of a knot,

������ ��, be the cross ratio

�������	 ��

�������	 ��� ���� � �� 	 ��

�� 	 ��� ���� � ������
���	 ����




The four complex numbers are not uniquely determined. But the cross
ratio is well-defined. We need the orientation of �.
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Conformal angle and �

Definition. (Doyle and Schramm)
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Definition. (Doyle and Schramm)

Let ��� �� �� be a circle tangent
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it the conformal angle between �
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Conformal angle and �

Definition. (Doyle and Schramm)

Let ��� �� �� be a circle tangent
to � at � though �.

Let ����� �� be the angle between

��� �� �� and ��� �� ��, and call
it the conformal angle between �

and �.

The absolute value of the infinitesimal cross ration � is equal to

����

��� ���

. The argument of � is equal to ����� ��.
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Conformal angle and �

Definition. (Doyle and Schramm)

Let ��� �� �� be a circle tangent
to � at � though �.

Let ����� �� be the angle between

��� �� �� and ��� �� ��, and call
it the conformal angle between �

and �.

The absolute value of the infinitesimal cross ration � is equal to

����

��� ���

. The argument of � is equal to ����� ��.

Proposition. ���� �� � ��������� ����

��� ���

.
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Proposition (Doyle and Schramm’s cosine formula)

����
Æ ��� �

� �
�����

�	 ��� ����� ��

��	 ��� ����
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Proposition (Doyle and Schramm’s cosine formula)

����
Æ ��� �

� �
�����

�	 ��� ����� ��

��	 ��� ����


Recall ���� �� � ���������
����

��	 ��� 

Proposition ����

Æ ��� �
� �

�����
������ 	 ������
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��� and a canonical symplectic form
Recall every � �� admits a “canonical symplectic form”

(locally �	 �
�
��� � ���), which is exact

(�	 � 	�
�
�����).
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��� and a canonical symplectic form
Recall every � �� admits a “canonical symplectic form”

(locally �	 �
�
��� � ���), which is exact

(�	 � 	�
�
�����).

�� � �� � � �� � ����

	��

��� � ��� � ���� id�stereo.��

�

	��

��� � �
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�


	��

� �
�
�

��� is invariant under the diagonal action of a Möbius transformation.
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�
�

��� is invariant under the diagonal action of a Möbius transformation.

Inclusion � � � �� � � �� �� � �� � �.

Proposition ������ �� � 	�
�

�����.
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Semi-Riemannian str. of �� � �
� � �

Put ���� �� �� ��� � ��� �� �� � �� � �.
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Semi-Riemannian str. of �� � �
� � �

Put ���� �� �� ��� � ��� �� �� � �� � �.

Proposition � a semi-Riemannian structure (i.e. each

������ �� has an indefinite metric) of signature ��� ��.

It is invariant under Möbius transformations.

Proof: There are three ways.
Homogeneous space

���� �� �� ����� �������� � ����� ��.
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Semi-Riemannian str. of �� � �
� � �

Put ���� �� �� ��� � ��� �� �� � �� � �.

Proposition � a semi-Riemannian structure (i.e. each

������ �� has an indefinite metric) of signature ��� ��.

Proof: There are three ways.

Plücker coordinates.
Let � ��� be the Minkowski space
and � be the light cone.

���� �� �� ��-plane � � � ��� �� �

��� � � transversely� � �
��� �

� ��� �� � ���.
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Semi-Riemannian str. of �� � �
� � �

Put ���� �� �� ��� � ��� �� �� � �� � �.

Proposition � a semi-Riemannian structure (i.e. each

������ �� has an indefinite metric) of signature ��� ��.

Proof: There are three ways.

� pencils of �� � ��, � space-like and � time-like.
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��� as area form
Let � be a composite

� � � �� � � �� �� � �� � � 
	� ���� ��. Then

��� �� � �� is a surface in ���� ��.
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��� as area form
Let � be a composite

� � � �� � � �� �� � �� � � 
	� ���� ��. Then

��� �� � �� is a surface in ���� ��.
Theorem. Its “area element” w.r.t. the semi-Riem. str. is

given by��������������� ����������

���������� ����������
���� ���� � �
�	� ���
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��� as area form
Let � be a composite

� � � �� � � �� �� � �� � � 
	� ���� ��. Then

��� �� � �� is a surface in ���� ��.
Theorem. Its “area element” w.r.t. the semi-Riem. str. is

given by��������������� ����������

���������� ����������
���� ���� � �
�	� ���


Corollary. Let �� � �� be a �-component link. Then the area of

���� � ��� � ���� �� is equal to �.
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��� as area form
The imaginary part ��� of the infinitesimal cross ratio
does not have a nice global interpretation.

COE 07/2005 – p.16/16



��� as area form
The imaginary part ��� of the infinitesimal cross ratio
does not have a nice global interpretation.

��� may be singular at ��� �� � � �� � � where the
conformal angle ����� �� vanishes.

Recall ��� �
�
� ����� ������

��	 ��� .
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conformal angle ����� �� vanishes.

Recall ��� �
�
� ����� ������

��	 ��� .

If we consider �� as the boundary of the hyperbolic �-space

� �, the imaginary part of the infinitesimal cross ratio is
locally equal to the “transversal area form” of geodesics in

� � joining � and �.
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