On the geometry of certain slices of character varieties of knots

Fumikazu Nagasato ${ }^{1}$ Yoshikazu Yamaguchi ${ }^{2}$

1 Department of Mathematics
Tokyo Institute of Technology

${ }^{2}$ Graduate School of Mathematical Sciences,
University of Tokyo

The Fourth East Asian School of Knots and Related Topics

Outline

1 Introduction
■ Motivation
2 Preliminaries
■ SU(2)-Representations \& characters
■ Result concerning binary dihedral
3 Result \& Example

- Statement
- Idea of the construction
- Example

Outline

1 Introduction
 - Motivation

2 Preliminaries

- SU(2)-Representations \& characters
- Result concerning binary dihedral

3 Result \& Example

- Statement
- Idea of the construction
- Example

$$
\begin{aligned}
& K \subset S^{3}: \text { a knot, } \\
& E_{K}=S^{3} \backslash N(K) \text { : the knot exterior, } \\
& \left(\pi_{1}\left(E_{K}\right) \text { is called the knot group of } K\right) \\
& \text { A binary dihedral representation: } \\
& \text { For a Wirtinger presentation, } \\
& \qquad \begin{aligned}
\pi_{1}\left(E_{K}\right) & =\left\langle x_{1}, \ldots, x_{k} \mid r_{1}, \ldots, r_{k-1}\right\rangle \\
\pi_{1}\left(E_{K}\right) & \rightarrow \mathrm{SU}(2) \\
\qquad x_{i} & \mapsto\left(\begin{array}{cc}
0 \\
-e^{-\theta_{i} \sqrt{-1}} & e^{\theta_{i} \sqrt{-1}} \\
0
\end{array}\right)
\end{aligned}
\end{aligned}
$$

■ $K \subset S^{3}$: a knot,

- $E_{K}=S^{3} \backslash N(K)$: the knot exterior, $\left(\pi_{1}\left(E_{K}\right)\right.$ is called the knot group of $\left.K\right)$

A binary dihedral representation:
For a Wirtinger presentation,

$$
\begin{aligned}
\pi_{1}\left(E_{K}\right) & =\left\langle x_{1}, \ldots, x_{k} \mid r_{1}, \ldots, r_{k-1}\right\rangle \\
\pi_{1}\left(E_{K}\right) & \rightarrow \mathrm{SU}(2) \\
x_{i} & \mapsto\left(\begin{array}{cc}
0 & e^{\theta_{i} \sqrt{-1}} \\
-e^{-\theta_{i} \sqrt{-1}} & 0
\end{array}\right)
\end{aligned}
$$

- $K \subset S^{3}:$ a knot,
- $E_{K}=S^{3} \backslash N(K)$: the knot exterior, ($\pi_{1}\left(E_{K}\right)$ is called the knot group of K)
A binary dihedral representation: For a Wirtinger presentation,

$$
\begin{aligned}
& \left.\pi_{1}\left(E_{K}\right)=\left|x_{1}, \ldots, x_{k}\right| r_{1} \ldots, r_{K-1}\right\rangle \\
& \pi_{1}\left(E_{K}\right) \rightarrow \operatorname{SU}(2)
\end{aligned}
$$

■ $K \subset S^{3}:$ a knot,
■ $E_{K}=S^{3} \backslash N(K)$: the knot exterior, $\left(\pi_{1}\left(E_{K}\right)\right.$ is called the knot group of $\left.K\right)$

A binary dihedral representation:
For a Wirtinger presentation,

$$
\begin{aligned}
\pi_{1}\left(E_{K}\right) & =\left\langle x_{1}, \ldots, x_{k} \mid r_{1}, \ldots, r_{k-1}\right\rangle \\
\pi_{1}\left(E_{K}\right) & \rightarrow \mathrm{SU}(2) \\
\quad x_{i} & \mapsto\left(\begin{array}{cc}
0 \\
-e^{-\theta_{i} \sqrt{-1}} & e^{\theta_{i} \sqrt{-1}}
\end{array}\right)
\end{aligned}
$$

Remark

Binary dihedral representations appear in various areas of 3-dimensional topology, concerning representations.

We focus on these special representations and the features. Our purpose is to describe the following things:

- the invariance of binary dihedral representations in the character variety.
- what kind of representations is related to the branched cover of S^{3}.

Remark

Binary dihedral representations appear in various areas of 3-dimensional topology, concerning representations.

We focus on these special representations and the features.
Our purpose is to describe the following things:

- the invariance of binary dihedral representations in the character variety.
- what kind of representations is related to the branched cover of S^{3}.

Remark

Binary dihedral representations appear in various areas of 3-dimensional topology, concerning representations.

We focus on these special representations and the features.
Our purpose is to describe the following things:

- the invariance of binary dihedral representations in the character variety.
- what kind of representations is related to the branched cover of S^{3}

Remark

Binary dihedral representations appear in various areas of 3-dimensional topology, concerning representations.

We focus on these special representations and the features. Our purpose is to describe the following things:

- the invariance of binary dihedral representations in the character variety.
- what kind of representations is related to the branched cover of S^{3}

Remark

Binary dihedral representations appear in various areas of 3-dimensional topology, concerning representations.

We focus on these special representations and the features.
Our purpose is to describe the following things:

- the invariance of binary dihedral representations in the character variety.
- what kind of representations is related to the branched cover of S^{3}.

Remark

Binary dihedral representations appear in various areas of 3-dimensional topology, concerning representations.

We focus on these special representations and the features.
Our purpose is to describe the following things:

- the invariance of binary dihedral representations in the character variety.
■ what kind of representations is related to the branched cover of S^{3}.

Outline

1 Introduction - Motivation

2 Preliminaries

■ SU(2)-Representations \& characters

- Result concerning binary dihedral

3 Result \& Example
■ Statement

- Idea of the construction
- Example

Definitions of representations and characters

Definition (the SU(2)-representation space)

$$
R\left(E_{K}\right)=\left\{\rho: \pi_{1}\left(E_{K}\right) \rightarrow \mathrm{SU}(2)=\binom{a}{-\bar{b} \frac{b}{a}} \quad \text { homomorphism }\right\}
$$

where $a, b \in \mathbb{C}$ such that $|a|^{2}+|b|^{2}=1$.
Definition (the SU(2)-character variety)

Definitions of representations and characters

Definition (the SU(2)-representation space)

$$
R\left(E_{K}\right)=\left\{\rho: \pi_{1}\left(E_{K}\right) \rightarrow \mathrm{SU}(2)=\binom{a}{-\bar{b} \frac{b}{a}} \text { homomorphism }\right\}
$$

where $a, b \in \mathbb{C}$ such that $|a|^{2}+|b|^{2}=1$.
Definition (the $\mathrm{SU}(2)$-character variety)

$$
X\left(E_{K}\right)=\left\{\begin{array}{rll|l}
\chi_{\rho}: \pi_{1}\left(E_{K}\right) & \rightarrow & \mathbb{R} \\
\gamma & \mapsto & \operatorname{tr} \rho(\gamma) & \left.\rho \in R\left(E_{K}\right)\right\}
\end{array}\right.
$$

Fact

- Both of $R\left(E_{K}\right)$ and $X\left(E_{K}\right)$ have the structure of algebraic varieties.
- The following identification exists:

Fact

- Both of $R\left(E_{K}\right)$ and $X\left(E_{K}\right)$ have the structure of algebraic varieties.
■ The following identification exists:

$$
\begin{aligned}
& X\left(E_{K}\right)=R\left(E_{K}\right) / \text { conj } \\
& \rho_{\text {conj }}^{\sim} \rho^{\prime} \Leftrightarrow \exists A \in \mathrm{SU}(2), \rho^{\prime}=A \rho A^{-1}
\end{aligned}
$$

Example of $\mathrm{SU}(2)$-representation

$K=\square$

Figure: The trefoil knot

Example of $\mathrm{SU}(2)$-representation

Figure: The trefoil knot

(A binary dihedral representation)

Example of $\mathrm{SU}(2)$-representation

Figure: The trefoil knot

$$
\pi_{1}\left(E_{K}\right)=\left\langle x, y \mid y^{-1} x y=x y x^{-1}\right\rangle
$$

(A binary dihedral representation)

Example of SU(2)-representation

Figure: The trefoil knot

$$
\begin{gathered}
\pi_{1}\left(E_{K}\right)=\left\langle x, y \mid y^{-1} x y=x y x^{-1}\right\rangle \\
\rho_{0}(x)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad \rho_{0}(y)=\left(\begin{array}{cc}
0 & \xi \\
-\xi^{-1} & 0
\end{array}\right), \quad \xi=e^{2 \pi \sqrt{-1} / 3}
\end{gathered}
$$

(A binary dihedral representation)

Outline

1 Introduction - Motivation

2 Preliminaries

- SU(2)-Representations \& characters

■ Result concerning binary dihedral
3 Result \& Example

- Statement
- Idea of the construction
- Example

We want to show the following things.

- \{binary dihedral rep.\} forms certain fixed point set in the character variety.
- \{binary dihedral rep. $\}$ is related to \{abelian reps for the two-fold branched cover of S^{3} \}.
We keep to prepare some notions.
(a subset in $X\left(E_{K}\right)$, concerning binary dihedral representations)

We want to show the following things.

- \{binary dihedral rep. $\}$ forms certain fixed point set in the character variety.
- \{binary dihedral rep. $\}$ is related to \{abelian reps for the two-fold branched cover of S^{3} \}.
We keep to prepare some notions.
(a subset in $X\left(E_{K}\right)$, concerning binary dihedral representations)

We want to show the following things.
■ \{binary dihedral rep.\} forms certain fixed point set in the character variety.
■ \{binary dihedral rep. $\}$ is related to \{abelian reps for the two-fold branched cover of $\left.S^{3}\right\}$.
We keep to prepare some notions.
(a subset in $X\left(E_{K}\right)$, concerning binary dihedral representations)

We want to show the following things.

- \{binary dihedral rep. $\}$ forms certain fixed point set in the character variety.
■ \{binary dihedral rep. $\}$ is related to \{abelian reps for the two-fold branched cover of S^{3} \}.
We keep to prepare some notions.
(a subset in $X\left(E_{K}\right)$, concerning binary dihedral representations)

Definition (Trace function)

μ : the meridian of K,

$$
\begin{aligned}
I_{\mu}: X\left(E_{K}\right) & \rightarrow \mathbb{R} \\
\chi_{\rho} & \mapsto \chi_{\rho}(\mu)=\operatorname{tr} \rho(\mu)(=2 \cos \theta)
\end{aligned}
$$

Definition (Slice)

$$
S_{c}(K):=I_{\mu}^{-1}(c) \subset X\left(E_{K}\right)
$$

Definition (Trace function)

μ : the meridian of K,

$$
\begin{aligned}
I_{\mu}: X\left(E_{K}\right) & \rightarrow \mathbb{R} \\
\quad \chi_{\rho} & \mapsto \chi_{\rho}(\mu)=\operatorname{tr} \rho(\mu)(=2 \cos \theta)
\end{aligned}
$$

Definition (Slice)

$$
S_{c}(K):=I_{\mu}^{-1}(c) \subset X\left(E_{K}\right)
$$

Definition (Trace function)

μ : the meridian of K,

$$
\begin{aligned}
I_{\mu}: X\left(E_{K}\right) & \rightarrow \mathbb{R} \\
\chi_{\rho} & \mapsto \chi_{\rho}(\mu)=\operatorname{tr} \rho(\mu)(=2 \cos \theta)
\end{aligned}
$$

Definition (Slice)

For $c \in[-2,2]$,

$$
S_{c}(K):=I_{\mu}^{-1}(c) \subset X\left(E_{K}\right)
$$

We focus on $S_{0}(K)$.

Pemark

$S_{0}(K) \supset\left\{\chi_{\rho} \mid \rho:\right.$ binary dihedral $\}$

We focus on $S_{0}(K)$.
Remark
$S_{0}(K) \supset\left\{\chi_{\rho} \mid \rho:\right.$ binary dihedral $\}$

We focus on $S_{0}(K)$.

Remark

$S_{0}(K) \supset\left\{\chi_{\rho} \mid \rho:\right.$ binary dihedral $\}$

Example of $X\left(E_{K}\right)$

By E. Klassen,

Figure: $X\left(E_{K}\right)$

Example of $X\left(E_{K}\right)$

By E. Klassen,

Figure: $X\left(E_{K}\right)$
abelian: the subset $\left\{\chi_{\rho} \mid \rho\left(\pi_{1}\left(E_{K}\right)\right) \subset \operatorname{SU}(2)\right.$, abelian $\}$,
non-abelian: the subset $\left\{\chi_{\rho} \mid \rho\left(\pi_{1}\left(E_{K}\right)\right) \subset \operatorname{SU}(2)\right.$, non-abelian $\}$.

Example of $X\left(E_{K}\right)$

By E. Klassen,

Figure: $X\left(E_{K}\right)$
abelian: the subset $\left\{\chi_{\rho} \mid \rho\left(\pi_{1}\left(E_{K}\right)\right) \subset \mathrm{SU}(2)\right.$, abelian $\}$, non-abelian: the subset $\left\{\chi_{\rho} \mid \rho\left(\pi_{1}\left(E_{K}\right)\right) \subset \operatorname{SU}(2)\right.$, non-abelian $\}$

Example of $X\left(E_{K}\right)$

By E. Klassen,

Figure: $X\left(E_{K}\right)$
abelian: the subset $\left\{\chi_{\rho} \mid \rho\left(\pi_{1}\left(E_{K}\right)\right) \subset \operatorname{SU}(2)\right.$, abelian $\}$, non-abelian: the subset $\left\{\chi_{\rho} \mid \rho\left(\pi_{1}\left(E_{K}\right)\right) \subset \operatorname{SU}(2)\right.$, non-abelian $\}$.

Example of $X\left(E_{K}\right)$

By E. Klassen,

Figure: $X\left(E_{K}\right)$
abelian: the subset $\left\{\chi_{\rho} \mid \rho\left(\pi_{1}\left(E_{K}\right)\right) \subset \operatorname{SU}(2)\right.$, abelian $\}$, non-abelian: the subset $\left\{\chi_{\rho} \mid \rho\left(\pi_{1}\left(E_{K}\right)\right) \subset \operatorname{SU}(2)\right.$, non-abelian $\}$.

Outline

1 Introduction - Motivation

$\overline{2}$ Preliminaries

- SU(2)-Representations \& characters
- Result concerning binary dihedral

3 Result \& Example
■ Statement

- Idea of the construction
- Example

C_{2} :two-fold cover of E_{K}

Statement

C_{2} :two-fold cover of E_{K}

Σ_{2} :two-fold branched cover of S^{3} along K

Lemma

$$
\begin{gathered}
\exists \iota: X\left(E_{K}\right) \rightarrow X\left(E_{K}\right) \text { involution } \\
\text { i.e., } \iota^{2}=i d .
\end{gathered}
$$

Example of ι

Figure: Involution ι

Example of ι

Figure: Involution ι

Statement

Theorem

$$
\exists \Phi: S_{0}\left(E_{K}\right) \rightarrow X\left(\Sigma_{2}\right)
$$

and $\Phi: S_{0}\left(E_{K}\right) \rightarrow \operatorname{Im} \Phi$ two-fold branched covering

such that ι acts as the covering transformation.
Moreover the branched set is given as follows:

$$
\begin{array}{r}
S_{0}\left(E_{K}\right)^{\iota}=\left\{\chi_{\rho} \mid \rho: \text { binary dihedral }\right\} \\
\cup\left\{\chi_{\rho} \mid \rho: \text { abelian, } \rho(\mu)=\right. \\
\Phi\left(S_{0}\left(E_{K}\right)^{\iota}\right)=\left\{\chi_{\rho^{\prime}} \mid \rho^{\prime} \in R\left(\Sigma_{2}\right), \text { abelian }\right\}
\end{array}
$$

$$
\cup\left\{\chi_{\rho} \mid \rho: \text { abelian, } \rho(\mu)=\left(\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & -\sqrt{-1}
\end{array}\right)\right\}
$$

Theorem

$\exists \Phi: S_{0}\left(E_{K}\right) \rightarrow X\left(\Sigma_{2}\right)$
and $\Phi: S_{0}\left(E_{K}\right) \rightarrow \operatorname{Im} \Phi$ two-fold branched covering such that ι acts as the covering transformation. Moreover the branched set is given as follows:
$S_{0}\left(E_{K}\right)^{\iota}=\left\{\chi_{\rho} \mid \rho:\right.$ binary dihedral $\}$ $\cup\left\{\chi_{\rho} \mid \rho:\right.$ abelian, $\left.\rho(\mu)=\left(\begin{array}{cc}\sqrt{-1} & 0 \\ 0 & -\sqrt{-1}\end{array}\right)\right\}$

$$
\phi\left(S_{0}\left(E_{K}\right)^{\prime}\right)=\left\{\chi_{\rho^{\prime}} \mid \rho^{\prime} \in R\left(\Sigma_{2}\right), \text { abelian }\right\}
$$

Theorem

$$
\exists \Phi: S_{0}\left(E_{K}\right) \rightarrow X\left(\Sigma_{2}\right)
$$

and $\Phi: S_{0}\left(E_{K}\right) \rightarrow \operatorname{Im} \Phi$ two-fold branched covering such that ८ acts as the covering transformation.
Moreover the branched set is given as follows:

$$
\begin{array}{r}
S_{0}\left(E_{K}\right)^{\iota}=\left\{\chi_{\rho} \mid \rho: \text { binary dihedra }\right\} \\
\cup\left\{\chi_{\rho} \mid \rho: \text { abelian, } \rho(\mu)=\right. \\
\Phi\left(S_{0}\left(E_{K}\right)^{\iota}\right)=\left\{\chi_{\rho^{\prime}} \mid \rho^{\prime} \in R\left(\Sigma_{2}\right), \text { abelian }\right\}
\end{array}
$$

Theorem

$$
\exists \Phi: S_{0}\left(E_{K}\right) \rightarrow X\left(\Sigma_{2}\right)
$$

and $\Phi: S_{0}\left(E_{K}\right) \rightarrow \operatorname{Im} \Phi$ two-fold branched covering such that ι acts as the covering transformation. Moreover the branched set is given as follows:

$$
\begin{array}{r}
S_{0}\left(E_{K}\right)^{\iota}=\left\{\chi_{\rho} \mid \rho: \text { binary dihedra }\right\} \\
\cup\left\{\chi_{\rho} \mid \rho: \text { abelian, } \rho(\mu)=\right. \\
\Phi\left(S_{0}\left(E_{K}\right)^{\iota}\right)=\left\{\chi_{\rho^{\prime}} \mid \rho^{\prime} \in R\left(\Sigma_{2}\right), \text { abelian }\right\}
\end{array}
$$

Theorem

$$
\exists \Phi: S_{0}\left(E_{K}\right) \rightarrow X\left(\Sigma_{2}\right)
$$

and $\Phi: S_{0}\left(E_{K}\right) \rightarrow \operatorname{Im} \Phi$ two-fold branched covering such that ι acts as the covering transformation. Moreover the branched set is given as follows:

$$
\begin{aligned}
S_{0}\left(E_{K}\right)^{\iota}=\{ & \left\{\chi_{\rho} \mid \rho: \text { binary dihedral }\right\} \\
& \cup\left\{\chi_{\rho} \mid \rho: \text { abelian, } \rho(\mu)=\left(\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & -\sqrt{-1}
\end{array}\right)\right\}
\end{aligned}
$$

$$
\Phi\left(S_{0}\left(E_{K}\right)^{\iota}\right)=\left\{\chi_{\rho^{\prime}} \mid \rho^{\prime} \in R\left(\Sigma_{2}\right), \text { abelian }\right\}
$$

Theorem

$$
\exists \Phi: S_{0}\left(E_{K}\right) \rightarrow X\left(\Sigma_{2}\right)
$$

and $\Phi: S_{0}\left(E_{K}\right) \rightarrow \operatorname{Im} \Phi$ two-fold branched covering such that ι acts as the covering transformation. Moreover the branched set is given as follows:

$$
\begin{aligned}
S_{0}\left(E_{K}\right)^{\iota}= & \left\{\chi_{\rho} \mid \rho: \text { binary dihedral }\right\} \\
& \cup\left\{\chi_{\rho} \mid \rho: \text { abelian, } \rho(\mu)=\left(\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & -\sqrt{-1}
\end{array}\right)\right\} \\
\Phi\left(S_{0}\left(E_{K}\right)^{\iota}\right)=\{ & \left\{\chi_{\rho^{\prime}} \mid \rho^{\prime} \in R\left(\Sigma_{2}\right), \text { abelian }\right\}
\end{aligned}
$$

Outline

1 Introduction - Motivation

2 Preliminaries

- SU(2)-Representations \& characters
- Result concerning binary dihedral

3 Result \& Example

- Statement

■ Idea of the construction

- Example

The construction of the map Φ

$$
\pi_{1}\left(C_{2}\right) \xrightarrow{\pi} \pi_{1}\left(\Sigma_{2}\right)
$$

Figure: Maps among the character varieties

Intersection $X\left(E_{K}\right)$ with $X\left(\Sigma_{2}\right)$ in $X\left(C_{2}\right)$ gives a correspondence.

The construction of the map Φ

Figure: Maps among the character varieties

Intersection $X\left(E_{K}\right)$ with $X\left(\Sigma_{2}\right)$ in $X\left(C_{2}\right)$ gives a correspondence.

The construction of the map Φ

$$
\pi_{1}\left(C_{2}\right) \xrightarrow{\pi} \pi_{1}\left(\Sigma_{2}\right) \quad X\left(C_{2}\right) \stackrel{\pi^{*}}{\longleftrightarrow} X\left(\Sigma_{2}\right)
$$

$$
\begin{aligned}
& p \downarrow \\
& \pi_{1}\left(E_{K}\right)
\end{aligned}
$$

Figure: Maps among the character varieties

Intersection $X\left(E_{K}\right)$ with $X\left(\Sigma_{2}\right)$ in $X\left(C_{2}\right)$ gives a correspondence.

The construction of the map Φ

Figure: Maps among the character varieties

Intersection $X\left(E_{K}\right)$ with $X\left(\Sigma_{2}\right)$ in $X\left(C_{2}\right)$ gives a correspondence.

The construction of the map Φ

Figure: Maps among the character varieties

Intersection $X\left(E_{K}\right)$ with $X\left(\Sigma_{2}\right)$ in $X\left(C_{2}\right)$ gives a correspondence.

$$
K: \text { trefoil }
$$

Figure: Idea of Φ

K: trefoil

Figure: Idea of Φ

K: trefoil

Figure: Idea of Φ

Figure: Idea of Φ

Figure: Idea of Φ

Figure: Idea of Φ

Outline

1 Introduction - Motivation

$\overline{2}$ Preliminaries

■ SU(2)-Representations \& characters

- Result concerning binary dihedral

3 Result \& Example

- Statement
- Idea of the construction

■ Example

Example

Example of Φ

A binary dihedral representation ρo is given by

Where $\xi=e^{2 \pi \sqrt{-1} / 3}$.

Example

Example of Φ

$$
\begin{aligned}
& K= \\
& \pi_{1}\left(E_{K}\right)=\left\langle x, y \mid y^{-1} x y=x y x^{-1}\right\rangle
\end{aligned}
$$

A binary dihedral representation ρ_{0} is given by

Example of Φ

$$
\begin{aligned}
& K= \\
& \pi_{1}\left(E_{K}\right)=\left\langle x, y \mid y^{-1} x y=x y x^{-1}\right\rangle
\end{aligned}
$$

A binary dihedral representation ρ_{0} is given by

$$
\rho_{0}(x)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad \rho_{0}(y)=\left(\begin{array}{rr}
0 & \xi \\
-\xi^{-1} & 0
\end{array}\right)
$$

where $\xi=e^{2 \pi \sqrt{-1} / 3}$.

Example

$$
\begin{aligned}
& S_{0}(K)=\left\{\chi_{\rho_{0}}\right\} \\
& \qquad \cup\left\{\chi_{\rho_{a b}} \left\lvert\, \rho_{a b}(x)=\left(\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & -\sqrt{-1}
\end{array}\right)\right., \rho_{a b}(y)=\left(\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & -\sqrt{-1}
\end{array}\right)\right\} \\
& \Sigma_{2}=L(3,1): \text { Lens space } \\
& \pi_{1}\left(\Sigma_{2}\right)=\left\langle\gamma \mid \gamma^{3}=1\right\rangle, \\
& \quad X\left(\Sigma_{2}\right)=\left\{\chi_{\rho^{\prime}} \left\lvert\, \rho^{\prime}(\gamma)=\left(\begin{array}{cc}
\xi & 0 \\
0 & \xi^{-1}
\end{array}\right)\right.\right\} \cup\left\{\chi_{\rho_{\text {triv }}^{\prime}} \left\lvert\, \rho_{\text {triv }}^{\prime}(\gamma)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right.\right\} .
\end{aligned}
$$

Example

$$
\begin{aligned}
S_{0}(K)= & \left\{\chi_{\rho_{0}}\right\} \\
& \cup\left\{\chi_{\rho_{a b}} \left\lvert\, \rho_{a b}(x)=\left(\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & -\sqrt{-1}
\end{array}\right)\right., \rho_{a b}(y)=\left(\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & -\sqrt{-1}
\end{array}\right)\right\}
\end{aligned}
$$

$$
\Sigma_{2}=L(3,1): \text { Lens space, }
$$

$$
\pi_{1}\left(\Sigma_{2}\right)=\left\langle\gamma \mid \gamma^{3}=1\right\rangle
$$

$$
X\left(\Sigma_{2}\right)=\left\{\chi_{\rho^{\prime}} \left\lvert\, \rho^{\prime}(\gamma)=\left(\begin{array}{cc}
\xi & 0 \\
0 & \xi^{-1}
\end{array}\right)\right.\right\} \cup\left\{\chi_{\rho_{\text {triv }}^{\prime}} \left\lvert\, \rho_{\text {triv }}^{\prime}(\gamma)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right.\right\} .
$$

Example

$$
\begin{aligned}
S_{0}(K)= & \left\{\chi_{\rho_{0}}\right\} \\
& \cup\left\{\chi_{\rho_{a b}} \left\lvert\, \rho_{a b}(x)=\left(\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & -\sqrt{-1}
\end{array}\right)\right., \rho_{a b}(y)=\left(\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & -\sqrt{-1}
\end{array}\right)\right\}
\end{aligned}
$$

$\Sigma_{2}=L(3,1)$:Lens space,

$$
X\left(\Sigma_{2}\right)=\left\{\chi_{\rho^{\prime}} \left\lvert\, \rho^{\prime}(\gamma)=\left(\begin{array}{cc}
\xi & 0 \\
0 & \xi^{-1}
\end{array}\right)\right.\right\} \cup\left\{\chi_{\rho_{\text {triv }}^{\prime}} \left\lvert\, \rho_{\text {triv }}^{\prime}(\gamma)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right.\right\} .
$$

Example

$$
\begin{aligned}
S_{0}(K)= & \left\{\chi_{\rho_{0}}\right\} \\
& \cup\left\{\chi_{\rho_{a b}} \left\lvert\, \rho_{a b}(x)=\left(\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & -\sqrt{-1}
\end{array}\right)\right., \rho_{a b}(y)=\left(\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & -\sqrt{-1}
\end{array}\right)\right\}
\end{aligned}
$$

$\Sigma_{2}=L(3,1)$:Lens space,
 $$
\pi_{1}\left(\Sigma_{2}\right)=\left\langle\gamma \mid \gamma^{3}=1\right\rangle
$$

Example

$$
\begin{aligned}
S_{0}(K)= & \left\{\chi_{\rho_{0}}\right\} \\
& \cup\left\{\chi_{\rho_{a b}} \left\lvert\, \rho_{a b}(x)=\left(\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & -\sqrt{-1}
\end{array}\right)\right., \rho_{a b}(y)=\left(\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & -\sqrt{-1}
\end{array}\right)\right\}
\end{aligned}
$$

$\Sigma_{2}=L(3,1)$:Lens space,
 $$
\pi_{1}\left(\Sigma_{2}\right)=\left\langle\gamma \mid \gamma^{3}=1\right\rangle
$$

$$
X\left(\Sigma_{2}\right)=\left\{\chi_{\rho^{\prime}} \left\lvert\, \rho^{\prime}(\gamma)=\left(\begin{array}{cc}
\xi & 0 \\
0 & \xi^{-1}
\end{array}\right)\right.\right\} \cup\left\{\chi_{\rho_{\text {triv }}^{\prime}} \left\lvert\, \rho_{\text {triv }}^{\prime}(\gamma)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right.\right\} .
$$

Example

In this case, we have

$\Phi: S_{0}(K) \rightarrow X\left(\Sigma_{2}\right)$ $\chi_{\rho_{0}} \mapsto \chi_{\rho^{\prime}}$ $\chi_{\rho_{a b}} \mapsto \chi_{\rho_{\text {trivi }}^{\prime}}$

Remark

Φ is biiective.

Fumikazu Nagasato, Yoshikazu Yamaguchi
University of Tokyo and Tokyo Institute of Technology
On the geometry of certain slice

Example

In this case, we have

$\phi: S_{0}(K) \rightarrow X\left(\Sigma_{2}\right)$

Remark

Φ is bijective.

In this case, we have

$$
\begin{aligned}
\Phi: S_{0}(K) & \rightarrow X\left(\Sigma_{2}\right) \\
\chi_{\rho_{0}} & \mapsto \chi_{\rho^{\prime}} \\
\chi_{\rho_{a b}} & \mapsto \chi_{\rho_{\text {triv }}^{\prime}}
\end{aligned}
$$

Remark

© is hiiective.

In this case, we have

$$
\begin{aligned}
\Phi: S_{0}(K) & \rightarrow X\left(\Sigma_{2}\right) \\
\chi_{\rho_{0}} & \mapsto \chi_{\rho^{\prime}} \\
\chi_{\rho_{a b}} & \mapsto \chi_{\rho_{\text {triv }}^{\prime}}
\end{aligned}
$$

Remark

Φ is bijective.

Example

Remark

If K is a two-bridge knot, then ϕ is bijective.

Remark

If K is $8_{5}=(3,3,2)$-Pretzel knot, then Φ is not injective but surjective.

Remark

If K is a Montesinous knot, then Φ is surjective.

Remark

If K is a two-bridge knot, then Φ is bijective.

Remark

If K is $8_{5}=(3,3,2)$-Pretzel knot, then Φ is not injective but surjective.

Remark
If K is a Montesinous knot, then Φ is surjective.

Remark

If K is a two-bridge knot, then Φ is bijective.

Remark

If K is $8_{5}=(3,3,2)$-Pretzel knot, then Φ is not injective but surjective.

Remark
If K is a Montesinous knot, then Φ is surjective.

Remark

If K is a two-bridge knot, then Φ is bijective.

Remark

If K is $8_{5}=(3,3,2)$-Pretzel knot, then Φ is not injective but surjective.

Remark

If K is a Montesinous knot, then Φ is surjective.

Example

Remark

Our results also hold a knot in a homology 3-sphere and $\mathrm{SL}_{2}(\mathbb{C})$-representations of the knot group.

Remark

Our results also hold a knot in a homology 3-sphere and $\mathrm{SL}_{2}(\mathbb{C})$-representations of the knot group.

