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The Eilenberg-Moore spectral sequence

Given a fibration F — E — B and a cohomology theory
K, can we compute K*(F) from a knowledge of K*(B)
(as an algebra) and K*(E) (as a K*(B)-algebra)?

Theorem (Eilenberg, Moore, 1959). If B is simply
connected and K = H.(—;F,) then there is a conver-
gent spectral sequence

E;* = Tork, B)(K*(E),K,) = K*(F)

e Problems occur when the fibration is not nilpotent,
or when K is a nonconnective theory.

Simple connectivity cannot be omitted: take B=K(Z/1,1)
with p 11, and E contractible.
Then K*(B) = K*(E) = 0, but K*(F) is nontrivial.




A general construction of the EMSS

The cobar construction of a map E 2, B is the cosim-
plicial space
C" = Cobar’"(E — B) = E x B"
with maps
idxp -
E == EXB—---

1d x x

The associated tower of total complexes has a very
simple shape:

Tot’(C®) E

Tot'(C*) = F fori>1.

If K is a spectrum then K AC® is a cosimplicial spec-
trum with an associated total tower; however, the canon-
ical map

®: K A\Tot"(C®) — Tot" (K AC®)
is almost never an equivalence.



Unlike Tot*(C*®), the tower Tot*(K A C®) is not eventu-
ally constant.

Thus K A C® produces an interesting left half-plane
spectral sequence, the Bousfield spectral sequence
for a cosimplicial spectrum.

If K has Kiinneth isomorphisms, then its E2-term is
given by

EZ, = Cotorg, (5)(K«(E), K,
and its expected target is w.. Tot(K AC®).

If &, : K,(Tot*(C®)) — m, Tot’(K AC®) is a pro-isomorphism
for each n, then

e EX becomes eventually constant for every s, 1,

o £

st—s Is nontrivial for only finitely many s,

e (and therefore) the spectral sequence converges
to K«(F) in a strong (pro-constant) sense.



Some non-convergence examples

Even simple connectedness is not enough to ensure
convergence if K is nonconnective.

Example. Let K =K(n), B=K(Z/p,n+1).

Computations of Ravenel-Wilson:

—— ——~——

K(n),(B) =0, but K (n),(QB) # 0

Thus the K(n)-based EMSS cannot possibly converge
for the path-loop fibration on B.

Example. Consider the two path-loop fibrations

SU/p U/p
% and %
BSU /p BU/p

Since (K/p)«(BSU /p) = (K/p)«(BU/p), the spectral
sequences are isomorphic.
But (K/p)«(SU/p) % (K/p)«(U/p).




Partial convergence results

The convergence for K = H.(—;F ) is quite well-understood
for all fibrations:

Theorem (Dwyer). Let F — E = B be a fibration with
F and E connected. The H.(—;F,)-based EMSS for
a fibration E — B converges pro-constantly to the ho-
mology of the fiber on p-completion towers.

This means: If

e {R;X}denotes the p-completion tower of a space
X and

| R,
e F, denotes the fiber of R.E =% R.B

then the EMSS for © converges pro-constantly to the
total space of the pro-constant tower H, (Fs;F)).

e This generalizes to connective theories.



Two convergence results for K = K(n)

Theorem (Tamaki, 1994). The K(n)-based EMSS for
the path-loop fibration on Q"~1£"X converges strongly
to K(n)«(Q"L"X) for any space X and anyn > 1.

e In particular, the path-loop EMSS converges on sus-
pensions (in fact, it collapses at E2).

Theorem (Jeanneret-Osse, 1999). The K(n)-based
cohomological EMSS for X — B converges whenever

K*(QB) is an exterior algebra on finitely many gener-
ators.

e Useful for classifying spaces of finite loop spaces.




Complete convergence

The notion of pro-constant convergence is too restric-
tive for the EMSS for nonconnective theories.

Definition. For C*®* = Cobar®*(E — B), let
o T°=Tot"(KNC®);

o FSK.(F) = ker (K* F) 2, Tc*TS)

The EMSS is called

FSK.F
FSTIK.F

e strongly convergent if in addition,

e weakly convergentto K.F if — Ex" is iso;

lim*FSK,(F) for €=0, 1;

e completely convergent if also lim! n,. 7% = 0.

In a completely convergent spectral sequence, infinitely
many differentials at (s,r) and infinite filirations are
possible, but in a controlled way.



New convergence results
From now on, let K be a graded field (e.g. K = K(n)).

Call a fibration EM-convergent if its K-based EMSS is
completely convergent to K..(F).

Theorem 1. Let B be a space such that the path-loop
fibration on B is EM-convergent. Then so is any fibra-
tion E — B.

Hodgkin proved a cohomological version of this result
under the assumption that K*(B) has finite global di-
mension.



Theorem 2. LetX — B; (i=1, 2) be two EM-convergent
fibrations with fibers F;. Then

F| — B, is EM-convergent iff F» — B; is EM-convergent.

The fiber, in both cases, is the fiber of X — B| x B,.

Corollary. Let F — E — B be a fibration such that the
path-loop fibrations on F and on B are EM-convergent.
Then so is the path-loop fibration (and hence any fi-
bration) on E.

Proof.

QB—F —F QF —x*x—F

B——B—x F—F—x



Theorem 3. Any fibration over a zeroth space of a K -
module spectrum is EM-convergent.

|dea of the proof:

By Theorem 1, it is enough to consider the path-loop
fibration.

The spectral sequence splits as an (infinite) tensor
product of path-loop spectral sequences of K;, the kth
space of the spectrum K.

K«(K) is a Hopf ring, computed by Wilson (1984):

AsaZ/(2p" —2)-bigraded ring,
K(n)K(n). = @ A (db'er) © @ P41 (a'0)

Jo<p't—1 ip=0 or jo<p"—1
where k € Z, I = (igp,...,i,—1) Withiz =0or 1, j, < p".

From this knowledge, the EMSS can be computed ex-
n+1

plicitly. For K = K(n), it collapses at E/,  and is com-
pletely convergent.
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A generalization of Dwyer’s convergence

Theorems 2 and 3 allow an inductive argument to show:

Corollary. Let F — E — B be an arbitrary fibration. Let
K be a field spectrum. Then the K.-based EMSS con-
verges completely to K. of the fiber on K-completion
fowers.

The K-completion tower (Bendersky-Thompson) is the
analog of the p-completion tower: it is associated to
the cosimplicial space

K (X)= Q% (KAQPKA...Q°(KAX)---)).

(We may want to use S-algebras to make the cosim-
plicial identities hold strictly.)
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Steps of the proof
e We may assume that E is contractible.

e By Theorem 3, all spaces in the cosimplicial resolu-
tion K*(B) are EM-convergent.

e By induction and Theorem 2, the spaces Tot' K*(B)
are also EM-convergent for all z.

e The cosimplicial spectrum

{K A Cobar®(K'(B))}; ~ const(K A Cobar®(B))
is contractible for all s by the contraction
KAK(X)=KAX Q" (KANX) > KANKANX — KNX.
Thus, passing to total spaces with respect to s,
Tot(K A Cobar®(B)) ~ {K AN F; };.

A lim!-consideration finishes the proof about conver-
gence.
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A final question

The previous corollary gives a satisfactory answer about
Eilenberg-Moore convergence, yet it cannot state the
target without the technical tool of completion towers.

It makes sense to ask when the target group

s ho}imK N F;

coincides with the K-homology of the localized fibra-
tion. | do not know any counterexamples and in fact
believe in the

Conjecture. Any fibration of K-local spaces is EM-
convergent. In particular, the EMSS for a fibration
E — B converges to the homology of the fiber of the
localized fibration.
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