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The Eilenberg-Moore spectral sequence

Given a fibration F → E → B and a cohomology theory
K, can we compute K∗(F) from a knowledge of K∗(B)
(as an algebra) and K∗(E) (as a K∗(B)-algebra)?

Theorem (Eilenberg, Moore, 1959). If B is simply
connected and K = H∗(−;Fp) then there is a conver-
gent spectral sequence

E∗∗2 = TorK∗(B)
∗∗ (K∗(E),K∗) =⇒ K∗(F)

• Problems occur when the fibration is not nilpotent,
or when K is a nonconnective theory.

Simple connectivity cannot be omitted: take B = K(Z/l,1)
with p - l, and E contractible.
Then K̃∗(B) = K̃∗(E) = 0, but K̃∗(F) is nontrivial.
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A general construction of the EMSS

The cobar construction of a map E
p−→ B is the cosim-

plicial space

Cn = Cobarn(E → B) = E×Bn

with maps

E
id×p
⇒

id×∗
E×B →→→ · · ·

The associated tower of total complexes has a very
simple shape:

Tot0(C•) = E
Toti(C•) = F for i≥ 1.

If K is a spectrum then K ∧C• is a cosimplicial spec-
trum with an associated total tower; however, the canon-
ical map

Φ : K∧Totn(C•)→ Totn(K∧C•)
is almost never an equivalence.
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Unlike Tots(C•), the tower Tots(K ∧C•) is not eventu-
ally constant.
Thus K ∧C• produces an interesting left half-plane
spectral sequence, the Bousfield spectral sequence
for a cosimplicial spectrum.
If K has Künneth isomorphisms, then its E2-term is
given by

E2∗∗ = CotorK∗(B)(K∗(E),K∗),

and its expected target is π∗Tot(K∧C•).

If Φ∗ : Kn(Tots(C•))→ πn Tots(K∧C•) is a pro-isomorphism
for each n, then

• Ek
st becomes eventually constant for every s, t,

• E∞
s,t−s is nontrivial for only finitely many s,

• (and therefore) the spectral sequence converges
to K∗(F) in a strong (pro-constant) sense.
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Some non-convergence examples

Even simple connectedness is not enough to ensure
convergence if K is nonconnective.

Example. Let K = K(n), B = K(Z/p,n+1).

Computations of Ravenel-Wilson:

K̃(n)∗(B) = 0, but K̃(n)∗(ΩB) 6= 0

Thus the K(n)-based EMSS cannot possibly converge
for the path-loop fibration on B.

Example. Consider the two path-loop fibrations

SU/p

²²

U/p

²²∗
²²

and ∗
²²

BSU/p BU/p

Since (K/p)∗(BSU/p) ∼= (K/p)∗(BU/p), the spectral
sequences are isomorphic.
But (K/p)∗(SU/p) 6∼= (K/p)∗(U/p).
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Partial convergence results

The convergence for K = H∗(−;Fp) is quite well-understood
for all fibrations:

Theorem (Dwyer). Let F → E π−→ B be a fibration with
F and E connected. The H∗(−;Fp)-based EMSS for
a fibration E → B converges pro-constantly to the ho-
mology of the fiber on p-completion towers.

This means: If

• {RsX}s denotes the p-completion tower of a space
X and

• Fs denotes the fiber of RsE
Rsπ−−→ RsB

then the EMSS for π converges pro-constantly to the
total space of the pro-constant tower H∗(Fs;Fp).

• This generalizes to connective theories.
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Two convergence results for K = K(n)

Theorem (Tamaki, 1994). The K(n)-based EMSS for
the path-loop fibration on Ωn−1ΣnX converges strongly
to K(n)∗(ΩnΣnX) for any space X and any n≥ 1.

• In particular, the path-loop EMSS converges on sus-
pensions (in fact, it collapses at E2).

Theorem (Jeanneret-Osse, 1999). The K(n)-based
cohomological EMSS for X → B converges whenever
K∗(ΩB) is an exterior algebra on finitely many gener-
ators.

• Useful for classifying spaces of finite loop spaces.
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Complete convergence

The notion of pro-constant convergence is too restric-
tive for the EMSS for nonconnective theories.

Definition. For C• = Cobar•(E → B), let

• T s = Tots(K∧C•);

• FsK∗(F) = ker
(

K∗(F) Φ−→ π∗T s
)

The EMSS is called

• weakly convergent to K∗F if FsK∗F
Fs+1K∗F

→ Es,∗
∞ is iso;

• strongly convergent if in addition,

limεFsK∗(F) for ε = 0, 1;

• completely convergent if also lim1 π∗T s = 0.

In a completely convergent spectral sequence, infinitely
many differentials at (s, t) and infinite filtrations are
possible, but in a controlled way.
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New convergence results

From now on, let K∗ be a graded field (e.g. K = K(n)).

Call a fibration EM-convergent if its K-based EMSS is
completely convergent to K∗(F).

Theorem 1. Let B be a space such that the path-loop
fibration on B is EM-convergent. Then so is any fibra-
tion E → B.

Hodgkin proved a cohomological version of this result
under the assumption that K∗(B) has finite global di-
mension.
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Theorem 2. Let X →Bi (i = 1, 2) be two EM-convergent
fibrations with fibers Fi. Then

F1→B2 is EM-convergent iff F2→B1 is EM-convergent.

The fiber, in both cases, is the fiber of X → B1×B2.

Corollary. Let F → E → B be a fibration such that the
path-loop fibrations on F and on B are EM-convergent.
Then so is the path-loop fibration (and hence any fi-
bration) on E.

Proof.

ΩB //

²²

F //

²²

E

1) ∗ //

²²

E

²²

E

²²

B B // ∗

ΩE //

²²

∗ //

²²

E

2) ΩB //

²²

F

²²

E

²²

F F // ∗
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Theorem 3. Any fibration over a zeroth space of a K-
module spectrum is EM-convergent.

Idea of the proof:

By Theorem 1, it is enough to consider the path-loop
fibration.

The spectral sequence splits as an (infinite) tensor
product of path-loop spectral sequences of Kk, the kth
space of the spectrum K.

K∗(K∗) is a Hopf ring, computed by Wilson (1984):

As a Z/(2pn−2)-bigraded ring,

K(n)∗K(n)∗ ∼=
O

j0<pn−1

V(
aIbJe1

)⊗
O

i0=0 or j0<pn−1
Pt1(I)+1

(
aIbJ

)

where k ∈ Z, I = (i0, . . . , in−1) with ik = 0 or 1, jk < pn.

From this knowledge, the EMSS can be computed ex-

plicitly. For K = K(n), it collapses at E pn+1
∗∗ and is com-

pletely convergent.
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A generalization of Dwyer’s convergence

Theorems 2 and 3 allow an inductive argument to show:

Corollary. Let F → E → B be an arbitrary fibration. Let
K be a field spectrum. Then the K∗-based EMSS con-
verges completely to K∗ of the fiber on K-completion
towers.

The K-completion tower (Bendersky-Thompson) is the
analog of the p-completion tower: it is associated to
the cosimplicial space

K•(X) = Ω∞(K∧Ω∞(K∧ . . .Ω∞(K∧X) · · ·)).
(We may want to use S-algebras to make the cosim-

plicial identities hold strictly.)
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Steps of the proof

• We may assume that E is contractible.

• By Theorem 3, all spaces in the cosimplicial resolu-
tion K•(B) are EM-convergent.

• By induction and Theorem 2, the spaces Tott K•(B)
are also EM-convergent for all t.

• The cosimplicial spectrum

{K∧Cobars(Kt(B))}t ' const(K∧Cobars(B))

is contractible for all s by the contraction

K∧K(X) = K∧Σ∞Ω∞(K∧X)→ K∧K∧X → K∧X .

Thus, passing to total spaces with respect to s,

Tot(K∧Cobar•(B))' {K∧Ft}t.

A lim1-consideration finishes the proof about conver-
gence.
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A final question

The previous corollary gives a satisfactory answer about
Eilenberg-Moore convergence, yet it cannot state the
target without the technical tool of completion towers.

It makes sense to ask when the target group

π∗holim
t

K∧Ft

coincides with the K-homology of the localized fibra-
tion. I do not know any counterexamples and in fact
believe in the

Conjecture. Any fibration of K-local spaces is EM-
convergent. In particular, the EMSS for a fibration
E → B converges to the homology of the fiber of the
localized fibration.
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