On Toric Arrangements Cohomology and (some) combinatorics

Corrado De Concini joint with Claudio Procesi.
math AG/0505351

Partition Functions

Let me start with a simple problem. Take positive integers $h_{i}, i=$ $1, \ldots$, s.
We ask, given a (positive) integer n to compute the number of positive integer solutions of the equation

$$
n=y_{1} h_{1}+\cdots+y_{s} h_{s} .
$$

Equivalently we want to compute the coefficient of x^{n} in the expansion of
$\prod_{i} \frac{1}{1-x^{h_{i}}}$ or the residue $\frac{1}{2 \pi i} \oint x^{-n-1} \prod_{i} \frac{1}{1-x^{h_{i}}} d x$ over a small circle.

The function

$$
\prod_{i} \frac{x^{-n-1}}{1-x^{h_{i}}}
$$

has poles in 0 and in the m-th roots of 1 , where m is the least common multiple of the numbers h_{i} and is regular at ∞.
In other words, if $\zeta=e^{2 \pi i / m}$ and we write $\prod_{i} \frac{1}{1-x^{k_{i}}}=\prod_{i=1}^{m} \frac{1}{\left(1-\zeta^{i} x\right)^{b_{i}}}$ with b_{i} suitable and easily computed integers, the residue theorem gives:

$$
\begin{equation*}
\frac{1}{2 \pi i} \oint x^{-n-1} \prod_{i} \frac{1}{1-x^{h_{i}}} d x=-\sum_{j=1}^{m} \frac{1}{2 \pi i} \oint_{C_{j}} x^{-n-1} \prod_{i=1}^{m} \frac{1}{\left(1-\zeta^{i} x\right)^{b_{i}}} d x \tag{1}
\end{equation*}
$$

where C_{j} is a small circle around ζ^{-j}.

If we look at the term

$$
\frac{1}{2 \pi i} \oint_{C_{j}} x^{-n-1} \prod_{i=1}^{m} \frac{1}{\left(1-\zeta^{i} x\right)^{b_{i}}} d x
$$

a sequence of elementary manipulations show that it equals

$$
-(-1)^{b_{j}} \zeta^{j\left(n+1-b_{j}\right)} \sum_{k+h=b_{j}-1}(-1)^{k} \zeta^{j k}\binom{n+k}{k} a_{j, h}
$$

where

$$
\sum_{h=0}^{\infty} a_{j, h} w^{h} \text { is the power series expansion of } \prod_{i=1, i \neq j}^{m} \frac{1}{\left(1-\zeta^{i-j}-\zeta^{i} w\right)^{b_{i}}}
$$

around zero. This formula, summed over all j, answers the question and exhibits the partition function requested as a sum of functions which are polynomials on the cosets modulo m. One calls such a function a periodic polynomial or quasipolynomial.

We can generalize this by taking a system of linear equations

$$
\sum_{i=1}^{m} \alpha_{i} x_{i}=b
$$

with $\alpha_{1}, \ldots \alpha_{m}, b \in \mathbb{Z}^{n}$ and we want to compute the number S_{b} of solutions $\left(x_{1}, \ldots, x_{m}\right)$ of our system such that x_{i} is a non negative integer. To be sure that this number is finite we assume that there is an integer vector $\ell=\left(\ell_{1}, \ldots, \ell_{n}\right)$ such that

$$
\sum_{j=1}^{n} \ell_{j} \alpha_{i, j}>0
$$

for each $i=1, \ldots m$ and in order to hope to have at least a solution we can also suppose that

$$
\sum_{j=1}^{n} \ell_{j} b_{j}>0
$$

Another way to see this is to consider the vectors $\alpha_{1}, \ldots \alpha_{m}$ as giving a map

$$
\begin{gathered}
f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \\
f\left(a_{1}, \ldots a_{m}\right)=a_{1} \alpha_{1}+\cdots+a_{m} \alpha_{m}
\end{gathered}
$$

We can then consider the convex polytope $P_{b}=f^{-1}(b) \cap \mathbb{R}^{m+}, \mathbb{R}^{m+}$ being the positive quadrant. Then our goal is to compute the number of points with integer coordinates inside P_{b}.
A way to write all the S_{b} at the same time is to consider \mathbb{Z}^{n} as the group of characters of the algebraic torus $T=\mathbb{C}^{n} / \mathbb{Z}^{n}$ (given $\alpha \in \mathbb{Z}^{n}$ we denote by e^{α} the character such that $e^{\alpha}(t)=e^{2 \pi i \sum \alpha_{j} t_{j}}$, for $\left.t=\left(t_{1}, \ldots, t_{n}\right) \in T\right)$.

Then, in a suitable completion of the coordinate ring of T (we can do that because of the assumption about ℓ) we have

$$
\prod_{i=1}^{m} \frac{1}{1-e^{\alpha_{i}}}=\sum_{b \in \mathbb{Z}^{n}} S_{b} e^{b}
$$

Also in this case one shows (Szenes and Vergne and others) some residue formulae for the S_{b} which are given as in the simple example given before by computing certain residues of meromorphich n-forms on T with poles on the subtori in T of equation $e^{\alpha_{j}}-1$. Computed on certain explicit cycles for the homology of the complement of these subtori.
This approach brings into the picture 3 things:

1. The torus T.
2. The subtori $H_{\alpha_{j}}$ in T of equation $e^{\alpha_{j}}-1$ i.e. the kernels of the characters $e^{\alpha_{j}}$.
3. The open set $\mathcal{A}=T-\cup_{j} H_{\alpha_{j}}$.

Motivated by these considerations in this talk I will describe some results relative to the geometry of

> Toric hyperplane arrangements.

Definition 1 Let T be and algebraic torus of dimension r, with character group Λ. Given a finite subset

$$
\Delta=\left\{(a, \chi) \in \mathbb{C}^{*} \times \Lambda\right\}
$$

the toric (hyperplane) arrangement associated to Δ is the collection of subvarieties $H_{(a, \chi)} \subset T$ of equation $1-a \chi=0,(a, \chi) \in \Delta$.

We assume, in this talk, that the χ 's for which there is a pair $(a, \chi) \in \Delta$ span $\Lambda \otimes \mathbb{Q}$.

Notice the analogy to the case of (affine) hyperplane arrangements. However there is a at least one "combinatorial" difference. If we intersects some of the "hyperplanes" we do not necessarily get a connected subvariety.
For example if the intersection of the subvarieties $x=1$ and $x y^{2}=1$ in a two dimensional torus, consists of the two points $(1,1)$ and $(1,-1)$.

This brings us to the next definition
Definition 2 Given a subset Δ as above, the intersection poset \mathcal{P}_{Δ} of the toric (hyperplane) arrangement associated to Δ is the collection of connected components subvarieties which are intersections of a subset (possibly empty) of the divisors $H_{(a, \chi)} \subset T(a, \chi) \in \Delta$ ordered by reverse inclusion.

There is also a topological difference.
Our toric hyperplanes and their intersections are not linear spaces but rather tori, indeed they are cosets of connected subgroups in T.

So each carries a non trivial topology and has non trivial cohomology groups.

Our goal is to compute the cohomology of the open subset

$$
\mathcal{A}_{\Delta}=T-\cup_{(a, \chi) \in \Delta} H_{(a, \chi)} .
$$

Set $A=\mathbb{C}[T]=\mathbb{C}[\Lambda]$. This means that we shall consider A both as the ring of functions on T and as the group algebra of the free abelian group Λ. Set $d=\prod_{(a, \chi) \in \Delta}(1-a \chi)$.
We start by studying the coordinate ring

$$
R=A\left[\frac{1}{d}\right]
$$

of \mathcal{A}_{Δ} as a module over the ring D_{T} of differential operators on T i.e. the ring generated by A and by the derivations $\delta_{s}, s \in \Lambda^{*}$ given, for $\chi \in \Lambda$, by

$$
\delta_{s}(\chi)=\langle s, \chi\rangle \chi
$$

We begin by giving a filtration $R_{0} \subset R_{1} \subset \cdots R_{k} \cdots$ of R by D_{T} modules.
It is given as follows:
$R_{0}=A$.
R_{k} is the sum of the subrings in R of the form $A[1 / \bar{d}]$ where $\bar{d}=$ $\prod_{(a, \chi) \in \Gamma \subset \Delta,|\Gamma| \leq k}(1-a \chi)$.

Our first observation is
Theorem. We have

$$
R_{r}=R_{r+k}
$$

for each $k>0$.
Proof. By an easy induction if suffices to see that if $\chi_{0}, \ldots, \chi_{s}$ are linearly dependent, $\chi_{1}, \ldots, \chi_{s}$ are linearly independent and a_{0}, \ldots, a_{s} are non zero complex numbers, then the element $1 /\left(1-a_{0} \chi_{0}\right) \cdots\left(1-a_{s} \chi_{s}\right)$ can be written as a linear combination of fractions whose denominators is a product of at most s of the elements $\left(1-a_{i} \chi_{i}\right)$. We let $\Gamma=\left\{\psi \in \Lambda \mid \psi^{m}\right.$ lies in the lattice spanned by $\left.\chi_{1}, \ldots, \chi_{s}\right\}, \chi_{0} \in \Gamma$. We choose representatives $\phi_{i} \in \mathbb{C}[\Gamma]$ of the primitive idempotents e_{i} of the ring $\mathbb{C}[\Gamma] /\left(1-a_{1} \chi_{1}, \ldots, 1-a_{n} \chi_{n}\right)$. We have $\chi_{0} e_{i}=\beta_{i} e_{i}$ with $\beta_{i} \in \mathbb{C}$. By the definition of the ϕ_{i} 's, write $1=\sum_{i} \phi_{i}+\sum_{j=1}^{n} b_{i}\left(1-a_{j} \chi_{j}\right)$, for some $b_{i} \in \mathbb{C}[\Gamma]$. So

$$
\frac{1}{\left(1-a_{0} \psi_{0}\right) \cdots\left(1-a_{n} \psi_{n}\right)}=\frac{\sum_{i} \phi_{i}+\sum_{j=1}^{n} b_{i}\left(1-a_{j} \psi_{j}\right)}{\left(1-a_{0} \psi_{0}\right) \cdots\left(1-a_{n} \psi_{n}\right)}=
$$

$$
\sum_{i} \frac{\phi_{i}}{\left(1-a_{0} \psi_{0}\right) \cdots\left(1-a_{n} \psi_{n}\right)}+\sum_{j=1}^{n} \frac{b_{i}\left(1-a_{j} \psi_{j}\right)}{\left(1-a_{0} \psi_{0}\right) \cdots\left(1-a_{n} \psi_{n}\right)}
$$

Canceling, we only have to look at

$$
\frac{\phi_{i}}{\left(1-a_{0} \chi_{0}\right) \cdots\left(1-a_{n} \chi_{n}\right)} .
$$

$\left(1-a_{0} \chi_{0}\right) \phi_{i}=\sum_{j=1}^{n} c_{j}\left(1-a_{j} \chi_{j}\right)+\gamma_{i} \phi_{i}$ with $\gamma_{i}=1-a_{0} \beta_{i}$. If $\gamma_{i}=0$

$$
\frac{\phi_{i}}{\left(1-a_{0} \chi_{0}\right) \cdots\left(1-a_{n} \chi_{n}\right)}=\frac{\sum_{j=1}^{n} c_{j}\left(1-a_{j} \chi_{j}\right)}{\left(1-a_{0} \chi_{0}\right)^{2}\left(1-a_{1} \chi_{1}\right) \cdots\left(1-a_{n} \chi_{n}\right)}
$$

and we cancel.
If $\gamma_{i} \neq 0$,

$$
\frac{\phi_{i}}{\left(1-a_{0} \chi_{0}\right) \cdots\left(1-a_{n} \chi_{n}\right)}=\gamma_{i}^{-1} \frac{\left(1-a_{0} \chi_{0}\right) \phi_{i}-\sum_{j=1}^{n} c_{j}\left(1-a_{j} \chi_{j}\right)}{\left(1-a_{0} \chi_{0}\right) \cdots\left(1-a_{n} \chi_{n}\right)},
$$

and we cancel again.

Thus now we have the filtration of D_{T} submodules

$$
0 \subset A=R_{0} \subset R_{1} \subset \cdots \subset R_{r}=R
$$

The aim is to study the D_{T} modules R_{k} / R_{k-1}.
We now make a detour. Suppose $\Gamma \subset \Lambda$ is a sublattice. $\mathbb{C}[\Gamma] \subset \mathbb{C}[\Lambda]=$ A. Take a maximal ideal $m \subset \mathbb{C}[\Gamma]$ and consider the space L_{Γ} of derivations δ_{s} such that $\delta_{s}(\chi)=0$ for $\chi \in \Gamma$. We consider the left ideal J_{m} in D_{T} generated by m and L_{Γ} and define a D_{T} module

$$
N(m)=D_{T} / J_{m}
$$

Theorem. 1. If Γ is a split direct summand in Λ, then $N(m)$ is a irreducible holonomic D_{T} module with characteristic variety the conormal bundle to the subvariety defined in T whose ideal is $m A$.
2. If Γ is not a split direct summand, set

$$
\bar{\Gamma}=\left\{\psi \in \Lambda \mid \psi^{m} \in \Gamma \text { for some } m\right\} .
$$

and let $m_{1}, \ldots m_{s}, s=|\bar{\Gamma} / \Gamma|$ the maximal ideals in $\mathbb{C}[\bar{\Gamma}]$ over m. Then

$$
N(m) \simeq \oplus_{i=1}^{s} N\left(m_{i}\right) .
$$

What do this modules have to do with our previous considerations? Easy. Take a basis $\psi_{1}, \ldots \psi_{t}$ of Γ. There are non zero complex numbers a_{1}, \ldots, a_{t} with

$$
m=\left(1-a_{1} \psi_{1}, \ldots, 1-a_{t} \psi_{t}\right) .
$$

Consider the ring

$$
A\left[\frac{1}{\prod_{i=1}^{t}\left(1-a_{i} \psi_{i}\right)}\right]
$$

as a D_{T} module. Then
Theorem. The D_{T} module

$$
\frac{A\left[\frac{1}{\prod_{i=1}^{t}\left(1-a_{i} \psi_{i}\right)}\right]}{\sum_{j=1}^{t} A\left[\frac{1}{\prod_{i \neq j}\left(1-a_{i} \psi_{i}\right)}\right]}
$$

is isomorphic to

$$
N(m) .
$$

The class of 1 in $N(m)$ maps to the class of $1 / \prod_{i=1}^{t}\left(1-a_{i} \psi_{i}\right)$.

We can try to use this to describe our modules R_{k} / R_{k-1}. This is indeed the case.
Fix an element W in the intersection poset \mathcal{P}_{Δ} of codimension k. Put

$$
\Delta_{W}=\{(a, \chi) \in \Delta \mid a \chi=1 \text { on } W\}
$$

Project Δ_{W} to Λ and remark that we get an injection. Set Γ_{W} equal to the sublattice generated by this image and as before

$$
\bar{\Gamma}_{W}=\left\{\psi \in \Lambda \mid \psi^{m} \in \Gamma_{W} \text { for some } m\right\} .
$$

There is a unique maximal ideal $m_{W} \in \mathbb{C}\left[\bar{\Gamma}_{W}\right]$ such that

1. $m_{W}^{\prime}=m_{W} \cap \mathbb{C}\left[\Gamma_{W}\right]$ is the maximal ideal generated by the elements $1-a \chi$ with $(a, \chi) \in \Delta_{W}$.
2. $m_{W} A$ is the ideal of W.

By the previous construction we get an irreducible D_{T} module associated to W

$$
N\left(m_{W}\right):=N(W)
$$

These modules will be the irreducible components of our R_{k} / R_{k-1}.
We need to describe the multiplicities.
Fix a total ordering on Δ_{W}.
Definition 3. A non broken circuit in Δ_{W} is a finite subset $\left(a_{1}, \chi_{1}\right)<$ $\cdots<\left(a_{k}, \chi_{k}\right) \in \Delta_{W}$ such that

1. $\chi_{1}, \ldots, \chi_{k}$ are linearly independent.
2. If $(a, \chi) \in \Delta_{W},(a, \chi) \leq\left(a_{j}, \chi_{j}\right)$ and $\chi, \chi_{j}, \ldots, \chi_{k}$ are linearly dependent, then $(a, \chi)=\left(a_{j}, \chi_{j}\right)$.
To such a non broken circuit $\left(a_{1}, \chi_{1}\right), \ldots,\left(a_{k}, \chi_{k}\right)$ we associate an element in R_{k} as follows We take the idempotent $\varepsilon \in \mathbb{C}\left[\bar{\Gamma}_{W}\right] / m_{W}^{\prime}$ killed by m_{W} and a representative $\phi \in \mathbb{C}\left[\bar{\Gamma}_{W}\right]$. We than take

$$
\frac{\phi}{\left(1-a_{1} \chi_{1}\right) \cdots\left(1-a_{k} \chi_{k}\right)} \in R_{k} .
$$

and remark that its class modulo R_{k-1} is independent from the choice of ϕ.

The classes of these elements are linearly independent and span a vector subspace $V(W)$ which is independent from the choice of the total ordering on Δ_{W}.

This is the space "of multiplicities".
We are almost ready to finish our description of R_{k} / R_{k-1} as a D_{T} module. Let us consider the Moëbius function $\mu\left(W_{1}, W_{2}\right)$ for the intersection poset \mathcal{P}_{W}. Set $\mu(W)=\mu(T, W)$.
Theorem. 1. The D_{T} module R_{k} / R_{k-1} is semisimple and it is canonically isomorphic to the module

$$
\oplus_{W \in \mathcal{P}_{\Delta}, c(W)=k} M(W) \otimes V(W) .
$$

2. The dimension of $V(W)$ equals $(-1)^{c(W)} \mu(W)$. where $c(W)$ is the codimension of W.

Cohomology

The next question is how to use this to compute cohomology. The way is through the algebraic de Rham complex. By a result of Grothendieck we know that $H^{*}\left(\mathcal{A}_{\Delta}, \mathbb{C}\right)$ is the cohomology of the complex

$$
\Omega\left(\mathcal{A}_{\Delta}\right)=R \otimes \wedge\left(\frac{d x_{1}}{x_{1}}, \ldots, \frac{d x_{r}}{x_{r}}\right)
$$

where $x_{1}, \ldots x_{r}$ is a basis for Λ and $\wedge\left(\frac{d x_{1}}{x_{1}}, \ldots, \frac{d x_{r}}{x_{r}}\right)$ is the exterior algebra of invariant differential forms.
The differential is given by

$$
\begin{aligned}
& d\left(f \frac{d x_{i_{1}}}{x_{i_{1}}} \wedge \cdots \wedge \frac{d x_{i_{k}}}{x_{i_{k}}}\right)=\sum_{i=1}^{r} \delta_{i}(f) \frac{d x_{i}}{x_{i}} \wedge \frac{d x_{i_{1}}}{x_{i_{1}}} \wedge \cdots \wedge \frac{d x_{i_{k}}}{x_{i_{k}}} \\
& \delta_{i}=x_{i} \frac{\partial}{\partial x_{i}}
\end{aligned}
$$

The definition of the differential implies that setting $\Omega_{k}=R_{k}$ $\wedge\left(\frac{d x_{1}}{x_{1}}, \ldots, \frac{d x_{r}}{x_{r}}\right), \Omega_{k}$ is a subcomplex and we get a filtration of $\Omega\left(\mathcal{A}_{\Delta}\right)$

$$
0 \subset \Omega_{0} \subset \cdots \subset \Omega_{k} \subset \cdots \subset \Omega_{r}=\Omega\left(\mathcal{A}_{\Delta}\right)
$$

by subcomplexes. In particular exact sequences of complexes

$$
0 \rightarrow \Omega_{k-1} \rightarrow \Omega_{k} \rightarrow \Omega_{k} / \Omega_{k-1}=R_{k} / R_{k-1} \otimes \wedge\left(\frac{d x_{1}}{x_{1}}, \ldots, \frac{d x_{r}}{x_{r}}\right) \rightarrow 0
$$

and a direct sum of complexes

$$
\Omega_{k} / \Omega_{k-1}=\oplus_{W \in \mathcal{P}_{\Delta}, c(W)=k} M(W) \otimes V(W) \otimes \wedge\left(\frac{d x_{1}}{x_{1}}, \ldots, \frac{d x_{r}}{x_{r}}\right)
$$

All this is for free. A little bit of extra work is needed to show that The sequence of complexes

$$
0 \rightarrow \Omega_{k-1} \rightarrow \Omega_{k} \rightarrow \Omega_{k} / \Omega_{k-1}=R_{k} / R_{k-1} \otimes \wedge\left(\frac{d x_{1}}{x_{1}}, \ldots, \frac{d x_{r}}{x_{r}}\right) \rightarrow 0
$$

splits (non canonically).
Putting everything together we have shown that our cohomology groups can be written as a sum of local contributions one for each element W of the intersection poset \mathcal{P}_{Δ} and this local contribution is the cohomology of the complex

$$
M(W) \otimes V(W) \otimes \wedge\left(\frac{d x_{1}}{x_{1}}, \ldots, \frac{d x_{r}}{x_{r}}\right)
$$

For this we have

Proposition. The cohomology of

$$
M(W) \otimes V(W) \otimes \wedge\left(\frac{d x_{1}}{x_{1}}, \ldots, \frac{d x_{r}}{x_{r}}\right)
$$

is isomorphic as a graded vector space to

$$
H^{*}(W, \mathbb{C}) \otimes V(W)[c(W)] .
$$

i.e. the h-cohomology group is isomorphic to $H^{h-c(W)}(W) \otimes V(W)$.

We should remark that in this way one also obtains bases for the cohomology given by some "explicit" differential forms. Also we should remark that topologically, W is a torus of dimension $r-c(w)$, so we know that its cohomology is an exterior algebra on $r-c(w)$ generators. Summarizing

Theorem. $H^{h}\left(\mathcal{A}_{\Delta}\right)$ is (non canonically) isomorphic to

$$
\oplus_{W \in \mathcal{P}_{\Delta}} H^{h-c(W)}(W) \otimes V(W) .
$$

If we put together the formula in terms of the Moëbius function for the dimension of $V(W)$, the fact that W is a torus and the above theorem, we get a combinatorial formula for the Poincàre polynomial of \mathcal{A}_{Δ} which resembles the one for linear hyperplane arrangements. This formula appears in the work of Looijenga.

$$
\sum_{h} \operatorname{dim} H^{h}\left(\mathcal{A}_{\Delta}\right) t^{h}=\sum_{W \in \mathcal{P}_{\Delta}} \mu(W)(1+t)^{r-c(W))}(-t)^{c(W)}
$$

In particular the Euler characteristic equals

$$
\chi\left(\mathcal{A}_{\Delta}\right)=\sum_{W \in \mathcal{P}_{\Delta}, W \text { a point }}(-1)^{r} \mu(W) .
$$

Multiplicative Structure

The cohomology is a ring so one would like to know the multiplicative structure of $H^{*}\left(\mathcal{A}_{\Delta}\right)$. At the moment we know this under an assumption.

Definition 4. A finite subset $\Theta \subset \Lambda$ is called unimodular if any proper subset in Θ spans a split direct summand of Λ.
$\Delta \subset \mathbb{C}^{*} \times \Lambda$ is unimodular it its projection to Λ is unimodular.
In this case one can completely determine the multiplicative structure of $H^{*}\left(\mathcal{A}_{\Delta}\right)$. Indeed one has the following "formality" statement which gives explicit generators for $H^{*}\left(\mathcal{A}_{\Delta}\right)$. A similar statement which I am not going to write give the analogous of the Orlik Solomon relations as well.

Theorem. Consider the subalgebra B of the algebra $\Omega\left(\mathcal{A}_{\Delta}\right)$ of differential forms generated by the forms

$$
d \log x_{i} \quad d \log (1-a \chi)
$$

$\left\{x_{i}\right\}$ a basis of $\Lambda,(a, \chi) \in \Delta$. Then

1. Every form in B is closed, so that we get a morphism of graded algebras

$$
\tau: B \rightarrow H^{*}\left(\mathcal{A}_{\Delta}, \mathbb{C}\right)
$$

2. The homomorphism τ is an isomorphism.

To finish some problems.

1. Does $H^{*}\left(\mathcal{A}_{\Delta}, \mathbb{Z}\right)$ have torsion? I would guess not.
2. Is $H^{*}\left(\mathcal{A}_{\Delta}\right)$ formal for a general Δ ? Also in this case I would guess not.
3. Does the above theorem hold over \mathbb{Z} ? (it should be said that the relations have integer coefficients)? I would say yes.

Some examples

Among the most studied hyperplane arrangements there are the so called reflection arrangements. i.e. one takes a finite group W generated by reflections and takes the hyperplanes H_{s} fixed by a reflection $s \in W$.

Here is a toric analogue.
Take a semisimple algebraic group (for example $S l(n)$). Take a maximal torus in $T \subset G$ (for example the torus of diagonal matrices of determinant 1). Consider the root system $R \subset X(T)=\Lambda$. We can the consider the corresponding Toric arrangement and try to study \mathcal{A}_{R}.
In this case we also have the action of the Weyl group W (in our case it is the symmetric group S_{n}), so we might try to study $H^{*}\left(\mathcal{A}_{R}\right)$ as e representation of W. This case has been studied before (Lehrer, Loojienga) and a number of things are known.

Here is a list of known and not known facts.

1. The fundamental group. Consider the affine Weyl group \tilde{W}. \tilde{W} is the semidirect product of W and of the sublattice $Q \subset \Lambda$ spanned by R, so we have a homomorphism $\pi: \tilde{W} \rightarrow W$. Take the Artin group $\mathcal{B}_{\tilde{W}}$ associated to \tilde{W}. We have a homomorphism $p: \mathcal{B}_{\tilde{W}} \rightarrow \tilde{W}$.
Then
Theorem. If G is simply connected, $\pi_{1}\left(\mathcal{A}_{R}\right)=$ ker πp.
This is similar to the case of reflection arrangements where the fundamental group is the pure Artin group.
However it is not known whether \mathcal{A}_{R} is a $\mathrm{K}(\pi, 1)$ space (in the reflection arrangements case this is a celebrated result of Deligne).
2. Euler characteristic. By experimenting with the formula for the Euler characteristic given before one finds
Theorem. If G is simply connected, as a virtual character,

$$
\chi_{W}\left(\mathcal{A}_{R}\right)=(-1)^{r} \operatorname{Reg}
$$

Reg being the regular character of W. In particular we have

$$
\chi\left(\mathcal{A}_{R}\right)=(-1)^{r}|W| .
$$

This last statement was not proved using the method explained here. Instead one uses an explicit complex of $\mathbb{Z}[W]$ modules which has been introduced by Salvetti and which computes the homology of \mathcal{A}_{R} as a $\mathbb{Z}[W]$-module.

It is not clear how to use our methods to compute Euler characteristic. In fact it is not easy to enumerate points in the intersection poset \mathcal{P}_{Δ}.

Trying to do this in the case of root systems one discovers another curious combinatorial fact.
Consider an extended Dynkin diagram D. For any node a of D the diagrams D_{a} obtained by removing a is of finite type and has a finite Weyl group W_{a}. W_{a} has its reflection representation V_{a}.
One knows that the polynomial functions on V_{a} form a polynomial ring generated by homogeneous polynomial of respective degrees $d_{1}^{(a)}, \ldots, d_{r}^{(a)}$. One has

$$
\sum_{a \in D} \frac{\left(d_{1}^{(a)}-1\right) \cdots\left(d_{r}^{(a)}-1\right)}{d_{1}^{(a)} \cdots d_{r}^{(a)}}=1
$$

