An algebraic invariant which is associated with a computer topological space in \mathbb{Z}^n

Sang-Eon Han

Department of Computer and Applied Mathematics Honam University, Gwangju, 506-714, Korea Tel: +82-62-940-5421, Fax:+82-62-940-5644 E-mail:sehan@honam.ac.kr

Abstract

One of the new steps into computational algebraic topology is shown. For a computer topological space in \mathbb{Z}^n with one of the general k-adjacency relations, we observe the notions of an n-fold and a regular (k_0, k_1) -covering, respectively. These play significant roles in calculating some algebraic invariants, such as the k- fundamental group and the discrete Deck's transformation group. Finally, the above-mentioned results can be used to study digital images in computer science and is an positive answer of the open question from [2].

1 Notation and terminology

Let \mathbf{Z}^n be the set of points in the Euclidean *n*-dimensional space with integer coordinates. For $a, b \in \mathbf{Z}$ with $a \leq b$, the set $[a, b]_{\mathbf{Z}} = \{n \in \mathbf{Z} | a \leq n \leq b\}$ with the 2-adjacency is called a *digital interval* [1]. As a generalization of the commonly used 4- and 8-adjacency of \mathbf{Z}^2 , and 6-, 18- and 26-adjacency of \mathbf{Z}^3 , the general adjacency relations in $\mathbf{Z}^n, n \geq 1$, could be obtained as follows[3–5]. $k \in \{3^n - 1(n \geq 2), 3^n - \sum_{t=0}^{r-2} C_t^n 2^{n-t} - 1(2 \leq r \leq n - 1, n \geq 3), 2n(n \geq 1)\}$. In the rest of this paper, we consider a discrete space with k-adjacency (X, k)in a digital picture $(\mathbf{Z}^n, k, 2n, X)$ or $(\mathbf{Z}^n, 2n, 3^n - 1, X)$, where k is one of the general adjacency relations, and $k \neq 2n$ except n = 1 owing to the *digital connectivity paradox* [8].

Preprint submitted to Elsevier Science

 $21 \ June \ 2005$

¹ AMS Classification: 57M10; Secondary 57S30, 55R15, 55Q20, 68T10, 68U05 Keywords: computer topological space, (k_0, k_1) -continuity, (k_0, k_1) -homotopy, (k_0, k_1) -homeomorphism, regular (k_0, k_1) -covering, *n*-fold (k_0, k_1) -covering.

2 Relative (k_0, k_1) -homotopy

The Khalimsky line topology on \mathbb{Z} is induced from the following subbasis $\{[2n-1, 2n+1]_{\mathbb{Z}} | n \in \mathbb{Z}\}$ [2,7]. We now obtain the product topology on \mathbb{Z}^n derived from Khalimsky line topology on \mathbb{Z} . Then we call the topology on \mathbb{Z}^n is considered with the relative topological structure $(X, T_X^n) \subset (\mathbb{Z}^n, T^n)$ induced on X by the product Khalimsky topology $(\mathbb{Z}^n, T^n), n \geq 2$. Consequently, we call (X, T_X^n) the computer topological space. When considering (X, T_X^n) with a k-adjacency, we use the notation (X, k, T_X^n) . For an adjacency relation k, a simple k-path in X is the sequence $(x_i)_{i\in[0,m]_{\mathbb{Z}}}$ such that x_i and x_j are k-adjacent if and only if either j = i + 1 or i = j + 1. Then the number m is called the length of this path.

Definition 1 [3] For spaces $(X, k_0, T_X^{n_0})$ and $(Y, k_1, T_Y^{n_1})$, we say that f is (k_0, k_1) -continuous at some point $x_0 \in X$ if, for any $N_{k_1}(f(x_0), \varepsilon) \subset Y$, there is a k_0 -neighborhood $N_{k_0}(x_0, \delta) \subset X$ such that $f(N_{k_0}(x_0, \delta)) \subset N_{k_1}(f(x_0), \varepsilon)$, $\varepsilon, \delta \in \mathbf{N}$, where $N_k(x_0, \varepsilon) = \{x \in X | l_k(x_0, x) \leq \varepsilon\} \cup \{x_0\}$, and $l_k(x_0, x)$ is the length of a shortest simple k-curve from x_0 to x and $\varepsilon \in \mathbf{N}$. If f is (k_0, k_1) -continuous at any point $x \in X$, then f is called a (k_0, k_1) -continuous map. If $k_0 = k_1$, then we call it a k_0 -continuous map.

Definition 2 $((k_0, k_1)$ -homotopy rel. A) For spaces $(X, k_0, T_X^{n_0})$ and $(Y, k_1, T_Y^{n_1})$, consider $(A, k_0) \subset (X, k_0)$ with the relative topology on (A, k_0) . Let $f, g: X \to Y$ be (k_0, k_1) -continuous functions. Suppose there exist $m \in \mathbb{N}$ and a function $F: X \times [0, m]_{\mathbb{Z}} \to Y$ such that

- for all $x \in X$, F(x, 0) = f(x) and F(x, m) = g(x);
- for all $x \in X$, the induced function $F_x : [0,m]_{\mathbf{Z}} \to Y$ defined by

 $F_x(t) = F(x,t)$ for all $t \in [0,m]_{\mathbf{Z}}$ is $(2,k_1)$ -continuous;

- for all $t \in [0, m]_{\mathbf{Z}}$, the induced function $F_t : X \to Y$ defined by
- $F_t(x) = F(x,t)$ for all $x \in X$ is (k_0, k_1) -continuous.

Then we say that F is a (k_0, k_1) -homotopy between f and g, and f and g are (k_0, k_1) -homotopic in Y and we use the notation $f \simeq_{(k_0, k_1)} g$ [1].

• If, further, for all $t \in [0,m]_{\mathbf{Z}}$ and every $x_0 \in A$, $F(x_0,t) = x_0$, i.e., the induced map F_t on A is fixed, then we say that the homotopy is a (k_0,k_1) -homotopy rel.A.

Specially, if $A = \{x_0\}$, then the (k_0, k_1) -homotopy rel. A is called a pointed

 (k_0, k_1) -homotopy [1].

If $X = [0, m_X]_{\mathbf{Z}}$, for all $t \in [0, m]_{\mathbf{Z}}$, we have F(0, t) = F(0, 0) and $F(m_X, t) = F(m_X, 0)$, then we say that F holds the endpoints fixed.

In order to understand the pointed k-homotopy in the current paper in relation with the k-fundamental group, we need to use the notion of the *trivial* extension[7]:

Let $F_1^k(X, x_0)$ be the set $\{f | f \text{ is a } k\text{-loop based at } x_0\}$. For members $f : [0, m_f]_{\mathbf{Z}} \to X, g : [0, m_g]_{\mathbf{Z}} \to X$ of $F_1^k(X, x_0)$, we have a map $f * g : [0, m_f + m_g]_{\mathbf{Z}} \to X$ [7] defined by

$$f * g(t) = \begin{cases} f(t) & \text{if } 0 \le t \le m_f; \\ g(t - m_f) & \text{if } m_f \le t \le m_f + m_g. \end{cases}$$

Consequently, the k-fundamental group is induced from the based k-homotopy $rel.\{x_0\}$ in Definition 2 which is the computer topological version of the pointed digital (k_0, k_1) -homotopy in [1,4-6]. The k-homotopy class of a pointed loop f as defined in [1] is denoted by [f]. We have $g \in [f]$ if and only if there is a homotopy, holding the endpoint fixed, between trivial extensions F, G of f, g, respectively, where a trivial extension F of f is a map that, roughly speaking, follows the same path as f with pauses for rest. Then, if $f_1, f_2, g_1, g_2 \in F_1^k(X, p)$, $f_1 \in [f_2]$, and $g_1 \in [g_2]$, then $f_1 * g_1 \in [f_2 * g_2]$, *i.e.*, $[f_1 * g_1] = [f_2 * g_2]$ [1,4-7]. Therefore

$$\pi_1^k(X, x_0) := \{ [f] | f \in F_1^k(X, x_0) \}$$

is a group with the operation $[f] \cdot [g] = [f * g]$, is called the *k*-fundamental group of (X, x_0) .

3 N-fold regular (k_0, k_1) -covering

In the following, we shall assume that each space (X, k) is k-connected unless otherwise stated. For spaces $(X, k_0, T_X^{n_0})$ and $(Y, k_1, T_Y^{n_1})$, a map $h: X \to Y$ is called a (k_0, k_1) -homeomorphism if h is (k_0, k_1) -continuous and bijective and further, $h^{-1}: Y \to X$ is (k_1, k_0) -continuous.

Definition 3 For spaces $(E, k_0, T_E^{n_0})$ and $(B, k_1, T_B^{n_1})$, let $p : E \to B$ be a (k_0, k_1) -continuous surjection. Suppose, for any $b \in B$, there exists $\varepsilon \in \mathbf{N}$ such that

(C1) for some index set M, $p^{-1}(N_{k_1}(b,\varepsilon)) = \bigcup_{\alpha \in M} E_{\alpha}$, where $E_{\alpha} = N_{k_0}(e_{\alpha},\varepsilon), e_{\alpha} \in p^{-1}(b)$; (C2) if $\alpha, \beta \in M$ and $\alpha \neq \beta$, then $E_{\alpha} \cap E_{\beta} = \phi$; (C3) the restriction map p on E_{α} , denoted by $p|_{E_{\alpha}} : E_{\alpha} \to N_{k_1}(b,\varepsilon)$, is a (k_0, k_1) -homeomorphism for all $\alpha \in M$.

Then the map p is called a (k_0, k_1) -covering map and (E, p, B) is said to be a (k_0, k_1) -covering. Furthermore, according to the cardinality of the index set $M, \ \# M = n$, we say that the (k_0, k_1) -covering is an n-fold (k_0, k_1) -covering.

In this paper, let $SC_k^{n,l} = (w_i)_{i \in [0,l-1]_{\mathbf{Z}}}$ in \mathbf{Z}^n such that w_i and w_j are adjacent if and only if $j = i \pm 1 \pmod{l}$ and further, there is an $N_k(w_i, 1) \subset \mathbf{Z}^n$ for any point $w_i \in SC_k^{n,l}$ which is called a simple closed k-curve with distinct lelements.

Definition 4 $A(k_0, k_1)$ -covering (E, p, B) is called a radius n- (k_0, k_1) -covering if there is an $\varepsilon \ge n$ in Definition 3.

Example 3.1 (1) While the map $p_1 : \mathbf{Z} \to SC_k^{n,l} = (c_t)_{t \in [0,l-1]_{\mathbf{Z}}}$ with $p_1(t) = c_{t(mod\,l)}$ is a radius 2-(2, l)-covering map, $l \ge 6$, the map $p_2 : \mathbf{Z} \to SC_{3^n-1}^{n,4} = (d_t)_{t \in [0,3]_{\mathbf{Z}}}$ with $p_2(t) = d_{t(mod\,4)}$ is not a radius 2-(2,8)-covering map.

Lemma 3.2 Given spaces $((E, e_0), k_0, T^{n_0}_{(E,e_0)}), ((B, b_0), k_1, T^{n_1}_{(B,b_0)}), let <math>p : E \to B$ be a (k_0, k_1) -covering map such that $p(e_0) = b_0$. Then any k_1 -path $f : [0, m]_{\mathbf{Z}} \to B$ beginning at some point b_0 has a unique lifting to a path \tilde{f} in E beginning at some point e_0 .

Lemma 3.3 For spaces $((E, e_0), k_0, T_{(E,e_0)}^{n_0})$, and $((B, b_0), k_1, T_{(B,b_0)}^{n_1})$, let $p : (E, e_0) \to (B, b_0)$ be a pointed radius 2- (k_0, k_1) -covering map. For k_0 -paths $g_0 : [0, m_0]_{\mathbf{Z}} \to (E, e_0)$ and $g_1 : [0, m_1]_{\mathbf{Z}} \to (E, e_0)$ that begin at the point $e_0 = g_0(0) = g_1(0)$, if $p \circ g_0$ and $p \circ g_1$ are k_1 -homotopic rel. { $p(e_0), p(g_0(m_0)) = p(g_1(m_1))$ } in B, then g_0 and g_1 are k_0 -homotopic rel. { $e_0, g_0(m_0) = g_1(m_1)$ } in E.

Definition 5 For spaces $((E, e_0), k_0, T^{n_0}_{(E,e_0)})$ and $((B, b_0), k_1, T^{n_1}_{(B,b_0)})$, let $p: (E, e_0) \to (B, b_0)$ be a pointed (k_0, k_1) -covering map. If $p_* \pi_1^{k_0}(E, e_0)$ is a normal subgroup of $\pi_1^{k_1}(B, b_0)$, then we say that $((E, e_0), p, (B, b_0))$ is a regular (k_0, k_1) -covering.

Definition 6 For the pointed (k_0, k_1) -covering $((E, e_0), p, (B, b_0))$, we say that a k_0 -homeomorphism $h : (E, e_0) \to (E, e_0)$ is a covering transformation such that $p = p \circ h$.

Then the set of all covering transformations for the pointed (k_0, k_1) -covering $((E, e_0), p, (B, b_0))$ forms a group under the operation of composition, called an *automorphism group of* (E, e_0) *over* (B, b_0) , and denoted by $Aut((E, e_0)|(B, b_0))$

which is a group with the operation of composition \circ .

Theorem 3.4 Let $((E, e_0), p, (B, b_0))$ be a regular radius 2- (k_0, k_1) -covering. Then $Aut((E, e_0)|(B, b_0))$ is isomorphic to $\pi_1^{k_1}(B, b_0)/p_*\pi_1^{k_0}(E, e_0)$.

Corollary 3.5 $\pi_1^{3^n-1}(SC_{3^n-1}^{n,l})$ is isomorphic to $l\mathbf{Z}$ if $l \geq 6$.

Theorem 3.6 For an m|q-fold (k_0, k_1) -covering $((SC_{k_0}^{n_0,ml}, w_0), p, (SC_{k_1}^{n_1,ql}, v_0))$ such that $SC_{k_1}^{n_1,ql}$ is not k_1 -contractible, $Aut((SC_{k_0}^{n_0,ml}, w_0)|(SC_{k_1}^{n_1,ql}, v_0))$ is isomorphic to a finite group $\mathbf{Z}_{m|q}$.

Theorem 3.7 Let (E, e_0) be k_0 -connected and (B, b_0) be k_1 -connected. If $((E, k_0), p, (B, b_0))$ is a pointed regular radius 2- (k_0, k_1) -covering such that (E, e_0) is simply k_0 -connected, then Aut $((E, e_0)|(B, b_0))$ is isomorphic to $\pi_1^{k_1}((B, b_0))$.

References

- L. Boxer, A classical construction for the digital fundamental group, Jour. of Mathematical Imaging and Vision, 10 (1999), 51-62.
- [2] Julian Dontchev, Haruo Maki, Groups of θ -generalized homeomorphisms and the digital line, *Topology and its Applications*, **95**(1999)113-128.
- [3] S. E. Han, Comparison between digital continuity and computer continuity, Honam Math. Jour., **26(3)**(2004) 331-339.
- [4] S. E. Han, Connected sum of digital closed surfaces, Information Sciences, Available online at www.sciencedirect.com(Articles in press)(2005).
- [5] S. E. Han, Minimal simple closed 18-surfaces and a topological preservation of 3D surfaces, *Information Sciences www.sciencedirect.com(Articles in press)* (2005).
- [6] S. E. Han, Non-product property of the digital fundamental group, *Information Sciences*, **171(1-3)**(2005), 73-91.
- [7] E. Khalimsky, Motion, deformation, and homotopy in finite spaces, Proceedings IEEE International Conferences on Systems, Man, and Cybernetics, (1987), 227-234.
- [8] T. Y. Kong, A. Rosenfeld, (Digital topology A brief introduction and bibliography) Topological Algorithms for the Digital Image Processing, (Elsevier Science, Amsterdam, 1996).
- [9] A. Rosenfeld, Continuous functions on digital pictures, Pattern Recognition Letters, 4 (1986), 177-184.