The Fourth East Asian School of Knots
and Related Topics
January 23, 2008

An infinite family of exotic 4-manifolds
and Rasmussen invariants of knots

Toshifumi Tanaka

Osaka City University Advanced Mathematical Institute
§1. Casson handles

§2. Known results

§3. Rasmussen’s s-invariant

§4. Results

§5. Other research

§6. Problem
§1. Casson handles

A kinky handle:

\[S^1 \times D^3 \]

The attaching region:

A kinky handle is a 2-handle modulo a finite number (≠ 0) of self-plumbings.
A Casson handle:
A Casson handle \iff infinite-based signed tree
§2. **Known results**

Theorem. (M. Freedman (1983)) **Any Casson handle is homeomorphic to the standard open 2-handle.**

Theorem. (R. Gompf (1984)) **There exist countably many Casson handles.**

Theorem. (R. Gompf (1989)) **There exist uncountably many Casson handles.**
A Casson handle is **exotic** if the attaching circle does not bound a smooth 2-disc in the Casson handle.

Problem. Is any Casson handle exotic?

Fact. \(T, T' \): infinite-based signed trees.

\[
T \subset T' \Rightarrow CH_{T'} \subset CH_T.
\]

Thus if \(CH_T \) is exotic, then \(CH_{T'} \) is also exotic.
Ž. Bižaca showed an explicit example of an exotic Casson handle (1995).

: periodic Casson handles.
[Casson handle of boundary type]

$CH^+(\text{or } CH^-)$

Remark. Any Casson handle of boundary type is exotic.
Theorem. (T. Kato (2006)) There exists a Casson handle which is not boundary type.
§3. **Rasmussen’s s-invariant**

J. Rasmussen, *Khovanov homology and the slice genus*, math.GT/0402131, 2004
(to appear in Inventiones Mathematicae.)

Lee’s variant of **Khovanov homology** \implies

a concordance invariant s of a knot (combinatorially).
[Knot concordance group]
A knot K is slice $\iff K$ bounds a smooth disc in B^4.
Knots K_1 and K_2 are concordant $\iff K_1^\# - K_2$ is slice.
The set $\{\text{concordance classes}\}$ forms a abelian group
under $\#$ (the knot concordance group).

[Slice genus]
F: a smooth conn. ori. surface properly embedded in B^4
with boundary K.
$g_s(K) := \min\{\text{the genus of } F\}$ (the slice genus of K).
Theorem (J. Rasmussen)

Let K be a knot in S^3. Then

(1) s induces a homomorphism from the knot concordance group to \mathbb{Z};

(2) $|s(K)| \leq 2g_s(K)$;

(3) If K is alternating, then $s(K) = \sigma(K)$, where $\sigma(K)$ is the classical knot signature of K;

(4) $s(T_{p,q}) = u(T_{p,q}) = (p - 1)(q - 1)/2$ (Milnor conjecture).
§4. **Results**

CH: a Casson handle.

F: a smooth conn. ori. surface properly embedded in CH with boundary the attaching circle.

\[g_s(CH) := \min \{ \text{the genus of } F \} \text{ (the slice genus of } CH) \].

Problem. Does there exists a Casson handle CH satisfying $g_s(CH) > n$ for any positive integer n?
$CH_{m,n} =$
By using Rasmussen invariant, we show the following:

Theorem 1. Let m_i and n_i be non-negative integers with $m_i + n_i
eq 0$ ($i = 1, 2$). If $m_1 + n_1 < |m_2 - n_2|$, then

$$|m_1 - n_1| \leq g_s(CH_{m_1,n_1}) < g_s(CH_{m_2,n_2}) \leq m_2 + n_2.$$

Remark. Any $CH_{m,n}$ is exotic.
Proof of Theorem 1. It suffice to show that
\[|m - n| \leq g_s(CH_{m,n}) \leq m + n \] if \(m + n \neq 0 \).

Claim 1. \(g_s(CH_{m,0}) \leq m + n \).

Claim 2.
\(T_m \): the connected sum of \(c_i(> 0) \)-fold untwisted positive doubles \((1 \leq i \leq m) \) of the positive trefoil knot.
\(T_n \): the connected sum of \(c_i(> 0) \)-fold untwisted negative doubles \((m + 1 \leq i \leq n) \) of the negative trefoil knot.

Let \(T_{m,n} = T_m \# T_n \).

\[|m - n| \leq g_s(T_{m,n}) \Rightarrow |m - n| \leq g_s(CH_{m,n}). \]
Claim 3. $|m - n| \leq g_s(T_{m,n})$.

By using Rasmussen invariant, we can prove this claim.
Corollary 2. If \(m_1 + n_1 < |m_2 - n_2| \), then \(CH_{m_1, n_1} \) does not embed in \(CH_{m_2, n_2} \).

Corollary 3. For any positive integer \(n \), there exist countably many Casson handles \(\{CH_i\}_{i=0}^{\infty} \) such that \(g_8(CH_i) \geq n \).
[Kinkiness of a knot]

K: a knot in S^3.

D: a normally immersed disc in B^4 which span K.

$k_{\pm} = \min \# \{\text{positive (or negative) kinks in } D\}$

\iff the kinkiness of K.
[Kinkiness of a smooth 4-manifold]

V: a smooth 4-manifold.

C: a smoothly embedded circle in ∂V with C null-homotopic in V.

(e.g. $(V, C) = a$ Casson handle.)

D: a normally immersed disc in V which span C.

$k_\pm = k_\pm(V, C) = \min\{ \# \text{ positive (or negative) kinks in } D \}$

\iff the kinkiness of (V, C).
Theorem 4. For any non-negative integers m and n with $m + n \neq 0$, we have $k(CH_{m,n}) = (m, n)$.

\[CH_{m,n} = \]
Proof of Theorem 4.

Claim 1. $k_+(CH_{m,0}) = k_+(CH_{m,n})$; $k_-(CH_{0,n}) = k_-(CH_{m,n})$.

Claim 2. $k_+(CH_{m,0}) \leq m$; $k_-(CH_{0,n}) \leq n$.

Claim 3. T_m: the connected sum of $c_i(>0)$-fold untwisted positive doubles ($1 \leq i \leq m$) of the positive trefoil knot.

$m \leq k_+(T_m)$; $n \leq k_-(T_n) \Rightarrow$

$m \leq k_+(CH_{m,0})$; $n \leq k_-(CH_{0,n})$.

22
Claim 4. \(m \leq k_+(T_m); \quad n \leq k_-(T_n). \)

By using C. Bohr’s inequality (2002) and Rasmussen invariant, we can show this claim.
§5. **Other research**

By using Rasmussen invariant, we show the following:

Theorem 5. Every non-compact, connected, oriented, smooth 4-submanifold of \mathbb{R}^4 admits at least two smooth structures.

By using a consequence of gauge theory (Donaldson’s Theorem), we show the following:

Theorem 6. Every non-compact, connected, oriented, smooth 4-submanifold of $\#_{i=1}^{\infty} \mathbb{C}P^2$ admits at least two smooth structures.
Corollary 7. For any positive integer n, every non-compact, connected, oriented, smooth 4-submanifold of $\#_{i=1}^{n} \mathbb{C}P^2$ admits at least two smooth structures.

Problem (A. Kawauchi (1984)).

Does $\#_{i=1}^{\infty} \mathbb{S}^2 \times \mathbb{S}^2$ have at least two smooth structures?
§6. Problem

\[\text{diff.} \]
§6. Problem

Thank you very much.