## Bridge presentation of virtual knots

Seiichi Kamada

# Joint work with Mikami Hirasawa and Naoko Kamada 

January, 2008

## $\{$ knots $\} \subset\{$ virtual knots $\}$


$n$-bridge knots $\Longrightarrow$ " $n$-bridge virtual knots"

Bridge presentation of classical knots


Remark. For classical knots, the following (A) and (B) are equivalent.
(A) $K$ has a diagram with $n$ over-paths and $n$ under-paths.
(B) $K$ has a diagram with $n$ maximal points and $n$ minimal points.

For virtual knots, (A) seems more natural to define " $n$-bridge presentation". We adapt our definition of bridge presentation to (A).

Definition. (Bridge presentation of a diagram $D$ )
An $n$-bridge presentation of $D$ is a division of $D$ into $n$ over-paths (paths without under-crossings) and $n$ under-paths (paths without over-crossings) appearing alternately.

diagram with a 2 -bridge presentation
Definition. (Virtual bridge index of $K$ ) $b(K)=\min \{n \mid K$ has a diagram with an $n$-bridge presentation $\}$

Proposition 1 If $b(K)=n$ then $Q_{+}(K)$ (upper knot quandle) and $Q_{-}(K)$ (lower knot quandle) can be generated by $n$ elements. And hence $G_{+}(K)$ (upper knot group) and $G_{-}(K)$ (lower knot group) can be generated by $n$ meridian elements.

diagram with a 2 -bridge presentation

$$
\begin{aligned}
& Q_{+}(K)=\left\langle A_{1}, A_{2} \mid A_{1}=A_{2}, A_{2}^{A_{1} A_{1}^{-1} A_{2}^{-1} A_{1}^{-1}}=A_{1}\right\rangle \cong\left\langle A_{1} \mid\right\rangle \\
& Q_{-}(K)=\left\langle B_{1}, B_{2} \mid B_{1}^{B_{2}^{-1}}=B_{2}, B_{2}^{B_{2}^{-1} B_{2}^{-1} B_{2}}=B_{1}\right\rangle \cong\left\langle B_{1} \mid\right\rangle
\end{aligned}
$$

Corollary 2 If $b(K)=1$ then $Q_{+}(K) \cong Q_{-}(K) \cong\langle x \mid\rangle=\{x\}$, and $G_{+}(K) \cong G_{-}(K) \cong\langle x \mid\rangle \cong \mathbb{Z}$.

Remark. For classical knots $K$, the followings are equivalent.
(i) $K$ is a trivial knot.
(ii) $b(K)=1$.
(iii) $Q_{+}(K) \cong Q_{-}(K) \cong\langle x \mid\rangle=\{x\}$
(iv) $G_{+}(K) \cong G_{-}(K) \cong\langle x \mid\rangle \cong \mathbb{Z}$

For virtual knots, (i) $\Rightarrow$ (ii) $\Rightarrow$ (iii) $\Rightarrow$ (iv). But (iv) $\Rightarrow$ (i) does not hold in general.


This knot has $b(K)=1, Q_{+}(K) \cong Q_{-}(K) \cong\{x\}$, and $G_{+}(K) \cong$ $G_{-}(K) \cong \mathbb{Z}$. But it is not a trivial knot. Jones polynomial $\neq 1$.

Theorem 3 There exist infinitely many 1-bridge virtual knots.
Proof. For $n \geq 2$, let $K_{n}$ be a virtual knot with a diagram


Figure 1: $n$ positive crossings and $n-1$ virtual crossings
$f_{K_{n}}(A)= \begin{cases}A^{-2 n}\left(A^{-2} \frac{1-\left(-A^{-4}\right)^{n}}{1+A^{-4}}+1\right) & n: \text { even } \\ -A^{-2 n}\left(A^{-2} \frac{1-\left(-A^{-4}\right)^{n}}{1+A^{-4}}-A^{2}-A^{-2}\right) & n: \text { odd }\end{cases}$
Thus $K_{i} \neq K_{j}(i \neq j)$.

There are 99 pseudo-prime non-trivial virtual knots with crossing numbers less than 5 in Naoko Kamada's table.

$$
\begin{aligned}
& c(K)=2 \Longrightarrow \sharp 1, \\
& c(K)=3 \Longrightarrow \sharp 2, \cdots, \sharp 8, \\
& c(K)=4 \Longrightarrow \sharp 9, \cdots, \sharp 99 .
\end{aligned}
$$

Here $c(K)$ is the minimal crossing number of $K . K$ is pseudo-prime if $K$ does not have a composite diagram with $c(K)$ crossings.

$$
\# 1 \quad(02)(13) /(1,1) \quad \mathrm{b}(\mathrm{~K})=1
$$



$$
\# 2 \quad(03)(14)(25) /(1,1,1) \quad b(K)=1
$$



$$
\# 3 \quad(03)(41)(25) /(1,1,1) \quad b(K)=2
$$



This knot has a 2-bridge presentation. $G_{+}(K) \neq \mathbb{Z}$. Thus $b(K)=2$.

Lemma 4 (Bridge Reduction Lemma) Let $A_{i}$ and $A_{i+1}$ be overpaths and $B_{i}$ an under-path such that $A_{i}, B_{i}$ and $A_{i+1}$ appear in this order.
(1) (Forward Bridge Reduction) If there exist no real crossings between $B_{i}$ and $A_{i+1}$, then we can reduce the number of bridges.
(2) (Backward Bridge Reduction) If there exist no real crossings between $A_{i}$ and $B_{i}$, then we can reduce the number of bridges.

Proof. See Figures.
This lemma is very useful to reduce the number of bridges.

Bridge Reduction (Forward)


Bridge Reduction (Backward)



Bridge Reduction (Forward)
(1) No real crossings between B1 and A2.
(2) Move real crossings on B1 beyond A2.
(3) Connect A1 and A2 to make a single over-path.

Theorem 5 For the 99 virtual knots in the table, we have the following.
(1) The following knots have bridge indices 2 :
$3,4,19,20,21,44,45,46,47,49,50,51,58,59,60$, $61,62,81,82,83,84,85,86,87,88$.
(2) The knot $\sharp 57$ has bridge index 1 or 2 .
(3) The other knots have bridge indices 1.

Proof. By Bridge Reduction Lemma, all knots that are not listed in (1) and (2) can be presented by a diagram with 1-bridge presentation. Thus we have (3).

By Bridge Reduction Lemma, the knots listed in (1) and (2) can be presented by a diagram with 2-bridge presentation. Thus we have (2).

If $b(K)=1$ then $G_{+}(K) \cong G_{-}(K) \cong \mathbb{Z}$. However, knots listed in (1) do not satisfy $G_{+}(K) \cong G_{-}(K) \cong \mathbb{Z}$. Thus we have (1).

Problem 1: Decide the bridge index of $\sharp 57$.

$0-16$

Problem 2: For a classical knot $K$, define
$b^{\text {real }}(K)=\min \left\{\begin{array}{l|l}n & \begin{array}{l}K \text { has a diagram without virtual crossings } \\ \text { and with } n \text {-bridge presentation }\end{array}\end{array}\right\}$.
By definition, $b(K) \leq b^{\text {real }}(K)$.
Is $b(K)=b^{\text {real }}(K)$ ?
Is $b(K)=b^{\text {real }}(K)$ ?
Problem 3: $b\left(K_{1} \sharp K_{2}\right)=b\left(K_{1}\right)+b\left(K_{2}\right)-1$ ? (Yes, for $b^{\text {real }}(K)$ of classical knots.)

