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Abstract

The Hamiltonian of the XXZ spin chain has the sl2 loop algebra symmetry if the q
parameter is given by a root of unity, q2N

0 = 1, for an integer N . We show in some sectors
that regular Bethe ansatz eigenvectors are highest weight vectors and generate irreducible
representations of the sl2 loop algebra. Moreover, we prove that every finite-dimensional
highest weight representation of the sl2 loop algebra is irreducible. We thus derive the
dimensions of the highest weight representation generated by a given regular Bethe state
through the Drinfeld polynomial, which is expressed explicitly in terms of the Bethe roots.

1 Introduction

1.1 The sl2 loop algebra symmetry

The XXZ spin chain is one of the most important exactly solvable quantum systems. The
Hamiltonian under the periodic boundary conditions is given by

HXXZ =
1

2

L∑

j=1

(
σX

j σX
j+1 + σY

j σY
j+1 + ∆σZ

j σZ
j+1

)
. (1)

Here the XXZ anisotropic coupling ∆ is related to the q parameter by ∆ = (q+q−1)/2. Recently
it was shown that when q is a root of unity the XXZ Hamiltonian commutes with the generators
of the sl2 loop algebra [4]. Let q0 be a primitive root of unity satisfying q2N

0 = 1 for an integer
N . We introduce operators S±(N) as follows

S±(N) =
∑

1≤j1<···<jN≤L

q
N
2

σZ

0 ⊗ · · · ⊗ q
N
2

σZ

0 ⊗ σ±j1 ⊗ q
(N−2)

2
σZ

0 ⊗ · · · ⊗ q
(N−2)

2
σZ

0

⊗σ±j2 ⊗ q
(N−4)

2
σZ

0 ⊗ · · · ⊗ σ±jN
⊗ q

−N
2

σZ

0 ⊗ · · · ⊗ q
−N

2
σZ

0 . (2)

The operators S±(N) are derived from the Nth power of the generators S± of the quantum

group Uq(sl2). We also define T (±) by the complex conjugates of S±(N), i.e. T±(N) =
(
S±(N)

)∗
.

The operators, S±(N) and T±(N), generate the sl2 loop algebra, U(L(sl2)), in the sector

SZ ≡ 0 (mod N) . (3)

Here the value of the total spin SZ is given by an integral multiple of N . It was shown [4] that
in the sector (3) the operators commute with the Hamiltonian of the XXZ spin chain:

[S±(N), HXXZ ] = [T±(N), HXXZ ] = 0 . (4)
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1.2 A physical question

For any given (regular) Bethe state |R〉 with R down spins in the sector (3), we may have the
following degenerate eigenvectors

S−(N)|R〉 , T−(N)|R〉 , (S−(N))2|R〉 , T−(N)S+(N)T−(N)|R〉 , · · ·
However, it is nontrivial how many of them are linearly independent. The number gives the
degree of the spectral degeneracy. We thus want to know the dimensions of the degenerate
eigenspace generated by the Bethe state |R〉.

1.3 Regular solutions of the Bethe ansatz equations

Let us assume that a set of complex numbers, t̃1, t̃2, . . . , t̃R satisfy the Bethe ansatz equations
at a root of unity:

(
sinh(t̃j + η0)

sinh(t̃j − η0)

)L

=
M∏

k=1;k 6=j

sinh(t̃j − t̃k + 2η0)

sinh(t̃j − t̃k − 2η0)
, for j = 1, 2, . . . , R. (5)

Here the parameter η is defined by the relation q = exp(2η), and η0 is given by q0 = exp(2η0).
If a given set of solutions of the Bethe ansatz equations are finite and distinct, we call them
regular. A set of regular solutions of the Bethe ansatz equations leads to an eigenvector of the
XXZ Hamiltonian. We call it a regular Bethe state of the XXZ spin chain or an regular XXZ
Bethe state, briefly. We formulate the highest weight conjecture as follows: a regular XXZ
Bethe state should be a highest weight vector of the sl2 loop algebra.

1.4 The sl2 loop algebra via the Drinfeld realization

Finite-dimensional representations of the sl2 loop algebra, U(L(sl2)), are formulated through
the classical analogues of the Drinfeld realization of the quantum sl2 loop algebra, Uq(L(sl2)) .
[1, 2] The classical analogues of the Drinfeld generators, x̄±k and h̄k (k ∈ Z), satisfy the defining
relations in the following:

[h̄j, x̄
±
k ] = ±2x̄±j+k , [x̄+

j , x̄−k ] = h̄j+k , for j, k ∈ Z . (6)

Here [h̄j, h̄k] = 0 and [x̄±j , x̄±k ] = 0 for j, k ∈ Z. Let us now define highest weight vectors. In a
representation of U(L(sl2)), a vector Ω is called a highest weight vector if Ω is annihilated by
generators x̄+

k for all integers k and such that Ω is a simultaneous eigenvector of every generator
of the Cartan subalgebra, h̄k (k ∈ Z): [1, 2]

x̄+
k Ω = 0 , for k ∈ Z , (7)

h̄kΩ = d̄+
k Ω , h̄−kΩ = d̄−−kΩ , for k ∈ Z≥0 (8)

We call a representation of U(L(sl2)) highest weight if it is generated by a highest weight vector.
The set of the complex numbers d̄±k given in (8) is called the highest weight. It is shown [1] that
every finite-dimensional irreducible representation is highest weight. To a finite-dimensional
irreducible representation V we associate a unique polynomial through the highest weight d̄±k .
[1] We call it the Drinfeld polynomial. Here the degree r is given by the weight d̄±0 . As we shown
in [3], the highest weight vector of V is a simultaneous eigenvector of operators (x̄+

0 )k(x̄−1 )k/(k!)2

for k > 0, and the Drinfeld polynomial of the representation V has another expression as follows

P (u) =
r∑

k=0

λk(−u)k , (9)

where λk denote the eigenvalues of operators (x̄+
0 )k(x̄−1 )k/(k!)2.



2 Algorithm for evaluating the degenerate multiplicity

2.1 A theorem on the sl2 loop algebra

We prove in Ref. [3] the following:

Theorem 1 Every finite-dimensional highest weight representation of the sl2 loop algebra is
irreducible.

Let Ω be a highest weight vector and V the representation generated by Ω. Suppose that
V is finite-dimensional and h̄0Ω = r Ω. We define a polynomial PΩ(u) through the eigenvalues
λk such as in eq. (9). We show that the roots of the polynomial PΩ(u) are nonzero and finite,
and the degree of PΩ(u) is given by r. We introduce evaluation parameters aj by

PΩ(u) =
s∏

k=1

(1− aku)mk , (10)

where a1, a2, . . . , as are distinct, and their multiplicities are given by m1, m2, . . . ,ms, respec-
tively. Note that r is given by the sum: r = m1 + · · ·+ ms.

Theorem 1 shows that V is irreducible and that PΩ(u) coincides with the Drinfeld polynomial
of V . We thus obtain the Drinfeld polynomial for a given highest weight vector through the
highest weight via (9). Furthermore, we have the following:

Proposition 2 Let V be such a finite-dimensional highest weight representation that has eval-
uation parameters aj with multiplicities mj for j = 1, 2, . . . , s. Then, V is isomorphic to the
following tensor product of evaluation representations: Vm1(a1)⊗ Vm2(a2)⊗ · · · ⊗ Vms(as). The
dimensions of V are given by the product (m1 + 1)(m2 + 1) · · · (ms + 1).

2.2 Regular Bethe states as highest weight vectors

For the XXZ spin chain at roots of unity, Fabricius and McCoy made important observations
on the highest weight conjecture [5, 6, 7]. Motivated by them, we show in Ref. [3] the following:

Theorem 3 Every regular Bethe state |R〉 in the sector SZ ≡ 0 (mod N) at q0 is a highest
weight vector of the sl2 loop algebra.

By the method of the algebraic Bethe ansatz, we derive the following relations:

S+(N) |R〉 = T+(N) |R〉 = 0 ,
(
S+(N)

)k (
T−(N)

)k
/(k!)2 |R〉 = Z+

k |R〉 for k ∈ Z≥0 ,
(
T+(N)

)k (
S−(N)

)k
/(k!)2 |R〉 = Z−

k |R〉 for k ∈ Z≥0 . (11)

Here, the operators S±(N), T+(N), T−(N) and 2SZ/N satisfy the same defining relations of the
sl2 loop algebra as generators x̄±0 , x̄+

−1, x̄−1 and h̄0, respectively, and hence the relations (11)
correspond to (7) and (8).

Eigenvalues Z±
k are explicitly evaluated as

Z+
k = (−1)kN χ̃+

kN , Z−
k = (−1)kN χ̃−kN .

Here the χ̃±m have been defined by the coefficients of the following expansion with respect to
small x:

φ(x)

F̃±(xq0)F̃±(xq−1
0 )

=
∞∑

j=0

χ̃±j xj (12)

where φ(x) = (1− x)L and F̃±(x) =
∏R

j=1(1− x exp(±2t̃j)).



2.3 Drinfeld polynomials of regular Bethe states and the degeneracy

The Drinfeld polynomial for a regular Bethe state |R〉 in the sector SZ ≡ 0 (mod N) is evaluated
by putting λk = (−1)kN χ̃+

kN in eq. (9). The coefficients χ̃±kN are explicitly given by [3]

χ̃±kN =
min(L,kN)∑

n=0

(−1)n

(
L
n

) ∑

n1+···+nR=kN−n

e±
∑R

j=1
2nj t̃j

R∏

j=1

[nj + 1]q0 (13)

Here [n]q = (qn−q−n)/(q−q−1) and the sum is taken over all nonnegative integers n1, n2, . . . , nR

satisfying n1 + · · · + nR = kN − n. We thus obtain the Drinfeld polynomial for the regular
Bethe state.

Corollary 4 Let |R〉 be a regular Bethe state such as in theorem (3). If the Drinfeld polynomial
of the representation V generated by |R〉 gives evaluation parameters aj with multiplicities mj

for j = 1, 2, . . . , s, then we have dimV = (m1 + 1)(m2 + 1) · · · (ms + 1).

In particular, when mj = 1 for j = 1, 2, . . . , s, we have r = s and the dimensions are given by
the rth power of 2, 2r, where r = (L− 2R)/N .

Note: Theorem 3 generalizes the su(2) symmetry of the XXX spin chain [10].
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