A Parametrisation of Teichmüller Space by Polygons

Haruko Nishi Kyushu University

and

Ken'ichi Ohshika Osaka University

Euclidean Polygon

P consists of a finite sequence of points $x_1, ..., x_n$ in E^2 together with the oriented edges

 $v_i = x_{i+1} - x_i \neq 0$, which can be regarded as a complex number for i = 1, ..., n. $(n \geq 3)$

Two polygons P and P' are congruent (resp. similar) ⇔

∃an orientation preserving isometry (resp. similarity) of E² which sends the vertices and edges of P to those of P' preserving the indices.

Moduli space of Euclidean polygons

 The space of congruence classes of Euclidean ngons is defined as

$$\{(v_1, ..., v_n) \in (\mathbf{C}^*)^n \mid v_1 + \cdot \cdot \cdot + v_n = 0 \} / U(1),$$

 The space of similarity classes of Euclidean ngons is defined as

$$\{(v_1, ..., v_n) \in (\mathbf{C}^*)^n \mid v_1 + \cdot \cdot \cdot + v_n = 0 \} / \mathbf{C}^*,$$
 which has $\dim_{\mathbf{C}} = n-2$.

Non-singular and singular polygons

 We say that a polygon is nonsingular if there is no self-intersection of its edges, and singular otherwise.

The area of polygons

The signed area Area(P) of a polygon P= $(v_1, ..., v_n)$ is given by $\text{Area}(P) = \sum v_i \wedge v_j$, where $u_i \wedge u_j = (u_i \bar{u}_j - \bar{u}_i u_j)/2$, for $u_i, u_j \in \mathbf{C}$, and the summation is taken over 0 < i < j < n.

‡ Each similarity class is represented by a polygon with Area(P)=1.

Riemann surface associated with a nonsingular polygon

identify the pairs of sides of PU-P with same indices by translations

 Σ_{P} : holomorphic curve of genus [(n-1)/2] (with one distinguished point if n is even).

 \ddagger The holomorphic structure of Σ_P does not depend on the choice of P in its similarity class.

Properties of Σ_P

- Σ_P admits a Euclidean metric with cone singularities at
 - one point of angle 2(n-2)π
 when n is odd,
 - at two points of angle (n-2)π when n is even.
- Moreover, Σ_P admits a holomorphic involution induced from the π rotation around the midpoint of an edge of P so that it is a hyperelliptic curve.
- The edges of P determine a marking of Σ_P.

♣, • : fixed points of the involution

Moduli space of hyperelliptic curves

The set of isomorphism classes of hyperelliptic curves of genus [(n-1)/2] (with one distinct point if n is even)} with marked branching points

 \cong

the set of sequences of distinct n points on CP¹ modulo PGL(2,C), which is the configuration space X(n+1) of n+1 points on CP¹

• $\dim_{\mathbf{C}} X(n+1) = n-2$

The quotient of hyperelliptic curve Σ_P by the holomorphic involution -p₀ corresponds to the vertices of P -p_i corresponds to the midpoints of the sides of P

Isomorphism we expect to obtain

Moduli space of polygons/polygons with angles

 $dim_C = n-2$

nonsingular polygons P How about globally?

i.e. To what extent can we generalise the construction to get an isomorphism? Moduli/Teichmüller space of Hyperelliptic curve

 $dim_C = n-2$

Isomorphisms we expect to obtain

Euclidean cone structures on CP¹

The quotient of hyperelliptic curve Σ_P by the holomorphic involution has a Euclidean cone structure on CP^1 induced from that of Σ_P with cone points $-p_0$ with cone angle $(n-2)\pi$ $-p_i$ with cone angle π , for $i=1,\ldots,n$. $C((n-2)\pi, \pi \times n) :=$ the set of all Euclidean cone structures on CP^1 of this type up to orientation and label preserving similarities.

Theorem (Troyanov, 1991)

There is a natural homeomorphism from $C((n-2)\pi, \pi \times n)$ to the configuration space X(n+1) of (n+1) points on CP^1 .

Marked Euclidean cone structures

 $C \subseteq C((n-2)\pi, \pi \times n)$ $t = (t_1, ..., t_n)$: a collection of disjoint smooth paths in C where t_i starts from p_0 and ends at p_i , for i=1, ..., n.

[t]: its ambient isotopy class marking

(C, [t]): a marked Euclidean cone structure.

 \hat{C} ((n-2) π , π ×n) = the set of all marked Euclidean cone structures up to similarities.

 $\hat{C}_0((n-2)\pi, \pi \times n)$ = the subspace of \hat{C} $((n-2)\pi, \pi n)$ consisting of the elements with a marking t which has edges issuing from p_0 in the order of t_1, \ldots, t_n clockwise.

The Teichmüller space of Euclidean cone structures

For a Euclidean cone structure C, we define the Teichmuller space T(C) of C by $T(C) = \{(X, \Phi) \mid X \text{ is a Euclidean cone structure,}$ $\Phi: C \to X:$ orientation preserving diffeomorphism which maps the cone points of C to the cone points of X} with label preserving} / ~

Theorem

Let $C \in C((n-2)\pi, \pi \times n)$ and $t = (t_1, ..., t_n)$ a tree of C which issues at the point p_0 in the order of $t_1, ..., t_n$ clockwise.

Then the map from T(C) to \hat{C}_0 ((n-2) π , $\pi \times n$) sending (X, Φ) to (X, Φ _{*}(t)) is bijective.

Mapping class group

- The subgroup Stab(p₀) ⊂π₀Diff⁺(S², {p₀, ...,pո}) acts on Ĉ((n-2)π, π×n) by α·(C, [t]) = (C, [α₊(t)]), for (C, [t]) ∈ Ĉ ((n-2)π, π × n), α ∈ Stab(p₀).
 - ‡ This action is compatible with the action of the mapping class group on T(C).
- Half Dehn twists σ_i (i=1 ... n) generate Stab(p₀).

An action on the space of polygons

- For a polygon P=(v₁,..., v_n) and P'=(v₁,..., v_n), we say that P' is obtained from P by a V_k-move, if
 - $v_{k}' = 2v_{k} + v_{k+1}, v_{k+1}' = -v_{k}.$
 - v_i '= v_i for $i \neq k$, k+1.
- We note that the areas of polygons are invariant under V_k-moves.

Developing a Euclidean cone structure into E²

- For a marked Euclidean cone structure (C, [t]), let P(C) be the result of cutting C along the tree t and developed into the Euclidean plane E².
 - ‡ In general, P(C) is an immersed region. Straightening its boundary, we get a polygon with angles, which is uniquely determined by (C,[t]).

 i) when there is a simple geodesic representative t.

ii) when there is no simple geodesic representative t. Q₄: The space of polygons with angles is defined as a cover of P₄ such that each vertex is allowed to have angles not necessarily in [0,2π).

Example of the same 4-gons with different angles

Main theorem (the case of n=4)

Let $P_4 = \{P = (v_1, v_2, v_3, v_4) : 4\text{-gon with Area}(P) = 1,$ $<math>v_i \land v_{i+1} \notin \mathbf{Z} \text{ for some } i \} / U(1),$

 Q_4 a space of quadrilaterals in P_4 with angles.

 $D: \hat{C}_0(2\pi, \pi \times 4) \rightarrow Q_4$ be a map which sends each marked Euclidean cone structure (C,[t]) in $\hat{C}_0(2\pi, \pi \times 4)$ to a 4-gon with angles in Q_4 by straightening its developed image obtained by cutting C along t. Let $p: Q_4 \rightarrow P_4$ be the projection obtained by forgetting the angles.

Theorem. D is injective, and p∘ D is surjective.

Corollary. The Teichmuller space of 1-pointed tori is in 1-to-1 correspondence with the space of quadrilaterals in P₄ with angles (a subspace of Q₄).

Key idea of the proof of Theorem

Lemma

Any 4-gon with area=1 satisfying $v_i \wedge v_{i+1} \notin \mathbf{Z}$ for some i can be transformed into a non-singular quadrilateral by a finite sequence of V-moves.

