Homotopy invariance of some configuration spaces

Jean-Philippe Jourdan jourdan@math.univ-lille1.fr Tokyo — 2005 July 5th - 11th

1 Statement of results

Let M be a manifold. The configuration space of k points in M is

$$\mathbb{F}_k(M) = \{ (x_1, \dots, x_k) \in M^k \mid x_i \neq x_j \}.$$

We are studying the case where the manifold M is of the particular form $A \times \mathbb{R}$.

1st result : Homotopy construction.

Let A be a manifold. There is a homotopy construction of the configuration space $\mathbb{F}_k(A \times \mathbb{R})$, $k \geq 2$, involving only the natural inclusion $\mathbb{F}_2(A) \hookrightarrow A \times A$.

2nd result : Homotopy invariance.

Let $f : A \xrightarrow{\simeq} B$ be a homotopy equivalence between two manifolds A and B. Assume that there exists a homotopy equivalence φ_f such that the following square is homotopy commutative : $\mathbb{E}_{2}(A) \xrightarrow{\sim} A^2$

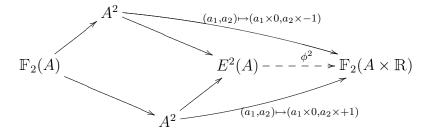
$$\begin{split} & \mathbb{F}_{2}(A) \longrightarrow A^{2} \\ & \simeq \Big| \varphi_{f} \qquad f \times f \Big| \simeq \\ & \mathbb{F}_{2}(B) \longrightarrow B^{2} \end{split}$$

Then, for every $k \geq 2$, the following spaces have the same homotopy type :

For the whole text, we fix two manifolds A and B satisfying the hypothesis above (always true if A and B are closed and 2-connected). The aim of this note is to give an overview of our construction for k = 2 and k = 3 as well as giving an idea of the underlying proofs. More complete statements and proofs can be found in «Invariance homotopique de certains espaces de configurations», math.AT/0407002.

2 Homotopy construction of $\mathbb{F}_2(A \times \mathbb{R})$ and $\mathbb{F}_3(A \times \mathbb{R})$

Define $E^2(A)$ as the homotopy colimit of the diagram $A^2 \longleftrightarrow \mathbb{F}_2(A) \hookrightarrow A^2$. In the diagram below, the outer square is homotopy commutative, hence there is an induced map $\phi^2 : E^2(A) \to \mathbb{F}_2(A \times \mathbb{R})$ commuting up to homotopy with the rest of the diagram.



2.1 Proposition The map $\phi^2 : E^2(A) \to \mathbb{F}_2(A \times \mathbb{R})$ is a homotopy equivalence.

Proof. First, consider the commutative diagram of fibrations on the left hand side of the following diagram :

The spaces appearing in the top line (in red) are the fibers above a point $q_0 \in A$. Since the base spaces of those fibrations are identical, a result of Puppe asserts that the homotopy fiber of the induced map $E^2(A) \to A$ is the homotopy colimit of the various fibers. Hence, the right hand side of the diagram is a morphism of fibrations in which two of the three horizontal maps are homotopy equivalence : $\phi^2 : E^2(A) \to \mathbb{F}_2(A \times \mathbb{R})$ is therefore a homotopy equivalence. \Box

In a similar way, we define a space $E_1^3(A)$ and a map $\phi_1^3 : E_1^3(A) \to \mathbb{F}_3(A \times \mathbb{R})$ by taking the homotopy colimit of the following diagram :

$$A^{3} \xrightarrow{(A) \times \mathbb{F}_{2}(A)} A^{3} \xrightarrow{(A) \times \mathbb{F}_{2}(A)} A^{3} \xrightarrow{(A) \times \mathbb{F}_{2}(A)} A^{3} \xrightarrow{(A) \times \mathbb{F}_{1}^{3}(A)} A^{3} \xrightarrow{(A$$

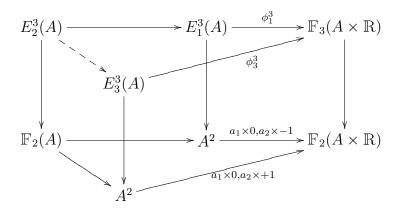
where $\mathbb{F}_2(A) \rtimes A = \{(a_1, a_2, a_3) \in A^3 \mid a_3 \neq a_1\} \cong \mathbb{F}_2(A) \times A.$

2.2 Proposition The following diagram is a homotopy pullback square :

Proof. We argue along the lines of the proof of 2.1. Consider the following homotopy commutative diagram where each column is a fibration sequence and the spaces on the top line are the homotopy fibers above $(a_1, a_2) \in A^2$.

Again, the space F is the homotopy colimit of the diagram with five spaces appearing in red. Explicitly the homotopy fiber F is $(A \setminus q_2) \times [-2, -\frac{1}{2}] \bigcup A \times \{-2, -\frac{1}{2}, 2\} \bigcup (A \setminus q_1) \times [-\frac{1}{2}, 2]$. The result follows since the restriction of ϕ_1^3 given by $\phi_1^3 : F \to A \times \mathbb{R} \setminus \{q_2 \times -1, q_1 \times 0\}$ is a homotopy equivalence.

Also, we define a space $E_2^3(A)$ as the homotopy pullback of the map $E_1^3(A) \to A^2$ along the natural inclusion $\mathbb{F}_2(A) \hookrightarrow A^2$. Finally, there is a space $E_3^3(A)$, constructed in a similar way to $E_1^3(A)$, such that the front square of the following diagram is a homotopy pullback :



In this diagram, each vertical square with full arrows is a homotopy pullback. From the universal property of a homotopy pullback, there exists a map $E_2^3(A) \to E_3^3(A)$ which commutes up to homotopy with the diagram and such that the completed square is also a homotopy pullback. As seen before, the bottom face of this diagram is a homotopy pushout. The cube lemma asserts that the top face is also a homotopy pushout, i.e. we have the following proposition :

2.3 Proposition The homotopy colimit of $E_1^3(A) \leftarrow E_2^3(A) \rightarrow E_3^3$, denoted by $E^3(A)$, has the same homotopy type as $\mathbb{F}_3(A \times \mathbb{R})$.

3 Homotopy invariance of $\mathbb{F}_2(A \times \mathbb{R})$ and $\mathbb{F}_3(A \times \mathbb{R})$

The assumption on the manifolds A and B implies that the following diagram is homotopy commutative and that the vertical arrows are homotopy equivalences. Hence, using homotopy colimit, we have a homotopy equivalence between $\mathbb{F}_2(A \times \mathbb{R}) \simeq E^2(A)$ and $\mathbb{F}_2(B \times \mathbb{R}) \simeq E^2(B)$.

$$A^{2} \longleftarrow \mathbb{F}_{2}(A) \longrightarrow A^{2} \qquad \xrightarrow{hocolim} E^{2}(A)$$
$$f \times f \bigg|_{\simeq} \qquad \varphi_{f} \bigg|_{\simeq} \qquad \simeq \bigg|_{f \times f} \qquad \qquad \bigg|_{\simeq} \\B^{2} \longleftarrow \mathbb{F}_{2}(B) \longrightarrow B^{2} \qquad \xrightarrow{hocolim} E^{2}(B)$$

In a similar way, using the diagram below, the spaces $E_1^3(A)$ and $E_1^3(B)$ have the same homotopy type.

$$\begin{array}{cccc} A^{3} & & & & \\ A^{3} & & & \\ & & & \\ f^{3} & \simeq & & \\ B^{3} & & & \\ B^{3} & & \\ \end{array} \xrightarrow{} B \times \mathbb{F}_{2}(B) \longrightarrow B^{3} & & \\ & & \\ B^{3} & & \\ \end{array} \xrightarrow{} B^{3} & & \\ & & \\ B^{3} & & \\ \end{array} \xrightarrow{} B^{3} & & \\ & & \\ B^{3} & & \\ \end{array} \xrightarrow{} B^{3} & & \\ & & \\ B^{3} & & \\ & & \\ B^{3} & & \\ \end{array} \xrightarrow{} B^{3} & & \\ & & \\ & & \\ B^{3} & & \\ & & \\ B^{3} & & \\ \end{array} \xrightarrow{} B^{3} & & \\ & & \\ & & \\ B^{3} & & \\ & & \\ & & \\ B^{3} & & \\ & & \\ & & \\ B^{3} & & \\ & & \\ & & \\ & & \\ B^{3} & & \\$$

The same kind of homotopy equivalence can be found between $E_3^3(A)$ and $E_3^3(B)$. Using a technical lemma¹, we show that there exists a homotopy equivalence $E_2^3(A) \to E_2^3(B)$ making the following diagram commutative up to homotopy :

$$\begin{array}{cccc} E_1^3(A) & & & & E_2^3(A) & & & & \stackrel{hocolim}{\longrightarrow} E^3(A) \\ & & & & & \downarrow \simeq & & & \downarrow & & & \downarrow \simeq \\ & & & & & \downarrow \simeq & & & \downarrow \simeq & & & \downarrow \simeq \\ E_1^3(B) & & & & & E_2^3(B) & & & & \stackrel{hocolim}{\longrightarrow} E^3(B) \end{array}$$

Hence there is a homotopy equivalence between $\mathbb{F}_3(A \times \mathbb{R}) \simeq E^3(A)$ and $\mathbb{F}_3(B \times \mathbb{R}) \simeq E^3(B)$.

4 Homotopy invariance of $\Sigma \mathbb{F}_3(A)$

In the previous part, we have seen that the two spaces $E_2^3(A)$ and $E_2^3(B)$ have the same homotopy type. We are going to show that, up to one suspension, those spaces contain informations about $\mathbb{F}_3(A)$ and $\mathbb{F}_3(B)$. First, define the space $G_2^3(A)$ as the homotopy colimit of the diagram $\mathbb{F}_2(A) \times A \longrightarrow \mathbb{F}_3(A) \longrightarrow \mathbb{F}_2(A) \times A$. Now, from the definition of $E_2^3(A)$, we know that the following square is a homotopy pullback :

As before, we show that the space $G_2^3(A)$ can be also described as the homotopy pullback of the same maps :

where $F = A \times \{-1, +1\} \bigcup A \setminus \{q_0, q_1\} \times [-1, +1]$. Hence, the two spaces $E_2^3(A)$ and $G_2^3(A)$ have the same homotopy type and there is a map $\mathbb{F}_2(A) \times A \coprod \mathbb{F}_2(A) \times A \to E_2^3(A)$ which cofiber is $\Sigma \mathbb{F}_3(A)_+$.

With some more work, we can show that the left square of the following diagram is commutative up to homotopy :

Then, we can deduce that the configuration spaces $\mathbb{F}_3(A)$ and $\mathbb{F}_3(B)$ have the same homotopy type up to one suspension.

¹cf. Proposition A.8 in the appendix of the paper