The Fourth East Asian School of Knots

and Related Topics January 23, 2008

An infinite family of exotic 4-manifolds and Rasmussen invariants of knots

Toshifumi Tanaka

Osaka City University Advanced Mathematical Institute
§1. Casson handles
§2. Known results
§3. Rasmussen's s-invariant
§4. Results
§5. Other research
§6. Problem

§1. Casson handles

A kinky handle:

The attaching region :

A kinky handle is a 2-handle modulo a finite number $(\neq 0)$ of self-plumbings.

A Casson handle:

A Casson handle \Longleftrightarrow infinite-based signed tree

§2. Known results

Theorem. (M. Freedman (1983)) Any Casson handle is homeomorphic to the standard open 2-handle.

Theorem. (R. Gompf (1984)) There exist countably many Casson handles.

Theorem. (R. Gompf (1989)) There exist uncountably many Casson handles.

A Casson handle is exotic if the attaching circle does not bound a smooth 2-disc in the Casson handle.

Problem. Is any Casson handle exotic?

Fact. T, T^{\prime} : infinite-based signed trees.

$$
T \subset T^{\prime} \Rightarrow C H_{T^{\prime}} \subset C H_{T}
$$

Thus if CH_{T} is exotic, then $\mathrm{CH}_{T^{\prime}}$ is also exotic.

Ž. Bižaca showed an explicit example of an exotic Casson handle (1995).

: periodic Casson handles.

[Casson handle of boundary type]

$\mathrm{CH}^{+}\left(\right.$or $\left.\mathrm{CH}^{-}\right)$

Remark. Any Casson handle of boundary type is exotic.

Theorem. (T. Kato (2006)) There exists a Casson handle which is not boundary type.
§3. Rasmussen's s-invariant
J. Rasmussen, Khovanov homology and the slice genus, math.GT/0402131, 2004
(to appear in Inventiones Mathematicae.)

Lee's variant of Khovanov homology
a concordance invariant s of a knot (combinatorially).

[Knot concordance group]

A knot K is slice $\Longleftrightarrow K$ bounds a smooth disc in B^{4}. Knots K_{1} and K_{2} are concordant $\Longleftrightarrow K_{1} \sharp-K_{2}$ is slice.

The set \{concordance classes\} forms a abelian group under \sharp (the knot concordance group).

[Slice genus]

F : a smooth conn. ori. surface properly embedded in B^{4} with boundary K.
$g_{s}(K):=\min \{$ the genus of $F\}$ (the slice genus of K).

Theorem (J. Rasmussen)

Let K be a knot in S^{3}. Then
(1) s induces a homomorphism from
the knot concordance group to \mathbb{Z};
(2) $|s(K)| \leq 2 g_{s}(K)$;
(3) If K is alternating, then $s(K)=\sigma(K)$, where $\sigma(K)$ is the classical knot signature of K;
(4) $s\left(T_{p, q}\right)=u\left(T_{p, q}\right)=(p-1)(q-1) / 2$
(Milnor conjecture).

§4. Results

$C H$: a Casson handle.
F : a smooth conn. ori. surface properly embedded in CH with boundary the attaching circle.
$g_{s}(C H):=\min \{$ the genus of $F\}$ (the slice genus of $C H$).

Problem. Does there exists a Casson handle CH satisfying $g_{s}(C H)>n$ for any positive integer n ?

$\mathrm{CH}_{m, n}=$

By using Rasmussen invariant, we show the following:

Theorem 1. Let m_{i} and n_{i} be non-negative integers with $m_{i}+n_{i} \neq 0(i=1,2)$. If $m_{1}+n_{1}<\left|m_{2}-n_{2}\right|$, then $\left|m_{1}-n_{1}\right| \leq g_{s}\left(C H_{m_{1}, n_{1}}\right)<g_{s}\left(C H_{m_{2}, n_{2}}\right) \leq m_{2}+n_{2}$.

Remark. Any $\mathrm{CH}_{m, n}$ is exotic.

Proof of Theorem 1. It suffice to show that
$|m-n| \leq g_{s}\left(C H_{m, n}\right) \leq m+n$ if $m+n \neq 0$.

Claim 1. $g_{s}\left(C H_{m, 0}\right) \leq m+n$.

Claim 2.
T_{m} : the connected sum of $c_{i}(>0)$-fold untwisted positive doubles $(1 \leq i \leq m)$ of the positive trefoil knot.
T_{n} : the connected sum of $c_{i}(>0)$-fold untwisted negative doubles ($m+1 \leq i \leq n$) of the negative trefoil knot.
Let $T_{m, n}=T_{m} \sharp T_{n}$.
$|m-n| \leq g_{s}\left(T_{m, n}\right) \Rightarrow|m-n| \leq g_{s}\left(C H_{m, n}\right)$.

Claim 3. $|m-n| \leq g_{s}\left(T_{m, n}\right)$.

By using Rasmussen invariant, we can prove this claim.

Corollary 2. If $m_{1}+n_{1}<\left|m_{2}-n_{2}\right|$, then $C H_{m_{1}, n_{1}}$ does not embed in $C H_{m_{2}, n_{2}}$.

Corollary 3. For any positive integer n, there exist countably many Casson handles $\left\{\mathrm{CH}_{i}\right\}_{i=0}^{\infty}$ such that $g_{s}\left(C H_{i}\right) \geq n$.
[Kinkiness of a knot]
K : a knot in S^{3}.
D : a normally immersed disc in B^{4} which span K.
$k_{ \pm}=\min \sharp\{$ positive (or negative) kinks in $D\}$
\Longleftrightarrow the kinkiness of K.

[Kinkiness of a smooth 4-manifold]

V : a smooth 4-manifold.
C : a smoothly embedded circle in ∂V
with C null-homotopic in V.
(e.g. $(V, C)=$ a Casson handle.)
D : a normally immersed disc in V which span C.
$k_{ \pm}=k_{ \pm}(V, C)=\min \sharp\{$ positive (or negative) kinks in $D\}$
\Longleftrightarrow the kinkiness of (V, C).

Theorem 4. For any non-negative integers m and n with $m+n \neq 0$, we have $k\left(C H_{m, n}\right)=(m, n)$.
$C H_{m, n}=$

Proof of Theorem 4.

Claim 1. $k_{+}\left(C H_{m, 0}\right)=k_{+}\left(C H_{m, n}\right) ; k_{-}\left(C H_{0, n}\right)=k_{-}\left(C H_{m, n}\right)$.

Claim 2. $k_{+}\left(C H_{m, 0}\right) \leq m ; k_{-}\left(C H_{0, n}\right) \leq n$.

Claim 3. T_{m} : the connected sum of $c_{i}(>0)$-fold untwisted positive doubles $(1 \leq i \leq m)$ of the positive trefoil knot.

$$
\begin{aligned}
& m \leq k_{+}\left(T_{m}\right) ; n \leq k_{-}\left(-T_{n}\right) \Rightarrow \\
& m \leq k_{+}\left(C H_{m, 0}\right) ; n \leq k_{-}\left(C H_{0, n}\right) .
\end{aligned}
$$

Claim 4. $m \leq k_{+}\left(T_{m}\right) ; n \leq k_{-}\left(-T_{n}\right)$.

By using C. Bohr's inequality (2002) and
Rasmussen invariant, we can show this claim.

§5. Other research

By using Rasmussen invariant, we show the following:
Theorem 5. Every non-compact, connected, oriented, smooth 4-submanifold of \mathbb{R}^{4} admits at least two smooth structures.

By using a consequence of gauge theory (Donaldson's
Theorem), we show the following:
Theorem 6. Every non-compact, connected, oriented, smooth 4 -submanifold of $\not \sharp_{i=1}^{\infty} \mathbb{C P}^{2}$ admits at least two smooth structures.

Corollary 7. For any positive integer n, every noncompact, connected, oriented, smooth 4-submanifold of $\not \sharp_{i=1}^{n} \mathbb{C P}^{2}$ admits at least two smooth structures.

Problem (A. Kawauchi (1984)).
Does $\sharp_{i=1}^{\infty} \mathbb{S}^{2} \times \mathbb{S}^{2}$ have at least two smooth structures?
§6. Problem

§6. Problem

Thank you very much.

