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Homotopy localization in model categories

A model category is a category M with three distinguished classes of mor-
phisms, called cofibrations, fibrations, and weak equivalences, satisfying
the Quillen axioms. We will assume that M has all small limits and colimits,
and that the factorizations stated in the Quillen axioms are functorial.

The homotopy category HoM has the same objects as M, and its morphisms
from X to Y are homotopy classes of maps from QX to RY , where Q is a
cofibrant approximation functor and R is a fibrant approximation functor.

A homotopy function complex in a model category M is any bifunctor
taking values in simplicial sets, denoted map(−,−), whose homotopy type is
the same as the diagonal of the bisimplicial set M(X∗, Y∗), where X∗ → X
is a cosimplicial resolution of X and Y → Y∗ is a simplicial resolution of
Y . Homotopy function complexes exist in any model category. If the given
model category is simplicial, then Map(Q−, R−) is a homotopy function com-
plex, where Map(−,−) is given by the simplicial enrichment, Q is a cofibrant
approximation functor, and R is a fibrant approximation functor.



If M is any model category and S is a class of maps in M, an object Y is
called S-local if it is fibrant and, for each f :A → B in S, the induced map of
simplicial sets

map(f, Y ):map(B, Y ) −→ map(A, Y )

is a weak equivalence, where map(−,−) is any homotopy function complex.
We also refer to this condition by saying that Y is simplicially orthogonal
to all the maps in S.

A homotopy localization in M is a functor L:M → M preserving weak
equivalences, taking fibrant values, and equipped with a natural transforma-
tion η: Id → L which is idempotent in the homotopy category HoM, that is,
for every object X, the maps LηX and ηLX from LX to LLX coincide in HoM
and are isomorphisms.

A homotopy localization L is called an S-localization, where S is a class of
maps, if the image of L in HoM is precisely the closure under isomorphisms
of the class of S-local objects.



Existence of f-localizations

The existence of an f-localization functor Lf of simplicial sets for every single
map f was proved by Bousfield and Dror Farjoun. Essentially the same
construction works in any left-proper model category M that is cofibrantly
generated and whose underlying category is locally presentable. Such model
categories are called combinatorial.

A model category is left proper if any pushout of a weak equivalence along a cofibration
is a weak equivalence. It is right proper if any pullback of a weak equivalence along a
fibration is a weak equivalence.

A model category is cofibrantly generated if there are sets of maps I and J with small
domains where I detects trivial fibrations and J detects fibrations.

A category C is locally presentable if it is cocomplete and there is a regular cardinal λ

and a set X of λ-presentable objects such that every object of C is a λ-directed colimit
of objects from X . This concept was originally introduced by Gabriel and Ulmer in 1971.
An object X of a category C is called λ-presentable, where λ is a regular cardinal, if the
functor C(X,−) preserves λ-directed colimits.

In fact, if M is left proper and combinatorial, then, for every map f , there is
a new model category structure Mf with the same objects, where the weak
equivalences are the maps h such that Lf(h) is a weak equivalence in M.



Some important special cases

Localization at sets of primes: f is the coproduct of the power maps
q:S1 → S1 where q belongs to the complement of the given set of primes.

Homological localizations: f is the coproduct of a sufficiently large set of
equivalences for a given homology theory. The same method does not work
for cohomology theories. The existence of cohomological localizations of
simplicial sets or spectra is still an open problem.

Quillen’s plus-construction: f sends the coproduct of a sufficiently large
set of acyclic simplicial sets to a point. A much smaller f was described by
[Berrick–C, 1999].

The unstable motivic category: M is the model category of simplicial
presheaves over the Grothendieck site of smooth schemes over a field k with
the Nisnevich topology, and f is the trivial map from the affine line A1 to the
point Spec(k).



Large-cardinal axioms

There is a hierarchy of set-theoretical statements that cannot be proved
using the ordinary ZFC axioms (Zermelo–Fraenkel axioms with the axiom of
choice), yet they are believed to be consistent with ZFC. Their negations
are consistent with ZFC. For example, such axioms include the existence of
strongly inaccessible cardinals or the existence of measurable cardinals.

The following statements are in the large-cardinal hierarchy:

Vopěnka’s Principle (VP): The category of ordinals cannot be fully embed-
ded into the category of graphs (binary relations).

WVP: The opposite of the category of ordinals cannot be fully embedded
into the category of graphs.

It is known that VP implies WVP, and that WVP is equivalent to the following
statement: Every full subcategory of a locally presentable category closed
under limits is reflective.

A full subcategory D of a category C is called reflective if the embedding D ↪→ C has a

left adjoint L: C → D, which is called a reflection or a localization. A full subcategory

A is called coreflective if the embedding A ↪→ C has a right adjoint C → A.



VP is equivalent to the statement that every full subcategory of a locally
presentable category closed under colimits is coreflective.

VP implies that every full subcategory of a locally presentable category closed
under limits is the orthogonal complement of a single morphism.

Theorem [C–Scevenels–Smith, 2005] Assume that VP holds. Let S be any
(possibly proper) class of maps in the category of simplicial sets. Then
S-localization exists and is equivalent to Lf for some single map f . Moreover,
if L is any homotopy localization on simplicial sets, then L ' Lf for some f .

Therefore, VP implies the existence of cohomological localizations.

An example of a homotopy localization on simplicial sets that is not equivalent
to Lf for any map f was displayed under the assumption that measurable car-
dinals do not exist (a statement that is consistent with ZFC, but incompatible
with VP).

Open problem: Find an example of a class of maps of simplicial sets S such
that S-localization can be proved not to exist, under the negation of some
large-cardinal principle.



From spaces to spectra, and beyond

The above theorem was extended by [C–Chorny, 2005] to any left-proper
combinatorial model category M. This applies to the model category of
symmetric spectra over simplicial sets.

Theorem [C–Gutiérrez–Rosický] Assuming VP, every descending chain of
simplicial orthogonality classes

. . . ⊆ Dα ⊆ Dα−1 ⊆ . . . ⊆ D1 ⊆ D0

indexed by the ordinals in a combinatorial model category stabilizes.

We say that Dα is a simplicial orthogonality class if there is a class of maps Sα such
that Dα is precisely the class of all objects X such that

map(f, X):map(B, X)→ map(A, X)

is a weak equivalence for every f :A → B in Sα.



Theorem [C–Gutiérrez–Rosický] Let M be a stable combinatorial model
category. Assuming VP, every localizing subcategory of HoM is coreflective
and every colocalizing subcategory of HoM is reflective.

This answers a question posed by [Hovey–Palmieri–Strickland, 1997].

A pointed model category M is stable if the suspension operator is invertible in HoM.

Hence, HoM is a triangulated category.

If T is a triangulated category, a subcategory is localizing if it is triangulated and closed

under retracts and coproducts. A subcategory is colocalizing if it is triangulated and

closed under retracts and products.

Open problem: Find an example of a localizing subcategory in the homotopy
category of a stable combinatorial model category that fails to be coreflective,
under the negation of some large-cardinal principle.



Two counterexamples

Example [Neeman, 2001] In the triangulated category K(Z) of chain com-
plexes of abelian groups and homotopy classes of chain maps, there are lo-
calizations that are not equivalent to Lf for any map f . In fact, the derived
category D(Z) embeds into K(Z) and the kernel of the reflection K(Z)→ D(Z)
is the class of acyclic chain complexes, which is not generated by any set.
The category K(Z) is the homotopy category of a model category that fails
to be cofibrantly generated.

Example [C–Neeman] There is a triangulated category T (namely, chain com-
plexes of small modules over the free ring on all the ordinals, with homotopy
classes of chain maps), in which there is a localizing subcategory which is not
coreflective. Indeed, the class A of acyclic chain complexes is closed under
triangles, retracts and coproducts, yet it is not the class of chain complexes
annihilated by any localization functor defined on T (i.e., A-nullification does
not exist). This triangulated category T is also the homotopy category of a
model category that fails to be cofibrantly generated.


