On lower bounds of triple point numbers for 5-colourable 2-knots

Tsukasa Yashiro (Joint work with Abdul Mohamad)

Sultan Qaboos University
The Fourth East Asian School of Knots and Related Topics The University of Tokyo

23 January 2008

Zeeman's twist spinning

Let B^{3} be a ${ }^{3}$-ball in \mathbf{R}_{+}^{3} such that $\partial B^{3} \cap T(K)$ is the pair of antipodal points of ∂B^{3}.
An m-twist-spun knot obtained from K is defined by rotating the tangle $B^{3} \cap T(K)$ about the axis through the antipodal points m times while \mathbf{R}_{+}^{3} spins. We denote this
2-knot by $T_{m}(K)$.

Theorem (Zeeman, 1965)

Every m-twist spun knot $T_{m}(K)$ obtained from K is fibred ($m \geq 1$); the fibre is the one-punctured k-fold branched covering space of S^{3} along K.

Corollary (Zeeman, 1965)

For any knot K, 1-twist spun knot obtained from K is trivial.

Surface Diagrams

A surface-knot is a connected, oriented, closed surface smoothly embedded in \mathbf{R}^{4} up to ambient isotopy. If $F \cong S^{2}$, then F is called a 2-knot. Let $F \subset \mathbf{R}^{4}$ be a surface-knot. Let $\pi: \mathbf{R}^{4} \rightarrow \mathbf{R}^{3}$; $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(x_{1}, x_{2}, x_{3}\right)$, be the orthogonal projection. A surface diagram of F is a union of the following local diagrams.

Branch point

Twist Spun Trefoil

The following is one-twisting part of a surface diagram of the twist spun trefoil.

In this diagram there are six triple points and two branch points. We can reduce the number of triple points into two by isotopy deformations (S. Satoh).

Twist Spun Trefoil

The following is one-twisting part of a surface diagram of the twist spun trefoil.

In this diagram there are six triple points and two branch points. We can reduce the number of triple points into two by isotopy deformations (S. Satoh).

Triple point numbers

For a surface-knot F, the minimal number of triple points for all possible surface diagrams is called the triple point number of F denoted by $t(F)$. A surface diagram D_{F} of F with $t(F)$ triple points is called a t-minimal surface diagram.

Theorem (S. Satoh 2005)
For every 2-knot F with $t(F) \neq 0$

Theorem (S. Satoh and A. Shima 2002, 2004)
 Let K be a trefoil knot. Let $T_{m}(K)$ be m-twist-spinning of K Then the following holds.

Triple point numbers

For a surface-knot F, the minimal number of triple points for all possible surface diagrams is called the triple point number of F denoted by $t(F)$. A surface diagram D_{F} of F with $t(F)$ triple points is called a t-minimal surface diagram.

Theorem (S. Satoh 2005)

For every 2-knot F with $t(F) \neq 0$,

$$
4 \leq t(F)
$$

Theorem (S. Satoh and A. Shima 2002, 2004)
Let K be a trefoil knot. Let $T_{m}(K)$ be m-twist-spinning of K
Then the following holds.

Triple point numbers

For a surface-knot F, the minimal number of triple points for all possible surface diagrams is called the triple point number of F denoted by $t(F)$. A surface diagram D_{F} of F with $t(F)$ triple points is called a t-minimal surface diagram.

Theorem (S. Satoh 2005)

For every 2-knot F with $t(F) \neq 0$,

$$
4 \leq t(F)
$$

Theorem (S. Satoh and A. Shima 2002, 2004)

Let K be a trefoil knot. Let $T_{m}(K)$ be m-twist-spinning of K. Then the following holds.

$$
t\left(T_{2}(K)\right)=4, \quad t\left(T_{3}(K)\right)=6
$$

Twist Spun Trefoil (Reduced diagram)

This is a piece of reduced diagram of twist spun trefoil.

This partial diagram has two triple points and two branch points.

Facts

Theorem (T. Y. 2005)

Let K be the $(2, k)$-torus knot. Then the following holds.

$$
t\left(T_{m}(K)\right) \leq m(k-1),(m>1)
$$

Theorem (E. Hatakenaka (2004))

For a 2-twist spun $(2,5)$-torus knot $F, 6 \leq t(F)$

Facts

Theorem (T. Y. 2005)

Let K be the $(2, k)$-torus knot. Then the following holds.

$$
t\left(T_{m}(K)\right) \leq m(k-1),(m>1)
$$

Theorem (E. Hatakenaka (2004))
 For a 2-twist spun $(2,5)$-torus knot $F, 6 \leq t(F)$.

Facts

Theorem (T. Y. 2005)

Let K be the $(2, k)$-torus knot. Then the following holds.

$$
t\left(T_{m}(K)\right) \leq m(k-1),(m>1)
$$

Theorem (E. Hatakenaka (2004))

For a 2-twist spun $(2,5)$-torus knot $F, 6 \leq t(F)$.

$$
6 \leq t(F) \leq 8
$$

Half-piece of 2-twist Spun (2,5)-torus Knot Diagram

Half-piece of 2-twist Spun (2,5)-torus Knot Diagram

Pre-images of Multiple Points

To investigate triple points in a surface diagram we look at the pre-image of the surface diagram:

Pre-images of Multiple Points

To investigate triple points in a surface diagram we look at the pre-image of the surface diagram:

Pre-images of Multiple Points

To investigate triple points in a surface diagram we look at the pre-image of the surface diagram:

Pre-images of Multiple Points

To investigate triple points in a surface diagram we look at the pre-image of the surface diagram:

Cells induced from a branch point and a triple point, are called a loop disc and a rectangle respectively.

Pre-images of Multiple Points

To investigate triple points in a surface diagram we look at the pre-image of the surface diagram:

We denote the rectangle in the figure by $\left(v_{0} ; v_{0} v_{1}, v_{0} v_{2} ; v_{3}\right)$.

Pre-images of Multiple Points

The closure of the pre-image of double curves in D_{F} is a union of two families of arcs called the double decker set. The union of blue arcs is the upper decker set and the union of red arcs is the lower decker set.

Pre-images of Multiple Points

We denote the lower decker set by $S_{b} . F \backslash S_{b}=\left\{R_{0}, \ldots, R_{n}\right\}$. Let $N\left(S_{b}\right)$ be a small neighbourhood of S_{b} in F.
$F \backslash N\left(S_{b}\right)=\left\{V_{0}, \ldots, V_{n}\right\} ; V_{i} \subset R_{i}(i=0, \ldots, n)$.
The quotient map $q: F \rightarrow F / \sim$ is defined by $q\left(V_{i}\right)=v_{i}$,
$(i=0, \ldots, n)$. The quotient space has a cell-complex structure.
We will denote the cell-complex by $K_{D_{F}}$.
A subcomplex of $K_{D_{F}}$ induced from a simple closed curve in S_{b} is

Pre-images of Multiple Points

We denote the lower decker set by $S_{b} . F \backslash S_{b}=\left\{R_{0}, \ldots, R_{n}\right\}$. Let $N\left(S_{b}\right)$ be a small neighbourhood of S_{b} in F.
$F \backslash N\left(S_{b}\right)=\left\{V_{0}, \ldots, V_{n}\right\} ; V_{i} \subset R_{i}(i=0, \ldots, n)$.
The quotient map $q: F \rightarrow F / \sim$ is defined by $q\left(V_{i}\right)=v_{i}$,
$(i=0, \ldots, n)$. The quotient space has a cell-complex structure.
We will denote the cell-complex by $K_{D_{F}}$.
A subcomplex of $K_{D_{F}}$ induced from a simple closed curve in S_{b} is

Pre-images of Multiple Points

The quotient map $q: F \rightarrow F / \sim$ is defined by $q\left(V_{i}\right)=v_{i}$, $(i=0, \ldots, n)$. The quotient space has a cell-complex structure. We will denote the cell-complex by $K_{D_{F}}$.

A subcomplex of $K_{D_{F}}$ induced from a simple closed curve in S_{b} is called a bubble.

Pre-images of Multiple Points

> The quotient map $q: F \rightarrow F / \sim$ is defined by $q\left(V_{i}\right)=v_{i}$, $(i=0, \ldots, n)$. The quotient space has a cell-complex structure. We will denote the cell-complex by $K_{D_{F}}$.

A subcomplex of $K_{D_{F}}$ induced from a simple closed curve in S_{b} is called a bubble.

Parcels

A parcel of $K_{D_{F}}$ is a subcomplex K without free edges of $K_{D_{F}}$ such that for any finite set S of vertices of $K_{D_{F}},|K| \backslash|S|$ is connected. Let F be a surface-knot and let D_{F} be a t-minimal surface diagram. Then there is a cell-complex $K_{D_{F}}$ such that $K_{D_{F}}$ can be decomposed into parcels K_{1}, \ldots, K_{n} such that

$$
\begin{aligned}
K_{D_{F}} & =K_{1}+\cdots+K_{n} \\
& =R_{D_{F}}+B_{D_{F}}
\end{aligned}
$$

where $R_{D_{F}}$ is the union of rectangles and $B_{D_{F}}$ be the union of bubbles.

Weights

We add a weight on an edge as follows.

The edge is denoted by $v_{i} v_{j}$ and the weight is v_{k}. We write $w\left(v_{i} v_{j}\right)=v_{k}$.

Quandle Colourings

A quandle X is a non-empty set with a binary operation $(a, b) \mapsto a * b$ such that
(1) For any $a \in X, a * a=a$,
(2) For any $a, b \in X$, there is a unique $c \in X$ such that $c * b=a$.
(3) For any $a, b, c \in X,(a * b) * c=(a * c) *(b * c)$.

Let \mathcal{V} and \mathcal{E} be the set of vertices and edges in $K_{D_{F}}$. A colouring of $K_{D_{F}}$ is a map

$$
\mathrm{Col}: \mathcal{V} \cup \mathcal{E} \rightarrow X
$$

defined by $\operatorname{Col}(v)=w(v)$ for $v \in \mathcal{V}$ and $\operatorname{Col}(e)=w(e)$ for $e \in \mathcal{E}$.

Quandle Chain Complex

Let $C_{n}(X)(n \geq 1)$ be a free abelian group generated by n-tuples $\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$. Let $C_{n}^{D}(X)$ be a sub group of $C_{n}(X)$ generated by $\left(x_{1}, \ldots, x_{n}\right)$ such that $x_{i}=x_{j}$ for some $1 \leq i, j, \leq n$ and $(|i-j|=1)$. We denote the quotient group $C_{n}(X) / C_{n}^{D}(X)$ by $C_{n}^{Q}(X)$.

We define a chain group $C_{2}\left(K_{D_{F}}\right)$ of $K_{D_{F}}$. A homomorphism $\mathrm{Col}_{\sharp}: C_{2}\left(K_{D_{F}}\right) \rightarrow C_{3}^{Q}(X)$ is induced from the colouring of D_{F}.

> Theorem (T.Y.)
> Let F be a 2 -knot. Suppose that F is coloured by a finite quandle X. Then the following holds.

If $K_{D_{F}}$ has the maximal rank of $H_{2}\left(\left|R_{D_{F}}\right| ; \mathbb{Z}\right)$ for all t-minimal surface diagrams, $K_{D_{F}}$ is said to be maximal. Suppose that $K_{D_{F}}$ is maximal. We view $K_{i} \subset R_{D_{F}},(i=1, \ldots, r \leq n)$ as chains in $C_{2}\left(K_{D_{F}}\right)$.

$$
\begin{equation*}
\mu(F)=\min _{D_{F}} \#\left\{K_{i} \subset R_{D_{F}} \mid \operatorname{Col}_{\sharp}\left(K_{i}\right) \neq 0, K_{D_{F}} \text { is maximal }\right\} . \tag{1}
\end{equation*}
$$

Theorem (T.Y.)

Let F be a 2-knot. Suppose that F is coloured by a finite quandle X. Then the following holds.

If $K_{D_{F}}$ has the maximal rank of $H_{2}\left(\left|R_{D_{F}}\right| ; \mathbb{Z}\right)$ for all t-minimal surface diagrams, $K_{D_{F}}$ is said to be maximal. Suppose that $K_{D_{F}}$ is maximal. We view $K_{i} \subset R_{D_{F}},(i=1, \ldots, r \leq n)$ as chains in $C_{2}\left(K_{D_{F}}\right)$.

$$
\begin{equation*}
\mu(F)=\min _{D_{F}} \#\left\{K_{i} \subset R_{D_{F}} \mid \operatorname{Col}_{\sharp}\left(K_{i}\right) \neq 0, K_{D_{F}} \text { is maximal }\right\} . \tag{1}
\end{equation*}
$$

Theorem (T.Y.)

Let F be a 2 -knot. Suppose that F is coloured by a finite quandle X. Then the following holds.

$$
\begin{equation*}
4 \mu(F) \leq t(F) \tag{2}
\end{equation*}
$$

The dihedral quandle $(X, *)$ of order $p>0$ (p is prime) is a quandle $X=\{0, \ldots, p-1\}$ with the binary operation $(i, j) \mapsto 2 j-i(\bmod p)$.

Theorem ($\mathrm{M}-\mathrm{Y}$)

Let F be a 2-knot and let D_{F} be a t-minimal surface diagram. Suppose that F is non-trivially coloured by R_{5} and that $\mu(F)=1$ Suppose that $B_{D_{F}}=\emptyset$ and there are no cancelling pair of triple points also D_{F} represents a non-trivial quandle homology class in $H_{3}^{Q}(X)$. Then

$$
7 \leq t(F)
$$

The dihedral quandle $(X, *)$ of order $p>0$ (p is prime) is a quandle $X=\{0, \ldots, p-1\}$ with the binary operation
$(i, j) \mapsto 2 j-i(\bmod p)$.

Theorem (M-Y)

Let F be a 2-knot and let D_{F} be a t-minimal surface diagram. Suppose that F is non-trivially coloured by R_{5} and that $\mu(F)=1$. Suppose that $B_{D_{F}}=\emptyset$ and there are no cancelling pair of triple points also D_{F} represents a non-trivial quandle homology class in $H_{3}^{Q}(X)$. Then

$$
\begin{equation*}
7 \leq \mathrm{t}(F) \tag{3}
\end{equation*}
$$

Finding Cycles

Edge Condition

Suppose that $K_{D_{F}}=R_{D_{F}}$. For a non-degenerate triple (p, q, r) of a 3-cycle, (q, r) represents a non-degenerate edge e.

$(1,2)$
$(0,1,2)$
$(0,1,2)$ induces the edge $(1,2)$. The edge $(1,2)$ must exists in $K_{D_{F}}$.

Finding Cycles

Cycles with length $n<7$
There is no cycles with length $n<7$ satisfying conditions of Theorem [M-Y].

To find cycles with the length n.
(1) Generate a list of non-degenerate R_{5}-3-simplexes.
(2) Generate a list of boundaries of quandle 3-simplexes obtained in (1).
(3) Produce a 2-chain from n of boundaries from the list obtained in (2).
(4) Check whether or not the 2-chain is zero and it satisfies the edge-condition.

n triple points $(n \leq 5)$

Triangle condition

Let $X=R_{5}$. Let $\sigma=(a, b, c) \in X^{3}$ be a non-degenerate quandle 3-simplex. T_{σ} is a triangle if $2 b-a-c \equiv 0$ or $a \equiv c(\bmod 5)$,

A rectangle $T_{\sigma}=\left(v_{0} ; v_{0} v_{1}, v_{0} v_{2} ; v_{3}\right)$ induced from a triple $(a, b, c) \in X^{3}$ is a rectangle with $\operatorname{Col}\left(v_{0}\right)=a, \operatorname{Col}\left(v_{0} v_{1}\right)=b$, and $\operatorname{Col}\left(v_{0} v_{2}\right)=c . \operatorname{Col}\left(v_{1}\right)=a * b, \operatorname{Col}\left(v_{1} v_{3}\right)=c, \operatorname{Col}\left(v_{2}\right)=a * c$, $\operatorname{Col}\left(v_{2} v_{3}\right)=b * c, \operatorname{Col}\left(v_{3}\right)=(a * b) * c$.

$$
\sigma=(a, b, c) \mapsto T_{\sigma}=b \text { or } T_{\sigma}^{\prime}=
$$

n triple points $(n \leq 5)$

Triangle condition

Let $X=R_{5}$. Let $\sigma=(a, b, c) \in X^{3}$ be a non-degenerate quandle 3-simplex. T_{σ} is a triangle if $2 b-a-c \equiv 0$ or $a \equiv c(\bmod 5)$,

A rectangle $T_{\sigma}=\left(v_{0} ; v_{0} v_{1}, v_{0} v_{2} ; v_{3}\right)$ induced from a triple $(a, b, c) \in X^{3}$ is a rectangle with $\operatorname{Col}\left(v_{0}\right)=a, \operatorname{Col}\left(v_{0} v_{1}\right)=b$, and $\operatorname{Col}\left(v_{0} v_{2}\right)=c . \operatorname{Col}\left(v_{1}\right)=a * b, \operatorname{Col}\left(v_{1} v_{3}\right)=c, \operatorname{Col}\left(v_{2}\right)=a * c$, $\operatorname{Col}\left(v_{2} v_{3}\right)=b * c, \operatorname{Col}\left(v_{3}\right)=(a * b) * c$.

$$
\sigma=(a, b, c) \mapsto T_{\sigma}=b \underbrace{}_{a} \text { or } T_{\sigma}^{\prime}=
$$

n triple points ($n \leq 5$)

Enumerating cycles of four quandle 3-simplexes, our programs give 60 cycles. 12 of them are shown in the table below.

	Cycles with length 4	2b-a-c
1	$1(0,1,3)-1(0,2,3) 1(1,0,3)-1(1,4,3)$	$4,1,1,4$
2	$1(0,1,3) 1(1,0,3) 1(2,1,3) 1(4,0,3)$	$4,1,2,3$
3	$1(0,1,3) 1(1,0,3) 1(2,4,3) 1(4,2,3)$	$4,1,3,2$
4	$-1(0,1,3) 1(0,2,3)-1(1,0,3) 1(1,4,3)$	$4,1,1,4$
5	$-1(0,1,3)-1(1,0,3)-1(2,1,3)-1(4,0,3)$	$4,1,2,3$
6	$-1(0,1,3)-1(1,0,3)-1(2,4,3)-1(4,2,3)$	$4,1,3,2$
7	$1(0,1,4)-1(0,3,4)-1(3,0,4) 1(3,2,4)$	$3,2,3,2$
8	$1(0,1,4) 1(1,3,4) 1(2,0,4) 1(3,2,4)$	$3,2,4,2$
9	$-1(0,1,4) 1(0,3,4) 1(3,0,4)-1(3,2,4)$	$3,2,3,2$
10	$-1(0,1,4)-1(1,3,4)-1(2,0,4)-1(3,2,4)$	$3,2,4,2$
11	$1(0,2,1) 1(2,0,1) 1(3,0,1) 1(4,2,1)$	$3,2,1,4$
12	$-1(0,2,1)-1(2,0,1)-1(3,0,1)-1(4,2,1)$	$3,2,1,4$

n triple points $(n \leq 5)$

	Cycles with length 4	2b-a-c
1	$1(0,1,3)-1(0,2,3) 1(1,0,3)-1(1,4,3)$	$4,1,1,4$
2	$1(0,1,3) 1(1,0,3) 1(2,1,3) 1(4,0,3)$	$4,1,2,3$
\vdots	\vdots	\vdots

The third column shows sequences of non-zero numbers $2 b-a-c$ (mod 5). Thus any simplex σ in each cycle is non-degenerate. This implies that $K_{D_{F}}$ contains no branch points. This contradicts the t-minimality of D_{F}.

Six triple points

Enumerating cycles with length six, our programs give essentially 36 3-chains.

	Type A	∂ (4-chain)
1	$(0,1,0)-(0,2,0)-(0,3,0)$	
	$+(0,4,0)-(1,2,0)-(4,3,0)$	$=\partial(-(0,1,2,0)-(0,4,3,0))$
2	$(0,1,0)-(0,2,0)-(0,3,0)$	
	$+(0,4,0)-(1,4,0)-(4,1,0)$	$=\partial((0,3,4,0)+(0,2,1,0))$
\vdots	\vdots	\vdots
32	$-(0,1,2)-(1,3,2)-(2,0,2)$	$=\partial(-(0,3,1,2)-(0,4,3,2)$
	$-(2,4,2)-(3,1,2)-(4,3,2)$	$-(1,2,3,2)-(4,1,3,2)$
		$-(4,0,1,2)-(3,2,1,2))$

Let $K_{D_{F}}$ be a cell-complex for a coloured $D_{F} . K_{D_{F}}^{\prime}$ is defined by replacing $T_{\sigma} \in R_{D_{F}}$ with T_{σ}^{\prime}, where $\sigma=(a, b, c) \in X^{3}$ is the colour triple of the rectangle.

Lemma

Let $K_{D_{F}}^{\prime}$ be the deformed cell-complex from $K_{D_{F}}$ by the above deformation. Then

$$
\begin{equation*}
\beta_{1}\left(\left|K_{D_{F}}\right|\right) \geq \beta_{1}\left(\left|K_{D_{F}}^{\prime}\right|\right) \tag{4}
\end{equation*}
$$

where β_{1} is the first Betti number.

Type B

Let c be a cycle of Type B. Then K_{c} is obtained. When we construct $\left|K_{c}\right|,\left|K_{c}\right|$ is homeomorphic to a torus. This implies that $\beta_{1}\left(\left|K_{c}\right|\right)=2$. This contradicts Lemma 1.

Type B

1	$(0,1,0) 1(0,4,3)+(1,0,3)+(1,2,0)-(2,0,4)-(3,0,4)$
2	$-(0,1,0)-(0,4,3)-(1,0,3)-(1,2,0)+(2,0,4)+(3,0,4)$
3	$(0,1,3)-(1,3,0)-(1,4,1)+(2,1,3)-(4,1,0)-(4,2,1)$
4	$-(0,1,3)+(1,3,0)+(1,4,1)-(2,1,3)+(4,1,0)+(4,2,1)$

