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Partition Functions

Let me start with a simple problem. Take positive integers hi, i =
1, . . . , s.
We ask, given a (positive) integer n to compute the number of positive
integer solutions of the equation

n = y1h1 + · · · + yshs.

Equivalently we want to compute the coe�cient of xn in the expansion
of∏
i

1

1− xhi
or the residue

1

2πi

∮
x−n−1

∏
i

1

1− xhi
dx over a small circle.
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The function ∏
i

x−n−1

1− xhi

has poles in 0 and in the m−th roots of 1, where m is the least common
multiple of the numbers hi and is regular at ∞.
In other words, if ζ = e2πi/m and we write

∏
i

1
1−xhi

=
∏m

i=1
1

(1−ζix)bi
with

bi suitable and easily computed integers, the residue theorem gives:

1

2πi

∮
x−n−1

∏
i

1

1− xhi
dx = −

m∑
j=1

1

2πi

∮
Cj

x−n−1
m∏
i=1

1

(1− ζ ix)bi
dx (1)

where Cj is a small circle around ζ−j.
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If we look at the term

1

2πi

∮
Cj

x−n−1
m∏
i=1

1

(1− ζ ix)bi
dx

a sequence of elementary manipulations show that it equals

−(−1)bjζj(n+1−bj)
∑

k+h=bj−1

(−1)kζjk
(
n + k

k

)
aj,h.

where
∞∑
h=0

aj,hw
h is the power series expansion of

m∏
i=1, i6=j

1

(1− ζ i−j − ζ iw)bi

around zero. This formula, summed over all j, answers the question and
exhibits the partition function requested as a sum of functions which
are polynomials on the cosets modulo m. One calls such a function a
periodic polynomial or quasipolynomial.
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We can generalize this by taking a system of linear equations

m∑
i=1

αixi = b

with α1, . . . αm, b ∈ Zn and we want to compute the number Sb of solu-
tions (x1, . . . , xm) of our system such that xi is a non negative integer.
To be sure that this number is �nite we assume that there is an integer
vector ` = (`1, . . . , `n) such that

n∑
j=1

`jαi,j > 0

for each i = 1, . . .m and in order to hope to have at least a solution we
can also suppose that

n∑
j=1

`jbj > 0
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Another way to see this is to consider the vectors α1, . . . αm as giving a
map

f : Rm → Rn.

f (a1, . . . am) = a1α1 + · · · + amαm.

We can then consider the convex polytope Pb = f−1(b) ∩ Rm+, Rm+

being the positive quadrant. Then our goal is to compute the number
of points with integer coordinates inside Pb.

A way to write all the Sb at the same time is to consider Zn as the group
of characters of the algebraic torus T = Cn/Zn (given α ∈ Zn we denote
by eα the character such that eα(t) = e2πi

∑
αjtj , for t = (t1, . . . , tn) ∈ T ).

Then, in a suitable completion of the coordinate ring of T (we can do
that because of the assumption about `) we have

m∏
i=1

1

1− eαi
=

∑
b∈Zn

Sbe
b.
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Also in this case one shows (Szenes and Vergne and others) some residue
formulae for the Sb which are given as in the simple example given before
by computing certain residues of meromorphich n-forms on T with poles
on the subtori in T of equation eαj − 1. Computed on certain explicit
cycles for the homology of the complement of these subtori.
This approach brings into the picture 3 things:

1. The torus T .

2. The subtori Hαj
in T of equation eαj − 1 i.e. the kernels of the

characters eαj .

3. The open set A = T − ∪jHαj
.

Motivated by these considerations in this talk I will describe some results
relative to the geometry of

Toric hyperplane arrangements.
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De�nition 1 Let T be and algebraic torus of dimension r, with character
group Λ. Given a �nite subset

∆ = {(a, χ) ∈ C∗ × Λ},

the toric (hyperplane) arrangement associated to ∆ is the collection of
subvarieties H(a,χ) ⊂ T of equation 1− aχ = 0, (a, χ) ∈ ∆.

We assume, in this talk, that the χ's for which there is a pair (a, χ) ∈ ∆
span Λ⊗Q.

Notice the analogy to the case of (a�ne) hyperplane arrangements.
However there is a at least one "combinatorial" di�erence.
If we intersects some of the "hyperplanes" we do not necessarily get a
connected subvariety.
For example if the intersection of the subvarieties x = 1 and xy2 = 1 in
a two dimensional torus, consists of the two points (1, 1) and (1,−1).
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This brings us to the next de�nition

De�nition 2 Given a subset ∆ as above, the intersection poset P∆ of
the toric (hyperplane) arrangement associated to ∆ is the collection of
connected components subvarieties which are intersections of a subset
(possibly empty) of the divisorsH(a,χ) ⊂ T (a, χ) ∈ ∆ ordered by reverse
inclusion.

There is also a topological di�erence.
Our toric hyperplanes and their intersections are not linear spaces but
rather tori, indeed they are cosets of connected subgroups in T.

So each carries a non trivial topology and has non trivial cohomology
groups.

Our goal is to compute the cohomology of the open subset

A∆ = T − ∪(a,χ)∈∆H(a,χ).
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Set A = C[T ] = C[Λ]. This means that we shall consider A both as
the ring of functions on T and as the group algebra of the free abelian
group Λ. Set d =

∏
(a,χ)∈∆(1− aχ).

We start by studying the coordinate ring

R = A[
1

d
]

of A∆ as a module over the ring DT of di�erential operators on T i.e.
the ring generated by A and by the derivations δs, s ∈ Λ∗ given, for
χ ∈ Λ, by

δs(χ) = 〈s, χ〉χ.
We begin by giving a �ltration R0 ⊂ R1 ⊂ · · ·Rk · · · of R by DT

modules.
It is given as follows:
R0 = A.
Rk is the sum of the subrings in R of the form A[1/d] where d =∏

(a,χ)∈Γ⊂∆,|Γ|≤k(1− aχ).
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Our �rst observation is

Theorem. We have
Rr = Rr+k

for each k > 0.

Proof. By an easy induction if su�ces to see that if χ0, . . . , χs are lin-
early dependent, χ1, . . . , χs are linearly independent and a0, . . . , as are
non zero complex numbers, then the element 1/(1− a0χ0) · · · (1− asχs)
can be written as a linear combination of fractions whose denominators
is a product of at most s of the elements (1− aiχi). We let
Γ = {ψ ∈ Λ|ψm lies in the lattice spanned by χ1, . . . , χs}, χ0 ∈ Γ.
We choose representatives φi ∈ C[Γ] of the primitive idempotents ei of
the ring C[Γ]/(1−a1χ1, . . . , 1−anχn). We have χ0ei = βiei with βi ∈ C.
By the de�nition of the φi's, write 1 =

∑
i φi +

∑n
j=1 bi(1 − ajχj), for

some bi ∈ C[Γ]. So

1

(1− a0ψ0) · · · (1− anψn)
=

∑
i φi +

∑n
j=1 bi(1− ajψj)

(1− a0ψ0) · · · (1− anψn)
=
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∑
i

φi
(1− a0ψ0) · · · (1− anψn)

+

n∑
j=1

bi(1− ajψj)

(1− a0ψ0) · · · (1− anψn)

Canceling, we only have to look at

φi
(1− a0χ0) · · · (1− anχn)

.

(1− a0χ0)φi =
∑n

j=1 cj(1− ajχj) + γiφi with γi = 1− a0βi. If γi = 0

φi
(1− a0χ0) · · · (1− anχn)

=

∑n
j=1 cj(1− ajχj)

(1− a0χ0)2(1− a1χ1) · · · (1− anχn)

and we cancel.
If γi 6= 0,

φi
(1− a0χ0) · · · (1− anχn)

= γ−1
i

(1− a0χ0)φi −
∑n

j=1 cj(1− ajχj)

(1− a0χ0) · · · (1− anχn)
,

and we cancel again.
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Thus now we have the �ltration of DT submodules

0 ⊂ A = R0 ⊂ R1 ⊂ · · · ⊂ Rr = R.

The aim is to study the DT modules Rk/Rk−1.
We now make a detour. Suppose Γ ⊂ Λ is a sublattice. C[Γ] ⊂ C[Λ] =
A. Take a maximal ideal m ⊂ C[Γ] and consider the space LΓ of deriva-
tions δs such that δs(χ) = 0 for χ ∈ Γ. We consider the left ideal Jm in
DT generated by m and LΓ and de�ne a DT module

N(m) = DT/Jm

Theorem. 1. If Γ is a split direct summand in Λ, then N(m) is a irre-
ducible holonomic DT module with characteristic variety the conormal
bundle to the subvariety de�ned in T whose ideal is mA.
2. If Γ is not a split direct summand, set

Γ = {ψ ∈ Λ|ψm ∈ Γ for some m}.

and let m1, . . .ms, s = |Γ/Γ| the maximal ideals in C[Γ] over m. Then

N(m) ' ⊕s
i=1N(mi).
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What do this modules have to do with our previous considerations?
Easy. Take a basis ψ1, . . . ψt of Γ. There are non zero complex numbers
a1, . . . , at with

m = (1− a1ψ1, . . . , 1− atψt).

Consider the ring

A[
1∏t

i=1(1− aiψi)
]

as a DT module. Then
Theorem. The DT module

A[ 1∏t
i=1(1−aiψi)

]∑t
j=1A[ 1∏

i6=j(1−aiψi)
]

is isomorphic to
N(m).

The class of 1 in N(m) maps to the class of 1/
∏t

i=1(1− aiψi).
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We can try to use this to describe our modules Rk/Rk−1. This is indeed
the case.
Fix an element W in the intersection poset P∆ of codimension k. Put

∆W = {(a, χ) ∈ ∆|aχ = 1 on W}

Project ∆W to Λ and remark that we get an injection. Set ΓW equal to
the sublattice generated by this image and as before

ΓW = {ψ ∈ Λ|ψm ∈ ΓW for some m}.

There is a unique maximal ideal mW ∈ C[ΓW ] such that

1. m′
W = mW ∩ C[ΓW ] is the maximal ideal generated by the elements

1− aχ with (a, χ) ∈ ∆W .

2. mWA is the ideal of W .

By the previous construction we get an irreducibleDT module associated
to W

N(mW ) := N(W ).
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These modules will be the irreducible components of our Rk/Rk−1.

We need to describe the multiplicities.

Fix a total ordering on ∆W .

De�nition 3. A non broken circuit in ∆W is a �nite subset (a1, χ1) <
· · · < (ak, χk) ∈ ∆W such that

1. χ1, . . . , χk are linearly independent.

2. If (a, χ) ∈ ∆W , (a, χ) ≤ (aj, χj) and χ, χj, . . . , χk are linearly de-
pendent, then (a, χ) = (aj, χj).

To such a non broken circuit (a1, χ1), . . . , (ak, χk) we associate an ele-
ment in Rk as follows We take the idempotent ε ∈ C[ΓW ]/m′

W killed by
mW and a representative φ ∈ C[ΓW ]. We than take

φ

(1− a1χ1) · · · (1− akχk)
∈ Rk.

and remark that its class modulo Rk−1 is independent from the choice
of φ.
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The classes of these elements are linearly independent and span a vec-
tor subspace V (W ) which is independent from the choice of the total
ordering on ∆W .

This is the space "of multiplicities".

We are almost ready to �nish our description of Rk/Rk−1 as a DT mod-
ule. Let us consider the Moëbius function µ(W1,W2) for the intersection
poset PW . Set µ(W ) = µ(T,W ).

Theorem. 1. TheDT moduleRk/Rk−1 is semisimple and it is canonically
isomorphic to the module

⊕W∈P∆, c(W )=kM(W )⊗ V (W ).

2. The dimension of V (W ) equals (−1)c(W )µ(W ). where c(W ) is the
codimension of W .
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Cohomology

The next question is how to use this to compute cohomology. The way
is through the algebraic de Rham complex. By a result of Grothendieck
we know that H∗(A∆,C) is the cohomology of the complex

Ω(A∆) = R⊗ ∧(
dx1

x1
, . . . ,

dxr
xr

)

where x1, . . . xr is a basis for Λ and ∧(dx1

x1
, . . . , dxr

xr
) is the exterior algebra

of invariant di�erential forms.
The di�erential is given by

d(f
dxi1
xi1

∧ · · · ∧ dxik
xik

) =

r∑
i=1

δi(f )
dxi
xi

∧ dxi1
xi1

∧ · · · ∧ dxik
xik

δi = xi
∂

∂xi
.
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The de�nition of the di�erential implies that setting Ωk = Rk ⊗
∧(dx1

x1
, . . . , dxr

xr
), Ωk is a subcomplex and we get a �ltration of Ω(A∆)

0 ⊂ Ω0 ⊂ · · · ⊂ Ωk ⊂ · · · ⊂ Ωr = Ω(A∆)

by subcomplexes. In particular exact sequences of complexes

0 → Ωk−1 → Ωk → Ωk/Ωk−1 = Rk/Rk−1 ⊗ ∧(
dx1

x1
, . . . ,

dxr
xr

) → 0

and a direct sum of complexes

Ωk/Ωk−1 = ⊕W∈P∆, c(W )=kM(W )⊗ V (W )⊗ ∧(
dx1

x1
, . . . ,

dxr
xr

).
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All this is for free. A little bit of extra work is needed to show that

The sequence of complexes

0 → Ωk−1 → Ωk → Ωk/Ωk−1 = Rk/Rk−1 ⊗ ∧(
dx1

x1
, . . . ,

dxr
xr

) → 0

splits (non canonically).

Putting everything together we have shown that our cohomology groups
can be written as a sum of local contributions one for each elementW of
the intersection poset P∆ and this local contribution is the cohomology
of the complex

M(W )⊗ V (W )⊗ ∧(
dx1

x1
, . . . ,

dxr
xr

).

For this we have
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Proposition. The cohomology of

M(W )⊗ V (W )⊗ ∧(
dx1

x1
, . . . ,

dxr
xr

).

is isomorphic as a graded vector space to

H∗(W,C)⊗ V (W )[c(W )].

i.e. the h-cohomology group is isomorphic to Hh−c(W )(W )⊗ V (W ).

We should remark that in this way one also obtains bases for the co-
homology given by some "explicit" di�erential forms. Also we should
remark that topologically, W is a torus of dimension r − c(w), so we
know that its cohomology is an exterior algebra on r− c(w) generators.
Summarizing

Theorem. Hh(A∆) is (non canonically) isomorphic to

⊕W∈P∆
Hh−c(W )(W )⊗ V (W ).
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If we put together the formula in terms of the Moëbius function for the
dimension of V (W ), the fact that W is a torus and the above theorem,
we get a combinatorial formula for the Poincàre polynomial of A∆ which
resembles the one for linear hyperplane arrangements. This formula
appears in the work of Looijenga.∑

h

dim Hh(A∆)th =
∑
W∈P∆

µ(W )(1 + t)r−c(W ))(−t)c(W ).

In particular the Euler characteristic equals

χ(A∆) =
∑

W∈P∆,W a point

(−1)rµ(W ).
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Multiplicative Structure

The cohomology is a ring so one would like to know the multiplicative
structure ofH∗(A∆). At the moment we know this under an assumption.

De�nition 4. A �nite subset Θ ⊂ Λ is called unimodular if any proper
subset in Θ spans a split direct summand of Λ.
∆ ⊂ C∗ × Λ is unimodular it its projection to Λ is unimodular.

In this case one can completely determine the multiplicative structure
of H∗(A∆). Indeed one has the following "formality" statement which
gives explicit generators for H∗(A∆). A similar statement which I am
not going to write give the analogous of the Orlik Solomon relations as
well.
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Theorem. Consider the subalgebra B of the algebra Ω(A∆) of di�erential
forms generated by the forms

d log xi d log(1− aχ)

{xi} a basis of Λ, (a, χ) ∈ ∆. Then

1. Every form in B is closed, so that we get a morphism of graded
algebras

τ : B → H∗(A∆,C).

2. The homomorphism τ is an isomorphism.

To �nish some problems.

1. Does H∗(A∆,Z) have torsion? I would guess not.

2. Is H∗(A∆) formal for a general ∆? Also in this case I would guess
not.

3. Does the above theorem hold over Z? (it should be said that the
relations have integer coe�cients)? I would say yes.
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Some examples

Among the most studied hyperplane arrangements there are the so called
re�ection arrangements. i.e. one takes a �nite group W generated by
re�ections and takes the hyperplanes Hs �xed by a re�ection s ∈ W .

Here is a toric analogue.

Take a semisimple algebraic group (for example Sl(n)). Take a maximal
torus in T ⊂ G (for example the torus of diagonal matrices of determi-
nant 1). Consider the root system R ⊂ X(T ) = Λ. We can the consider
the corresponding Toric arrangement and try to study AR.
In this case we also have the action of the Weyl group W (in our case it
is the symmetric group Sn), so we might try to study H∗(AR) as e rep-
resentation ofW . This case has been studied before (Lehrer, Loojienga)
and a number of things are known.
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Here is a list of known and not known facts.

1. The fundamental group. Consider the a�ne Weyl group W̃ . W̃ is
the semidirect product of W and of the sublattice Q ⊂ Λ spanned by
R, so we have a homomorphism π : W̃ → W . Take the Artin group BW̃
associated to W̃ . We have a homomorphism p : BW̃ → W̃ .
Then

Theorem. If G is simply connected, π1(AR) = ker πp.

This is similar to the case of re�ection arrangements where the funda-
mental group is the pure Artin group.
However it is not known whether AR is a K(π, 1) space (in the re�ection
arrangements case this is a celebrated result of Deligne).
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2. Euler characteristic. By experimenting with the formula for the Euler
characteristic given before one �nds

Theorem. If G is simply connected, as a virtual character,

χW (AR) = (−1)rReg

Reg being the regular character of W . In particular we have

χ(AR) = (−1)r|W |.

This last statement was not proved using the method explained here.
Instead one uses an explicit complex of Z[W ] modules which has been
introduced by Salvetti and which computes the homology of AR as a
Z[W ]-module.
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It is not clear how to use our methods to compute Euler characteristic.
In fact it is not easy to enumerate points in the intersection poset P∆.

Trying to do this in the case of root systems one discovers another curious
combinatorial fact.
Consider an extended Dynkin diagram D. For any node a of D the
diagrams Da obtained by removing a is of �nite type and has a �nite
Weyl group Wa. Wa has its re�ection representation Va.
One knows that the polynomial functions on Va form a polyno-
mial ring generated by homogeneous polynomial of respective degrees
d

(a)
1 , . . . , d(a)

r . One has∑
a∈D

(d
(a)
1 − 1) · · · (d(a)

r − 1)

d
(a)
1 · · · d(a)

r

= 1


