On the convergence of the Eilenberg-Moore spectral sequence

Tilman Bauer Universität Münster

> July 11, 2005 Tokyo

The Eilenberg-Moore spectral sequence

Given a fibration $F \to E \to B$ and a cohomology theory K, can we compute $K^*(F)$ from a knowledge of $K^*(B)$ (as an algebra) and $K^*(E)$ (as a $K^*(B)$ -algebra)?

Theorem (Eilenberg, Moore, 1959). If *B* is simply connected and $K = H_*(-;\mathbf{F}_p)$ then there is a convergent spectral sequence

$$E_2^{**} = \operatorname{Tor}_{**}^{K^*(B)}(K^*(E), K_*) \Longrightarrow K^*(F)$$

• Problems occur when the fibration is not nilpotent, or when *K* is a nonconnective theory.

Simple connectivity cannot be omitted: take $B = K(\mathbb{Z}/l, 1)$ with $p \nmid l$, and E contractible. Then $\tilde{K}^*(B) = \tilde{K}^*(E) = 0$, but $\tilde{K}^*(F)$ is nontrivial.

A general construction of the EMSS

The cobar construction of a map $E \xrightarrow{p} B$ is the cosimplicial space

$$C^{\mathfrak{n}} = \operatorname{Cobar}^{n}(E \to B) = E \times B^{n}$$

with maps

$$E \stackrel{\operatorname{id} \times p}{\underset{\operatorname{id} \times *}{\rightrightarrows}} E \times B \stackrel{\rightarrow}{\underset{\rightarrow}{\rightarrow}} \cdots$$

The associated tower of total complexes has a very simple shape:

$$Tot^{0}(C^{\bullet}) = E$$

$$Tot^{i}(C^{\bullet}) = F \quad \text{for } i \ge 1.$$

If *K* is a spectrum then $K \wedge C^{\bullet}$ is a cosimplicial spectrum with an associated total tower; however, the canonical map

$$\Phi\colon K\wedge \operatorname{Tot}^n(C^{\bullet})\to \operatorname{Tot}^n(K\wedge C^{\bullet})$$

is almost never an equivalence.

Unlike $\operatorname{Tot}^{s}(C^{\bullet})$, the tower $\operatorname{Tot}^{s}(K \wedge C^{\bullet})$ is not eventually constant.

Thus $K \wedge C^{\bullet}$ produces an interesting left half-plane spectral sequence, the Bousfield spectral sequence for a cosimplicial spectrum.

If *K* has Künneth isomorphisms, then its E^2 -term is given by

$$E_{**}^2 = \operatorname{Cotor}_{K_*(B)}(K_*(E), K_*),$$

and its expected target is $\pi_* \operatorname{Tot}(K \wedge C^{\bullet})$.

If Φ_* : $K_n(\operatorname{Tot}^{s}(C^{\bullet})) \to \pi_n \operatorname{Tot}^{s}(K \wedge C^{\bullet})$ is a pro-isomorphism for each *n*, then

- E_{st}^k becomes eventually constant for every *s*, *t*,
- $E_{s,t-s}^{\infty}$ is nontrivial for only finitely many *s*,
- (and therefore) the spectral sequence converges to K_{*}(F) in a strong (pro-constant) sense.

Some non-convergence examples

Even simple connectedness is not enough to ensure convergence if K is nonconnective.

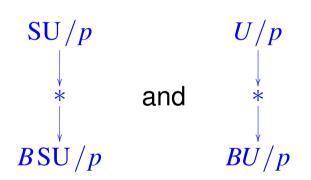
Example. Let K = K(n), $B = K(\mathbb{Z}/p, n+1)$.

Computations of Ravenel-Wilson:

$$K(n)_*(B) = 0$$
, but $K(n)_*(\Omega B) \neq 0$

Thus the K(n)-based EMSS cannot possibly converge for the path-loop fibration on *B*.

Example. Consider the two path-loop fibrations



Since $(K/p)_*(BSU/p) \cong (K/p)_*(BU/p)$, the spectral sequences are isomorphic.

But $(K/p)_*(SU/p) \ncong (K/p)_*(U/p)$.

4

Partial convergence results

The convergence for $K = H_*(-; \mathbf{F}_p)$ is quite well-understood for all fibrations:

Theorem (Dwyer). Let $F \to E \xrightarrow{\pi} B$ be a fibration with *F* and *E* connected. The $H_*(-;\mathbf{F}_p)$ -based EMSS for a fibration $E \to B$ converges pro-constantly to the homology of the fiber on *p*-completion towers.

This means: If

- {*R_sX*}_s denotes the *p*-completion tower of a space
 X and
- F_s denotes the fiber of $R_s E \xrightarrow{R_s \pi} R_s B$

then the EMSS for π converges pro-constantly to the total space of the pro-constant tower $H_*(F_s; \mathbf{F}_p)$.

• This generalizes to connective theories.

Two convergence results for K = K(n)

Theorem (Tamaki, 1994). The K(n)-based EMSS for the path-loop fibration on $\Omega^{n-1}\Sigma^n X$ converges strongly to $K(n)_*(\Omega^n\Sigma^n X)$ for any space X and any $n \ge 1$.

• In particular, the path-loop EMSS converges on suspensions (in fact, it collapses at E^2).

Theorem (Jeanneret-Osse, 1999). The K(n)-based cohomological EMSS for $X \rightarrow B$ converges whenever $K^*(\Omega B)$ is an exterior algebra on finitely many generators.

• Useful for classifying spaces of finite loop spaces.

Complete convergence

The notion of pro-constant convergence is too restrictive for the EMSS for nonconnective theories.

Definition. For $C^{\bullet} = \operatorname{Cobar}^{\bullet}(E \to B)$, let

- $T^s = \operatorname{Tot}^s(K \wedge C^{\bullet});$
- $F^{s}K_{*}(F) = \ker\left(K_{*}(F) \xrightarrow{\Phi} \pi_{*}T^{s}\right)$

The EMSS is called

- weakly convergent to K_*F if $\frac{F^sK_*F}{F^{s+1}K_*F} \rightarrow E_{\infty}^{s,*}$ is iso;
- *strongly convergent* if in addition,

 $\lim^{\varepsilon} F^{s} K_{*}(F)$ for $\varepsilon = 0, 1;$

• completely convergent if also $\lim^{1} \pi_{*}T^{s} = 0$.

In a completely convergent spectral sequence, infinitely many differentials at (s,t) and infinite filtrations are possible, but in a controlled way.

New convergence results

From now on, let K_* be a graded field (e.g. K = K(n)).

Call a fibration *EM-convergent* if its *K*-based EMSS is completely convergent to $K_*(F)$.

Theorem 1. Let *B* be a space such that the path-loop fibration on *B* is EM-convergent. Then so is any fibration $E \rightarrow B$.

Hodgkin proved a cohomological version of this result under the assumption that $K^*(B)$ has finite global dimension.

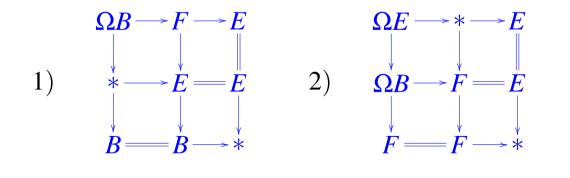
Theorem 2. Let $X \rightarrow B_i$ (i = 1, 2) be two EM-convergent fibrations with fibers F_i . Then

 $F_1 \rightarrow B_2$ is EM-convergent iff $F_2 \rightarrow B_1$ is EM-convergent.

The fiber, in both cases, is the fiber of $X \rightarrow B_1 \times B_2$.

Corollary. Let $F \rightarrow E \rightarrow B$ be a fibration such that the path-loop fibrations on F and on B are EM-convergent. Then so is the path-loop fibration (and hence any fibration) on E.

Proof.



Theorem 3. Any fibration over a zeroth space of a *K*-module spectrum is EM-convergent.

Idea of the proof:

By Theorem 1, it is enough to consider the path-loop fibration.

The spectral sequence splits as an (infinite) tensor product of path-loop spectral sequences of \underline{K}_k , the *k*th space of the spectrum *K*.

 $K_*(\underline{K}_*)$ is a Hopf ring, computed by Wilson (1984):

As a $\mathbb{Z}/(2p^n - 2)$ -bigraded ring, $K(n)_* \underbrace{K(n)}_{j_0 < p^n - 1} \cong \bigotimes_{\substack{i_0 = 0 \text{ or } j_0 < p^n - 1}} \wedge (a^I b^J e_1) \otimes \bigotimes_{i_0 = 0 \text{ or } j_0 < p^n - 1}} P_{t_1(I) + 1} (a^I b^J)$ where $k \in \mathbb{Z}$, $I = (i_0, \dots, i_{n-1})$ with $i_k = 0$ or $1, j_k < p^n$.

From this knowledge, the EMSS can be computed explicitly. For K = K(n), it collapses at $E_{**}^{p^{n+1}}$ and is completely convergent.

A generalization of Dwyer's convergence

Theorems 2 and 3 allow an inductive argument to show:

Corollary. Let $F \rightarrow E \rightarrow B$ be an arbitrary fibration. Let *K* be a field spectrum. Then the K_* -based EMSS converges completely to K_* of the fiber on *K*-completion towers.

The *K*-completion tower (Bendersky-Thompson) is the analog of the p-completion tower: it is associated to the cosimplicial space

```
K^{\bullet}(X) = \Omega^{\infty}(K \wedge \Omega^{\infty}(K \wedge \ldots \Omega^{\infty}(K \wedge X) \cdots)).
```

(We may want to use S-algebras to make the cosimplicial identities hold strictly.)

Steps of the proof

- We may assume that E is contractible.
- By Theorem 3, all spaces in the cosimplicial resolution $K^{\bullet}(B)$ are EM-convergent.
- By induction and Theorem 2, the spaces $\operatorname{Tot}^{t} K^{\bullet}(B)$ are also EM-convergent for all *t*.
- The cosimplicial spectrum

 $\{K \wedge \operatorname{Cobar}^{s}(K^{t}(B))\}_{t} \simeq \operatorname{const}(K \wedge \operatorname{Cobar}^{s}(B))$

is contractible for all s by the contraction

 $K \wedge K(X) = K \wedge \Sigma^{\infty} \Omega^{\infty}(K \wedge X) \to K \wedge K \wedge X \to K \wedge X.$

Thus, passing to total spaces with respect to s,

 $\operatorname{Tot}(K \wedge \operatorname{Cobar}^{\bullet}(B)) \simeq \{K \wedge F_t\}_t.$

A lim¹-consideration finishes the proof about convergence.

A final question

The previous corollary gives a satisfactory answer about Eilenberg-Moore convergence, yet it cannot state the target without the technical tool of completion towers.

It makes sense to ask when the target group

$\pi_* \operatorname{holim}_t K \wedge F_t$

coincides with the K-homology of the localized fibration. I do not know any counterexamples and in fact believe in the

Conjecture. Any fibration of *K*-local spaces is *EM*-convergent. In particular, the EMSS for a fibration $E \rightarrow B$ converges to the homology of the fiber of the localized fibration.