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1 Generalized Lefschetz number
X connected, finite cell complex

f : X → X continuous, Fix(f): fixed point set

Lefschetz number

L(f) =
∑

q≥0(−1)qtr [f∗ : Hq(X) → Hq(X)]

= ind(Fix(f))

The generalized Lefschetz number L(f) is

obtained by decomposing Fix(f) using the

action of f on π1(X).
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Choose a base point x0, and a base path τ .

Let π = π1(X,x0), fπ = τ−1
∗ ◦ f∗ : π → π.

x0

f(x0)
τ

Definition. λ1, λ2 ∈ π are fπ-conjugate

(or Reidemeister equivalent) if
∃λ ∈ π s.t. λ2 = fπ(λ)λ1λ

−1

π/fπ := {fπ-conjugacy classes}
Z[π/fπ]: free abelian group generated by π/fπ.
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Define R : Fix(f) → π/fπ :

For x ∈ Fix(f), choose a path l from x0 to x.

Let R(x) be the fπ-conjugacy class represented

by [τ(f ◦ l)l−1] ∈ π (Reidemeister class or

coordinate of x) (R(x) depends on x0,τ .)

τ

l
f ◦ l

X
x

x0
f(x0)
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For α ∈ π/fπ，let

Fixα(f) = {x ∈ Fix(f) | R(x) = α}
: fixed point class determined by α.

　Fix(f) =
⋃

α∈π/fπ

Fixα(f) (disjoint union)

There are only finitely many α with Fixα(f) 6= ∅.

Definition（the gen. Lefschetz number）
L(f) =

∑
α∈π/fπ

ind(Fixα(f)) · α ∈ Z[π/fπ] 　　
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★Homotopy invariance

f ∼ g，{ht} : homotopy between f and g.

τ · η : a base path for g, where η(t) = ht(x0).

τ η
x0 f(x0) g(x0) X

Then fπ = gπ and

L(f) = L(g) ∈ Z[π/fπ] = Z[π/gπ]　
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★L(f) is a generalization (refinement) of L(f).
(The sum of coefficients in

∑
α ind(Fixα(f) · α

is equal to L(f).)

∵
∑
α

ind(Fixα(f)) = ind
(⋃

α

Fixα(f)
)

= ind(Fix(f)) = L(f).

Problem: Compute L(f)!
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★Reidemeister trace formula

（Reidemeister 1936, Wecken 1941, Husseini 1982）

L(f) =
∑

q≥0(−1)qtr [f]q : Cq(X) → Cq(X)]
X̃: universal covering space

Cq(X̃): finitely gen. free Z[π]-module

tr[f̃]q : Cq(X̃) → Cq(X̃)] ∈ Z[π/fπ]

is independent of the choice of a basis of

Cq(X̃). (Reidemeister trace）

Trace formula: L(f) =
∑
q≥0

(−1)qtrf̃]q
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2 Homeomorphisms on a punctured disk

　Assume n ≥ 3. Let Dn be a compact

n-punctured disk. (Dn = D − {n open disks})
Outer boundary circle ∂D

Dn

　Consider a homeomorphism f : Dn → Dn　
preserving orientation and ∂D setwise.
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Bn : braid group, θ : full-twist braid

Center of Bn = {θm | m ∈ Z}

Iso+(Dn, ∂D) ←→ Bn/Center

([f ] corresponds to a braid β(f) mod Center)
∃ isotopy ft : D → D s.t. f0 = id, f1|Dn

= f

ft(Dn)

t = 0

t = 1

β(f)t

D × [0, 1]
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A surface with boundary is homotopy equiv. to

a wedge of circles X. f̃]1 : C1(X̃) → C1(X̃)

coincides with the Jacobian matrix J(fπ) w.r.t.

Fox differential calculus., and hence

L(f) = [1 − trJ(fπ)] (Fadell & Husseini, 1983).

ai

1 i n

x0

with generators a1, . . . , an

x0 ∈ ∂D

π1(Dn) = Fn : free group

J(fπ) = (∂fπ(ai)/∂aj)
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Bn acts on Fn by

σi : aj −→

{
ai+1a

−1
i ai−1 j = i

aj j 6= i.

　Denote the image of w ∈ Fn under β by wβ．
Since aβ

n = an, we have ∂aβ
n/∂aj = δn,j .

Therefore, J(β) has the form

(
Jr(β) ∗

0 1

)
.

Jr : Bn → GLn−1(Z[Fn]) gives a twisted

representation.

(Jr(ββ′) = Jr(β)β′
Jr(β′))
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Relationship between Jr and fixed points

　As a base path, choose τ(t) = ft(x0).
Then, fπ = β(f) : Fn → Fn, π/fπ = Fn/β(f).

L(f) = [trf̃]0 − trf̃]1] = [1 − trJ(β(f))]

= −[trJr(β(f))] ∈ Z[Fn/β(f)]

L(f) depends on the choice of {ft}, but is

uniquely determined up to multiples of an.

(Note that Jr(θµβ) = aµ
nJr(β)) .
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★ A genuine representation can be made from

Jr (B. Jiang) .

Bn,1: the subgroup of Bn+1 consisting of braids

with associated permutation fixing n + 1.

ai

i
x0

i

x0Bn ⊂ Bn,1, Fn ⊂ Bn,1
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For ∀w ∈ Fn,∀ β ∈ Bn, wβ = βwβ ∈ Bn,1.

(i.e., wβ = β−1wβ)

Define ζ : Bn → GLn−1(Z[Bn,1]) by

ζ(β) = βJr(β).

ζ is a representation.

(∵ ζ(ββ′) = ββ′Jr(ββ′) = ββ′(Jr(β)β′
Jr(β′))

= βJr(β)β′Jr(β′).)
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(Bn,1)c : the set of congugacy classes of Bn,1

★ Fn/β ⊂ (Bn,1)c can be defined by

[w] → [βw].

Note that [trJr(β)] 7→ [trβJr(β)] = [trζ(β)].

L(f) = −[trJr(β(f))] ∈ Z[Fn/β(f)]

= −[trζ(β(f))] ∈ Z[(Bn,1)c]
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An expression of braids

ρ = σn−1 · · ·σ2σ1 =

For I = (i1, . . . , id) ∈ Nd, let

β(I) = β(i1, . . . , id) = σi1
1 ρ · · ·σid

1 ρ.

Then, ∀braid is conjugate to

θµβ(I) (µ ∈ Z, I ∈ Nd) (M,1993)

Example. σ1σ
−1
2 ∼ β(4) ∈ B3.
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Remark. This expression is not unique.

(Ex. β(i, 1, . . . , 1︸ ︷︷ ︸
n−2

, j) = θβ(i + j − 1).)

I → β(I) ←→ [f ] → L(f)
(up to Center)

Problem: Determine L(f) directly by I.
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3 Abelianization of L(f)

E : Fn → Z (E(ai) = i) induces

E : Z[Fn] → Z[Z] ∼= Z[q, q−1], and then

E : Z[Fn/β] → Z[q, q−1] for ∀β ∈ Bn.

E(Jr(β)) = Bur(β): the reduced Burau matrix

Since L(f) = −[trJr(β(f))],
we have E(L(f)) = −tr Bur(β(f)).

If β(f) = θµγ−1β(I)γ,

E(L(f)) = −qnµtr Bur(β(I)).
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★ tr Bur(β(I)) has been computed
(M, Contemp. Math. Vol. 152(1993)).

Bur(β(i)) =
0

B

B

B

B

B

B

B

B

B

B

B

B

@

−
i

X

`=2

(−q)` (−q)i
i−1
X

`=0

(−q)` 0 · · · 0

−q2 0 1
...

−q3 0 0 1
...

...
...

...
. . . 1

−qn−1 0 0 · · · 0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

tr Bur(β(i)) = −
Pi

`=2(−q)`.
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Next, consider β(i)d = β(i, . . . , i︸ ︷︷ ︸
d

).

For d ∈ N, let Zd = Z/dZ = {1, . . . , d}.
For 1 ≤ p, q ≤ d , define a sequence [p, q] of

consecutive elements of Zd by

[p, q] =

{
(p, . . . , q) p ≤ q

(p, . . . , d, 1, . . . , q) p > q

　: a block in Zd

20



Definition

(1) A set of blocks {B1, · · · , Bs} is a partition

of Zd

⇐⇒ 　Zd = B1 ∪ · · · ∪ Bs, (disjoint)

where Br is the set of integers contained in

Br.

(2) P(d) = {partitions of Zd}
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Example：

P(4) consists of 15 partitions:

{(1), (2), (3), (4)},
{(1, 2), (3), (4)}, {(1), (2, 3), (4)},

{(1), (2), (3, 4)}, {(2), (3), (4, 1)),

{(1, 2), (3, 4)}, {(2, 3), (4, 1)},
{(1, 2, 3), (4)}, {(1), (2, 3, 4)},

{(2), (3, 4, 1)}, {(3), (4, 1, 2)},
{(1, 2, 3, 4)}, {(2, 3, 4, 1)}, {(3, 4, 1, 2)}, {(4, 1, 2, 3)}
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Fact on linear algebra

Let A ∈ Mν(R), ν ∈ N, R: commutative ring.

Let PM(A; k) = 0 for k > ν, and for 1 ≤ k ≤ ν

PM(A; k) =
∑

1≤j1<···<jk≤ν

detA

(
j1, . . . , jk

j1, . . . , jk

)
: the sum of principal minors of order k.

trAd

=
X

B∈P(d)

(−1)d+]BPM(A; |B1|) · · ·PM(A; |Bs|),

where B = {B1, . . . , Bs}.
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Example.

d = 2. Since P(2) = {B1,B2,B3}, where

B1 = {(1), (2)},B2 = {(1, 2)},B3 = {(2, 1)},

trA2 = (−1)4PM(A; 1)2 + 2(−1)3PM(A; 2)
= (trA)2 − 2PM(A; 2).

d = 3
trA3 = (trA)3 − 3PM(A; 2)trA + 3PM(A; 3).
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Let R = Z[q, q−1] and A = Bur(β(i)).
Define a polynomial P (i; k) by

P (i, k) = PM(Bur(β(i)); k)

=

−
i+k−1∑
`=k+1

(−q)` if k < n − 1

(−q)i+n−1 if k = n − 1.

tr Bur(β(i)d) = tr(Bur(β(i)))d

=
∑

B∈P(d)(−1)d+]BP (i; |B1|) · · ·P (i; |Bs|).
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tr Bur(β(i, . . . , i))

=
X

B∈P(d)

(−1)d+]BP (i; |B1|) · · ·P (i; |Bs|).

Theorem 1. (M,1993)

For ∀I = (i1, . . . , id) ∈ Nd,

tr Bur(β(I))
= (−1)d+]B

X

B∈P(d)

P (ip1 ; |B1|) · · ·P (ips ; |Bs|),

where B = {B1, . . . , Br} and pr is the initial

element of Br (r = 1, . . . , s).
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4 Computation of L(f)

For β ∈ Bn, let Φβ : ZFn → Z[Fn/β] be the

projection. Assume β(f) = β(I).

L(f) ∈ Z[Fn/β(f)]

Find element ∈ Z[Fn]

Φβ(f)

E
X

B∈P(d)

PI(B) = −trBur(β(I)) 3 Z[q, q−1]

L(f) ∈ Z[Fn/β(f)]

Find element ∈ Z[Fn]

Φβ(f)

E

0

@element =
X

B∈P(d)

WI(B)

1

A
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The Jacobian matrix Jr(β(I)) can be computed

by

a
β(i)
k =
(a3a

−1
1 )

i−1
2 a3a

−1
2 (a3a

−1
1 )−

i−1
2 (k = 1, i odd)

(a3a
−1
1 )

i
2 a2a

−1
1 (a3a

−1
1 )−

i
2 (k = 1, i even)

ak+1a
−1
1 (2 ≤ k ≤ n − 1)

an (k = n)
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Z[Fn] 3 gj =

{
−a

j/2
2 j even

a1a
(j−1)/2
2 j odd

For 1 ≤ ` ≤ d，let β`(I) = β(i`, . . . , id) ∈ Bn.

For a block B = [p, q], define

α(B), ω(B) ∈ Z[Fn] by

α(B) = βp(I),

ω(B) =

{
βq(I) p ≤ q

βq(I)β(I)−1 p > q.
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For a block B, define WI(B) ∈ Z[Fn] by

WI(B) =


(g0 + · · · + gip−2)α(B)a

ω(B)
|B|+1

if |B| < n − 1
g

α(B)
ip

a
ω(B)
n−1 if |B| = n − 1

0 if |B| ≥ n.

Define WI : P(d) → Z[Fn] by

WI(B) = WI(B1) · · ·WI(Bs)
for B = {B1, . . . , Bs}（ 1 ≤ p1 ≤ · · · ≤ ps ≤ d）
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Theorem 2.

β(f) = θµγ−1β(I)γ （µ ∈ Z, γ ∈ Bn）

=⇒ L(f) = −Φβ(f)

(
aµ

n

∑
B∈P(d)

WI(B)γ

)
.

∈ Z[Fn/β(f)].
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5 Applications

A surface homeomorphism ϕ is a canonical

homeomorphism if it is finite order,

pseudo-Anosov, or reducible (decomposed into

finite order and pseudo- Anosov components).

A canonical homeomorphism has the

”simplest” dynamical complexity in its isotopy

class.
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Let ϕ : Dn → Dn be a canonical homeo.

preserving orientation and ∂D (setwise).

Problem 1：Determine the period and rotation

number of periodic points of ϕ on ∂D．

The following lemma shows Theorem 2 can

be applied to solve this problem.

Lemma. m ∈ N, ν ∈ Z : rel. prime. Assume

Φβ(ϕm)(aν
n) has non-zero coefficient in L(ϕm)

Then, the periodic points on ∂D has period m

and rotation number ν/m.
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Suppose β(ϕ) = β(I), and

i1, . . . , id ≥ 2 if n ≥ 4, i1, . . . , id ≥ 3 if n = 3.

Proposition 1. ∃P ′(d) ⊂ P(d), ∃W ′
I(B) ∈ Z[Fn]

s.t. (i) L(f) = −Φβ(I)

(∑
B∈P′(d) W ′

I(B)
)

(ii) If w ∈ Fn has non-zero coefficient in∑
B∈P′(d) W ′

I(B), then [w] ∈ Fn/β(I) has

non-zero coefficient in L(f).

Proposition 2．period = LCM{d, n − 2}/d,

　　rotation number = d/(n − 2)
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Problem 2：Given f，determine the finite-order

and pseudo-Anosov components of the canonical

homeomorphism ϕ in [f ].

There are several algorithms

(Bestvina-Handel(1995), Benardete, Gutierrez,

and Nitecki(1995), Hamidi-Tehrani and Chen

(1996) etc.). But, the computation is still

difficult.

As an application of the computation of the

Burau matrices, we have
35



Theorem 3(M, 1993). If n ≥ 4, i1, . . . , id ≥ 2,

(i1, . . . , id) 6= (2, . . . , 2), then ϕ has a

pseudo-Anosov component.

As an application of Proposition 2 (period

= LCM{d, n − 2}/d, rot. number = d/(n − 2)
on ∂D), we have

Proposition 3．n ≥ 5, i1, . . . , id ≥ 2 all even or

all odd. Then, ϕ is pseudo-Anosov with

foliations having no interior singularities.
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Estimations of the Nielsen number

(Corollary of Proposition 1)

N(f) : the number of non-zero terms in L(f).
(Nielsen number)

In the case of n = 3, i1, . . . , id ≥ 3, we have

]S(I) − 4 ≤ N(f) ≤ ]S(I),
where S(I) is the set of (j1, . . . , jd) ∈ Nd with

2 ≤ j` ≤ i`, (j`, j`+1) 6= (i`, 2) for 1 ≤∀ ` ≤ d.

Also, a similar estimation is obtained if

n ≥ 4, i1, . . . , id ≥ 2.
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6 Braid representations for periodic orbits

H. Zheng(J. Knot Th. Ramif. (2005))generalized

ζ : Bn → GLn−1(Z[Bn,1]) to representations

ζn,m : Bn → GLN (Z[Bn,m]) for any m ≥ 2,

where N =
(
n+m−2

n−2

)
and

Bn,m is the subgroup of Bn+m consisting of

braids with associated permutation fixing the

subset {n + 1, . . . , n + m}.
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f : Dn → Dn induces a homeomorphism

fm : Cm(Dn) → Cm(Dn), where Cm(Dn) is

the m-th configuration space of Dn.

{m-periodic orbits } ⊂ Fix(fm).

Bm(Dn) ⊂ Bn,m. Γβ,m = 〈β, Bm(Dn)〉 ⊂ Bn,m.

π1(Cm(Dn))/β = Bm(Dn)/β ⊂ (Γβ,m)c

([w] 7→ [βw])

L(fm) ∈ Z[π1(Cm(Dn))/β] ⊂ Z[(Γβ(f),m)c]
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ζn,m : Bn → GLN (Z[Bn,m]) satisfies

ζn,m(β) ∈ Z[Γβ,m] for any β.

Theorem 4.(Jiang and Zheng, Topology(2007))

L(fm) = (−1)mtrζn,m(β(f)) ∈ Z[(Γβ(f),m)c]

up to collapsible terms.
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Case of m = 2.

Bn,2 = 〈σ1, . . . , σn−1, σ
2
n, σn+1〉.

Consider ρ : Z[Bn,2] → Z[q±1, t±1] defined by

ρ(σi) = 1(i < n), ρ(σ2
n) = q, ρ(σn+1) = t.

Then,

ρ ◦ ζn,2 = LK : Bn → GLn(n−1)
2

(Z[q±1, t±1]).
(the Lawrence-Krammer representation)
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As a corollary of Jiang-Huang(2007) and

Zheng(2005), we have

Corollary. For any integers i,j with i odd, the

coefficient of qitj in ρ(L(f2)) coincides with

that of tr LK(β(f)−1)∗. where

q∗ = q−1, t∗ = t−1.

Problem. Compute tr LK(β).
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Clearly,

tr LK(β(i, . . . , i))
=

∑
B∈P(d)

(−1)d+]BQ(i; |B1|) · · ·Q(i; |Bs|),

where Q(i; k) = PM(LK(β(i)); k).

How to generalize this to any I ∈ Nd?
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Let

Qi,j = (−1)j+1t(1 − t)
i+j+4∑
k=j+6

(−q)k

j−2∑
l=0

(tq)l

+(−1)j+1tqj+2Q(i; 1)
+(−1)i+j+1t2qi+j+4 + (−1)jtj+1q2j+4

Note that Qi,i = Q(i; 2) = PM(LK(β(i); 2).

Then, tr LK(β(i, j))
= Q(i; 1)Q(j; 1) − Qi,j − Qj,i.
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