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Our conventions

Let D be an oriented link diagram. The framed Homfly polynomial
HD(v , z) is defined by

H − H = zH

H = vH

H = v−1H

H = 1

The Homfly polynomial itself is

PD(v , z) = vwHD(v , z),

where w is the writhe of D.



Newton polygon

We record Homfly coefficients on the vz–plane.
Example: The Homfly polynomial of the torus knot T (3, 5) is

PT (3,5)(v , z) = z8v8 + 8z6v8 − z6v10 + 21z4v8 − 7z4v10

+ 21z2v8 − 14z2v10 + z2v12 + 7v8 − 8v10 + 2v12,

and we will write it as
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Morton–Franks-Williams (MFW) inequalities

The famous inequality is

braid index ≥ number of non-zero columns in P.

This follows from the following pair of inequalities. Let β be a
braid word on

n strands, with exponent sum w .

Let Pbβ(v , z) be the Homfly polynomial of the closure of β. Then,

lower MFW estimate: w − n + 1 ≤ lowest v–degree of Pbβ
upper MFW estimate: highest v–degree of Pbβ ≤ w + n − 1.



MFW on our pictures

v=w+n!11

v

v=w!n+

z

(The gray shaded region is the Newton polygon of Pbβ .)



An example

If we represent T (3, 5) with the braid word

β = (σ1σ2)
5 = ,

then

n = 3,

w = 10,

w − n + 1 = 8,

w + n − 1 = 12,

and we see that both the lower and the upper MFW estimates are
sharp for this braid. Indeed, the Homfly polynomial has 3(= n)
columns.



The extreme columns

Lower MFW is sharp for a braid if and only if the leftmost column
of P corresponds to v = w − n + 1. Similiarly for upper MFW and
the rightmost column.

An indication that actual coefficients in these columns may be
interesting: If we re-normalize by requiring

H ′ =
v−1 − v

z
instead of H = 1,

then the extreme columns, up to sign, do not change.

The numbers (up to sign) also persist if we use a = v−1,
l = −

√
−1 · v−1, m =

√
−1 · z etc.



Versions of Homfly

Example: Re-normalization
changes PT (3,5) into P ′

T (3,5)
as follows:
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Digression: Rulings

However there is a much better reason to look at the extreme
columns.

Rutherford (2005): If the knot type K contains Legendrian
representatives with sufficiently high Thurston–Bennequin number,
then the coefficients in the left column of the Homfly polynomial
PK (v , z) represent numbers of so-called 2–graded rulings (of
various genera) of these Legendrian knots.

Similarly, the right column may speak of 2–graded rulings of the
mirror of K .



Adding a full twist

We will denote the Garside braid (positive half twist) on n strands
by ∆n or simply by ∆. Then ∆2 represents a positive full twist.
The braid ∆2 contains n(n − 1) crossings.

Example: ∆3 = , ∆2
3 = .

If β has n strands and exponent sum w , then β∆2 still has

n strands but exponent sum w + n(n − 1).

Thus the upper MFW bound for β∆2 is

w + n(n − 1) + n − 1 = w + n2 − 1.



The realization about extreme columns and full twists is. . .

Theorem
For any braid β, the lower MFW estimate is sharp if and only if the
upper MFW estimate is sharp for the braid β∆2. If this is the case,
then

left column of Pbβ = (−1)n−1 right column of P dβ∆2 . (1)

Remark
Actually, we can claim the following for an arbitrary braid β:

the coefficient of vw−n+1 in Pbβ
= (−1)n−1 the coefficient of vw+n2−1 in P dβ∆2 . (2)

This either says that 0 = 0, or the more meaningful formula (1),
depending on whether the sharpness condition is met.



Positive and non-positive braids

For positive braids β, the two equivalent sharpness requirements
are both known to hold, so our claim (2) is always ‘meaningful.’

But the Morton–Franks-Williams inequalities are sharp for many
other knots, too. Up to 10 crossings, there are only five knots that
do not possess braid representations with a sharp (lower) MFW
estimate.

Thus, (2) is informative for many non-positive braids, too.



In our main example:

7

21

21

8

1

1

2

z

!1

!7

!14

!8 v

! =

z

15

105

273

338

221

78

14

1

!21

!105

!189

!157

!65

!13

!1

1

8

21

21

7 v

!" =2



A related example (positive Markov stabilization):
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A ‘failure’ (negative Markov stabilization):
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Here, the lower MFW bound (for β) is (10− 1)− 4 + 1 = 6 and

the upper one (for β∆2) is (10− 1) + 42 − 1 = 24. (In fact, β̂∆2

is the torus knot T (3, 10).)



Computation trees

For any braid, a computation tree can be built (and used to
determine the Homfly polynomial) using the following 4 types of
steps.

I Isotopy (braid group relations)

I Conjugation: β1β2 7→ β2β1

I Positive Markov destabilization: ασi ∈ Bi+1 becomes α ∈ Bi

I Two types of Conway splits:

and

The terminal nodes of the computation tree are labeled with trivial
(crossingless) braids (on various numbers of strands).



Plan of the proof

It is possible to avoid the Hecke algebra and prove our theorem
using skein theory.

Let Γ be a computation tree for β.

Idea: Build a computation tree Γ̃ for β∆2 that imitates Γ.

Namely, we ‘tack on’ a full twist and see how much of Γ can be
preserved. (We need to analyze the 4 moves.)

Answer: Γ survives as a subtree of Γ̃. (Understanding the specifics
makes it possible to read off our formula.)



3 cases are easy. . .

Isotopy and Conway splits: No problem! These moves are
completely local.

Conjugation: Recall that ∆2 is in the center of the braid group.
Thus, the conjugation move

β1β2 7→ β2β1 in Γ

can be replaced by an isotopy followed by a conjugation

β1β2∆
2 7→ β1∆

2β2 7→ β2β1∆
2 in Γ̃.



. . . and one is a bit harder

To imitate a Markov destabilization in Γ, we need a Conway split
in Γ̃.

If in Γ, we see this:

!!



Then in Γ̃, we can do this:

2! !

! !

"2
!

"

This starts a new, ‘unnecessary’ branch in Γ̃. . .

But the braid at the beginning of that branch is on at most n − 1
strands. (More precisely, isotopies, conjugations, and a Markov
destabilization can be applied so that the number of strands is
reduced by 1.) Luckily, this implies that the new branch does not
contribute to the relevant part of P dβ∆2 .



Conclusion of the proof

So far, Γ̃ contains a copy of Γ with extra branches that do not
matter.

However at the terminal nodes of Γ̃, where the trivial braids used
to be, now there are copies of ∆2.

But Pc∆2(v , z) (or a computation tree for ∆2) is well understood.
In particular, the rightmost column contains a single 1. This allows
us to read off the formula.



Open questions

I Any applications?

I Are there generalizations to Khovanov homology or
Khovanov-Rozansky homology?
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