GROUPS, HOMOTOPY AND CONFIGURATION SPACES –CONFERENCE IN HONOR OF FRED COHEN– 5–11 JULY TOKYO 2005

The homotopy type of the complement of a coordinate subspace arrangement

Jelena Grbić University of Aberdeen National University of Singapore

Problem

COORDINATE SUBSPACE ARRANGEMENT

is a finite set $CA = \{L_1, \ldots, L_r\} \subset \mathbb{C}^n$ of coordinate subspaces, that is,

$$L_\omega = \{(z_1,\ldots,z_n)\in\mathbb{C}^n: z_{i_1}=\ldots=z_{i_k}=0\},\$$

where $\omega = \{i_1, \ldots, i_k\} \subset [n]$ and its complement U(CA) is defined as

$$\mathsf{U}(\mathcal{CA}) := \mathbb{C}^n \setminus \bigcup_{i=1} L_i.$$

GOAL: The homotopy type of U(CA).

Toric topology-main definitions and constructions

SIMPLICIAL COMPLEXES

 $V = \{v_1, \ldots, v_n\} = [n]$ set of vertices

 $K := \{\sigma_1, \ldots, \sigma_s : \sigma_i \subset V\} (\emptyset \in K)$ – abstract simplicial complex closed under formation of subsets

 $\sigma \in K$ - simplex dim(K) = d if $\sharp \sigma \leq d + 1$ for all $\sigma \in K$

STANLEY-REISNER FACE RING

R – commutative ring with unit;

 $deg(v_i) = 2$ – topological grading

 $R[V] = R[v_1, \ldots, v_n]$ graded polynomial algebra on V over RGiven $\sigma \subset [n]$, set

$$v^{\sigma} := \prod_{i \in \sigma} v_i, \quad v^{\sigma} = v_{i_1} \dots v_{i_r} \quad \text{for } \sigma = \{i_1, \dots, i_r\}.$$

The Stanley-Reisner algebra (or face ring) of K is

$$R[K] := R[v_1, \ldots, v_n]/(v^{\sigma} : \sigma \notin K).$$

1

``Topological models" for the algebraic objects
Davis-Januszkiewicz space DJ(K)

-topological realisation of the Stanley–Reisner ring R[K], that is,

 $H^*(\mathsf{DJ}(K); R) = R[K]$ (for $R = \mathbb{Z}$ or $R = \mathbb{Z}/2$). <u>Davis–Januszkiewicz</u> $\mathsf{DJ}(K) = ET^n \times_{T^n} \mathfrak{Z}_K$ <u>Buchstaber–Panov</u> through a simple colimit of nice blocks

Assume $R = \mathbb{Z}$. Denote $\mathbb{C}P^{\infty} = BS^1$, thus $BT^n = (\mathbb{C}P^{\infty})^n$ For $\omega \subset [n]$, define

$$BT^{\omega} := \{(x_1, \ldots, x_n) \in BT^n : x_i = * \text{ if } i \notin \omega\}.$$

For K on [n], the Davis-Januszkiewicz space of K is given by

$$\mathsf{DJ}(K) := \bigcup_{\sigma \in K} BT^{\sigma} \subset BT^{n}.$$

MOMENT-ANGLE COMPLEX \mathcal{Z}_K

Torus
$$T^n \subset (D^2)^n = \{(z_1, \dots, z_n) \in \mathbb{C}^n : |z_i| \le 1, \forall i \}$$

For arbitrary $\sigma \subset [n]$, define
 $B_\sigma := \{(z_1, \dots, z_n) \in (D^2)^n : |z_i| = 1 \quad i \notin \sigma \}.$
 $B_\sigma \cong (D^2)^{|\sigma|} \times T^{n-|\sigma|}$

For K on [n], define the moment–angle complex \mathcal{Z}_K by

$$\mathcal{Z}_K := \bigcup_{\sigma \in K} B_{\sigma} \subset (D^2)^n.$$

 B_{σ} invariant under the action of $T^n \longrightarrow T^n$ acts on \mathcal{Z}_K

2

Proposition. The moment–angle complex \mathcal{Z}_K is the homotopy fibre of the inclusion

 $i: \mathsf{DJ}(K) \longrightarrow BT^n.$

Proposition. $H^*_{T^n}(\mathcal{Z}_K) = \mathbb{Z}[K]$

Arrangements and their complements

For K on set [n], define the complex coordinate subspace arrangement as

 $\mathcal{CA}(K) := \left\{ L_{\sigma} : \sigma \notin K \right\}$

and its complement in \mathbb{C}^n by

$$\mathsf{U}(K) := \mathbb{C}^n \setminus \bigcup_{\sigma \notin K} L_{\sigma}.$$

If $L \subset K$ is a subcomplex, then $U(L) \subset U(K)$. **Proposition.** *The assignment*

 $K \mapsto \mathsf{U}(K)$

defines a one-to-one order preserving correspondence

$$\left\{\begin{array}{c} \text{simplicial} \\ \text{complexes on } [n] \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} \text{complements of} \\ \text{coordinate subspace} \\ \text{arrangements in } \mathbb{C}^n \end{array}\right\}$$

CONNECTION BETWEEN \mathcal{Z}_K and U(K)

Theorem (Buchstaber–Panov). *There is an equivariant deformation retraction*

 $\mathsf{U}(K) \xrightarrow{\simeq} \mathfrak{Z}_K.$

COHOMOLOGY OF U(K)

Theorem (Buchstaber–Panov). *The following isomorphism of graded algebra holds*

 $H^*(\mathsf{U}(K);k) \cong \operatorname{Tor}_{k[v_1,\ldots,v_n]}(k[K],k) \cong H[\Lambda[u_1,\ldots,u_n]\otimes k[K],d].$

hints from ALGEBRA and COMBINATORICS

Definition. The Stanley-Reisner ring k[K] is Golod if all Massey products in $\text{Tor}_{k[v_1,...,v_n]}(k[K],k)$ vanish.

Definition. A simplicial complex *K* is shifted if there is an ordering $\sigma \in K$, $v' < v \Rightarrow (\sigma - v) \cup v' \in K$.

Proposition. If K is shifted, then its face ring k[K] is Golod.

THE MAIN THEOREM (G., Theriault)

Let *K* be a shifted complex. Then \mathcal{Z}_K is a wedge of spheres.

Back to COMBINATORICS

<u>**PROBLEM</u></u>: Determine the homotopy type of the complement of arbitrary codimension coordinate subspace arrangements.**</u>

STRATEGY:

- 1) determine the simplicial complex K which corresponds to a codimension-*i* coordinate subspace arrangement, U(K);
- 2) associate to the determined simplicial complex K its Davis–Januszkiewicz space, i.e, DJ(K);
- $3\rangle$ looking at the fibration

$$\mathfrak{Z}_K \longrightarrow \mathsf{DJ}(K) \longrightarrow BT^n,$$

describe the homotopy type of \mathcal{Z}_K .

1) Look at an i+2-codimension coordinate subspace in \mathbb{C}^n , that is,

 $L_{\omega} = \{(z_1, \dots, z_n) \in \mathbb{C}^n : z_{j_1} = \dots = z_{j_{i+2}} = 0\}, \omega = \{j_1, \dots, j_{i+2}\}.$ Then $K = sk^i(\Delta^{n-1}).$

Hence, $\mathbb{C}^n \setminus \mathcal{CA}^{i+2} = U(\mathsf{sk}^i(\Delta^{n-1})).$

2) A colimit model of the Davis-Januszkiewicz space for K is given by

$$\mathsf{DJ}(K) := \bigcup_{\sigma \in K} BT^{\sigma} \subset BT^{n}, \quad \sharp \text{vertices in } K.$$

Then we have

$$\mathsf{DJ}(K) = T_{n-1-i}^n$$

 $= \{(z_1, \ldots, z_n) : \text{at least } n-1-i \text{ coordinates are } *\} \subset (\mathbb{C}P^{\infty})^n.$

3 Determine the homotopy fibre \mathcal{Z}_K of the fibration sequence

$$(\mathcal{Z}_K)_k^n \longrightarrow T_k^n \longrightarrow (\mathbb{C}P^\infty)^n \text{ for } 1 \leq k \leq n-1.$$

Let X_1, \ldots, X_n be path-connected spaces. There is a filtration of $X_1 \times \ldots \times X_n$ given by

 $T_n^n \longrightarrow T_{n-1}^n \longrightarrow \cdots \longrightarrow T_0^n$

were $T_k^n = \{(x_1, \ldots, x_n) \in X_1 \times \ldots \times X_n : \text{ at least } k \text{ of } x_i \text{'s are } * \}.$

Theorem (Porter; G., Theriault). For $n \ge 1$, and k such that $1 \le k \le n - 1$, the homotopy fibre F_k^n of the inclusion $i: T_k^n \longrightarrow X_1 \times \ldots \times X_n$ decomposes as

$$F_k^n \simeq \bigvee_{j+n-k+1}^n \bigg(\bigvee_{1 \le i_1 < \ldots < i_j \le n} {j-1 \choose n-k} \Sigma^{n-k} \Omega X_{i_1} \wedge \ldots \wedge \Omega X_{i_j}\bigg).$$

Take for $X_1 = \ldots = X_n = \mathbb{C}P^{\infty}$. Then we have the inclusion

$$i: T_k^n(\mathbb{C}P^\infty) \longrightarrow (\mathbb{C}P^\infty)^n.$$

It follows that

$$F_k^n \simeq \bigvee_{j=n-k+1}^n \left(\binom{n}{j} \binom{j-1}{n-k} \Sigma^{n-k} \underbrace{\Omega \mathbb{C} P^\infty \wedge \ldots \wedge \Omega \mathbb{C} P^\infty}_{j} \right)$$
$$\simeq \bigvee_{j=n-k+1}^n \binom{n}{j} \binom{j-1}{n-k} S^{n+j-k}.$$

6

Family

 $\mathfrak{F}_t = \left\{ K - \text{simplicial complex} | \Sigma^t \mathfrak{Z}_K a \text{ wedge of spheres} \right\}$ Notice that $\mathfrak{F}_0 \subset \mathfrak{F}_1 \subset \ldots \subset \mathfrak{F}_t \subset \ldots \subset \mathfrak{F}_{\infty}$.

We have shown if K -shifted, then $K \in \mathcal{F}_0$ $(sk^i(\Delta^{n-1}) \in \mathcal{F}_0)$

Want: make simplicial complexes out of our building blocks

WHAT CAN HOMOTOPY SEE?

DISJOINT UNION OF SIMPLICIAL COMPLEXES

Let $K_1 \in \mathcal{F}_t$ and $K_2 \in \mathcal{F}_s$. Then $K_1 \coprod K_2 \in \mathcal{F}_m$, $m = \max\{t, s\}$.

 $\mathcal{Z}_K \simeq (\prod_i S^1 * \prod_j S^1) \lor (\mathcal{Z}_{K_1} \rtimes \prod_i S^1) \lor (\prod_j S^1 \ltimes \mathcal{Z}_{K_2})$

GLUING ALONG A COMMON FACE

Let $K = K_1 \bigcup_{\sigma} K_2$. If $K_1, K_2 \in \mathfrak{F}_0$, then $K \in \mathfrak{F}_0$.

 $\mathcal{Z}_K \simeq (\prod S^1 * \prod S^1) \lor (\mathcal{Z}_{K_1} \rtimes \prod S^1) \lor (\mathcal{Z}_{K_2} \rtimes \prod S^1)$

JOIN OF SIMPLICIAL COMPLEXES

 K_1, K_2 simplicial complexes on sets S_1 and S_2 , belonging to \mathfrak{F}_t and \mathfrak{F}_s . The *join* $K_1 * K_2 := \{ \sigma \subset S_1 \cup S_2 : \sigma = \sigma_1 \cup \sigma_2, \sigma_1 \in K_1, \sigma_2 \in K_1 \}$ Notice $k[K_1 * K_2] = k[K_1] \otimes k[K_2]$

Therefore for the join of K_1 and K_2 we get a product fibration

$$DJ(K_1) \times DJ(K_2) \longrightarrow BT^{m_1} \times BT^{m_2}$$

hence $\mathcal{Z}_{K_1*K_2} \simeq \mathcal{Z}_{K_1} \times \mathcal{Z}_{K_2}$ and $K_1 * K_2 \in \mathcal{F}_m$, $m = \max\{t, s\} + 1$.

Our contribution to ALGEBRA

Let A be a polynomial ring on n variables $k[x_1, \ldots, x_n]$ over a field k and S = A/I, where I is a homogeneous ideal, i.e, S = k[K] for some simplicial complex K.

PROBLEM: The nature of $Tor_S(k, k)$.

The Poincaré series

$$P(S) = \sum_{i=0}^{\infty} b_i t^i$$
 where $b_i = \dim_k \operatorname{Tor}_i^S(k,k)$

PROBLEM: The rationality of P(S).

Theorem. (Golod) There exist non-negative integers n, c_1, \ldots, c_n such that

$$P(S) \le \frac{(1+t)^n}{1 - \sum_{i=1}^n c_i t^{i+1}}$$

Theorem. (*G.*, *Theriault*) There is a topological proof of Golod's inequality. Theorem. (Buchstaber-Panov-Ray) $\operatorname{Tor}_{k[K]}^{*}(k,k) \cong H^{*}(\Omega DJ(K);k).$

Looking at the split fibration

$$\Omega \mathfrak{Z}_K \longrightarrow \Omega \mathsf{DJ}(K) \longrightarrow T^n$$

 $\operatorname{Tor}_{S}^{*}(k,k) \cong H^{*}(\Omega \mathsf{DJ}(K)) = H^{*}(T^{n}) \otimes H^{*}(\Omega \mathbb{Z}_{K})$

Using the bar resolution,

$$P(H^*(\Omega \mathcal{Z}_K)) \leq P(T(\Sigma^{-1}H^*(\mathcal{Z}_K))).$$

Therefore

$$P(R) = (1+t)^{n} P(H^{*}(\Omega \mathcal{Z}_{K})) \leq (1+t)^{n} P(T(\Sigma^{-1}H^{*}(Z_{K})))$$
$$= \frac{(1+t)^{n}}{1 - P(\Sigma^{-1}H^{*}(\mathcal{Z}_{K}))}.$$

Equality is obtained when $H^*(\mathcal{Z}_K)$ is Golod.

Corollary. When $K \in \mathfrak{F}_0$, then P(k[K]) is rational.