On the Alexander polynomials of alternating knots of genus 2

In Dae JONG (Osaka City University) 鄭 仁大 (大阪市立大学)

2008/1/24

in The 4th East Asian School of Knots and Related Topics; The University of Tokyo

Contents

- $\S1$. Introduction
 - Some terminologies and known results
 - Main Theorem.

§2. Proof of Main Theorem

$\S3-4$. Observations

Alternating links

An *alternating diagram* is a link diagram such that an overcrossing and an undercrossing appear alternately along every component.

Alternating links

An *alternating diagram* is a link diagram such that an overcrossing and an undercrossing appear alternately along every component.

An *alternating link* is a link with an alternating diagram.

The Alexander polynomial

The Alexander polynomial $\Delta_L(t) \in \mathbb{Z}[t, t^{-1}]$ is an invariant for oriented links up to multiplications of $\pm t^l$ $(l \in \mathbb{Z})$. The Alexander polynomial

The Alexander polynomial $\Delta_L(t) \in \mathbb{Z}[t, t^{-1}]$ is an invariant for oriented links up to multiplications of $\pm t^l$ $(l \in \mathbb{Z})$.

Today's normalization

mindeg $\Delta(t) = 0$ and $\Delta(0) > 0$.

(e.g.
$$\Delta_{3_1}(t) = 1 - t + t^2$$
, $\Delta_{4_1}(t) = 1 - 3t + t^2$,...)

The Alexander polynomial

The Alexander polynomial $\Delta_L(t) \in \mathbb{Z}[t, t^{-1}]$ is an invariant for oriented links up to multiplications of $\pm t^l$ $(l \in \mathbb{Z})$.

Today's normalization

mindeg $\Delta(t) = 0$ and $\Delta(0) > 0$.

(e.g.
$$\Delta_{3_1}(t) = 1 - t + t^2$$
, $\Delta_{4_1}(t) = 1 - 3t + t^2$,...)

Characterization of Δ_K

- K: a knot $\Rightarrow \Delta_K(t^{-1}) \doteq \Delta_K(t)$ and $\Delta_K(1) = \pm 1$.
- $f(t) \in \mathbb{Z}[t, t^{-1}]$ with $f(t^{-1}) \doteq f(t)$ and $f(1) = \pm 1$

 $\Rightarrow \exists$ a knot K such that $\Delta_K(t) = f(t)$.

My motivation and known results

Motivation

Characterize $\Delta_K(t)$ of an alternating knot K.

Known results

- Crowell-Murasugi's theorem
- Trapezoidal conjecture & Log-concavity conjecture
- Ozsváth-Szabó's theorem

Notation

• $[f]_i$: the coefficient of the *i*-th term of a polynomial f.

<u>Notation</u>

- $[f]_i$: the coefficient of the *i*-th term of a polynomial f.
- For an alternating knot K, we denote $\Delta_K(-t)$ by Δ_K .

- $[f]_i$: the coefficient of the *i*-th term of a polynomial f.
- For an alternating knot K, we denote $\Delta_K(-t)$ by Δ_K .

Proposition 1.1. ['59 R. H. Crowell, K. Murasugi]

Let K be an alternating knot. Then

• deg $\Delta_K = 2g(K)$.

• $[\Delta_K]_i > 0$ for i = 0, 1, ..., 2g(K).

- $[f]_i$: the coefficient of the *i*-th term of a polynomial f.
- For an alternating knot K, we denote $\Delta_K(-t)$ by Δ_K .

Proposition 1.1. ['59 R. H. Crowell, K. Murasugi]

Let K be an alternating knot. Then

• deg $\Delta_K = 2g(K)$.

•
$$[\Delta_K]_i > 0$$
 for $i = 0, 1, ..., 2g(K)$.

* K: an alternating knot with $g(K) = 2 \Rightarrow$ $\Delta_K = [\Delta_K]_0 + [\Delta_K]_1 t + [\Delta_K]_2 t^2 + [\Delta_K]_1 t^3 + [\Delta_K]_0 t^4,$

- $[f]_i$: the coefficient of the *i*-th term of a polynomial f.
- For an alternating knot K, we denote $\Delta_K(-t)$ by Δ_K .

Proposition 1.1. ['59 R. H. Crowell, K. Murasugi]

Let K be an alternating knot. Then

• deg $\Delta_K = 2g(K)$.

•
$$[\Delta_K]_i > 0$$
 for $i = 0, 1, ..., 2g(K)$.

* K: an alternating knot with $g(K) = 2 \Rightarrow$ $\Delta_K = [\Delta_K]_0 + [\Delta_K]_1 t + [\Delta_K]_2 t^2 + [\Delta_K]_1 t^3 + [\Delta_K]_0 t^4$, and $[\Delta_K]_2 = 2([\Delta_K]_1 - [\Delta_K]_0) \pm 1$ ($\Delta_K(1) = \pm 1$).

- $[f]_i$: the coefficient of the *i*-th term of a polynomial f.
- For an alternating knot K, we denote $\Delta_K(-t)$ by Δ_K .

Proposition 1.1. ['59 R. H. Crowell, K. Murasugi]

Let K be an alternating knot. Then

• deg $\Delta_K = 2g(K)$.

•
$$[\Delta_K]_i > 0$$
 for $i = 0, 1, ..., 2g(K)$.

* K: an alternating knot with $g(K) = 2 \Rightarrow$ $\Delta_K = [\Delta_K]_0 + [\Delta_K]_1 t + [\Delta_K]_2 t^2 + [\Delta_K]_1 t^3 + [\Delta_K]_0 t^4$, and $[\Delta_K]_2 = 2([\Delta_K]_1 - [\Delta_K]_0) \pm 1$ ($\Delta_K(1) = \pm 1$). Trapezoidal conjecture & Log-concavity conjecture

Definition $f(t) = \sum_{i=0}^{m} a_i t^i \in \mathbb{Z}[t, t^{-1}]$: trapezoidal \Leftrightarrow $f(t^{-1}) \doteq f(t)$ and $0 < a_0 < \cdots < a_j = a_{j+1} = \cdots = a_{\lfloor \frac{m}{2} \rfloor}$ for some $0 \le j \le \lfloor \frac{m}{2} \rfloor$.

Trapezoidal conjecture ['62 R. H. Fox] L: a non-split alternating link $\Rightarrow \Delta_L(-t)$: trapezoidal **Example**

$$\Delta_{5_1}(-t) = 1 + t + t^2 + t^3 + t^4$$

$$\Delta_{6_3}(-t) = 1 + 3t + 5t^2 + 3t^3 + t^4$$

$$\Delta_{7_3}(-t) = 2 + 3t + 3t^2 + 3t^3 + 2t^4$$

$$\Delta_{8_5}(-t) = 1 + 3t + 4t^2 + 5t^3 + 4t^4 + 3t^5 + t^6$$

$$\Delta_{8_7}(-t) = 1 + 3t + 5t^2 + 5t^3 + 5t^4 + 3t^5 + t^6$$

<u>Fact</u> T.C. is true for 2-bridge links ['79 R. Hartley],

Fact T.C. is true for 2-bridge links ['79 R. Hartley], certain alternating algebraic (\supset 2-bridge) links, certain alternating fibered links ['85 K. Murasugi],

Fact T.C. is true for 2-bridge links ['79 R. Hartley], certain alternating algebraic (\supset 2-bridge) links, certain alternating fibered links ['85 K. Murasugi], alternating knots of genus 2 ['03 P. Ozsváth-Z. Szabó, '07 J.] **<u>Fact</u>** T.C. is true for 2-bridge links ['79 R. Hartley], certain alternating algebraic (\supset 2-bridge) links, certain alternating fibered links ['85 K. Murasugi], alternating knots of genus 2 ['03 P. Ozsváth-Z. Szabó, '07 J.] **Definition** A polynomial $f \in \mathbb{Z}[t, t^{-1}]$ is *log-concave* $\Leftrightarrow [f]_{i-1}[f]_{i+1} \leq [f]_i^2$ for all *i*. Log-concavity conjecture [05' A. Stoimenow] L : an alternating link $\Rightarrow \Delta_L(t)$: log-concave. Remark

• Log-concavity conjecture "⊃" Trapezoidal conjecture.

<u>Fact</u> T.C. is true for 2-bridge links ['79 R. Hartley], certain alternating algebraic (\supset 2-bridge) links, certain alternating fibered links ['85 K. Murasugi], alternating knots of genus 2 ['03 P. Ozsváth-Z. Szabó, '07 J.] **Definition** A polynomial $f \in \mathbb{Z}[t, t^{-1}]$ is *log-concave* $\Leftrightarrow [f]_{i-1}[f]_{i+1} \leq [f]_i^2$ for all *i*. Log-concavity conjecture [05' A. Stoimenow] L : an alternating link $\Rightarrow \Delta_L(t)$: log-concave. Remark

- Log-concavity conjecture "⊃" Trapezoidal conjecture.
- Log-concavity conjecture is true for alternating knots of genus 2. ['07 J.]

<u>Ref.</u> I. D. Jong, "Alexander polynomials of alternating knots of genus two" (submitted to OJM)

Ozsváth-Szabó's inequality

Proposition 1.2. ['03 P. Ozsváth-Z. Szabó]

K: an alternating knot, $\sigma = \sigma(K)$: the signature of *K*. $\Delta_K(t)$ is normalized so that $\Delta_K(1) = 1$. Then, for each $s = 0, 1, \dots, g(K)$,

$$(-1)^{s+\frac{\sigma}{2}}\left(\sum_{j=1}^{g(K)-s} j[\Delta_K(t)]_{g(K)-s-j} - \max(0, \lceil \frac{|\sigma|-2|s|}{4}\rceil)\right) \leq 0.$$

Ozsváth-Szabó's inequality

Proposition 1.2. ['03 P. Ozsváth-Z. Szabó]

K: an alternating knot, $\sigma = \sigma(K)$: the signature of *K*. $\Delta_K(t)$ is normalized so that $\Delta_K(1) = 1$. Then, for each $s = 0, 1, \dots, g(K)$,

$$(-1)^{s+\frac{\sigma}{2}}\left(\sum_{j=1}^{g(K)-s} j[\Delta_K(t)]_{g(K)-s-j} - \max(0, \lceil \frac{|\sigma|-2|s|}{4}\rceil)\right) \leq 0.$$

In particular, for an alternating knot with g(K) = 2,

$$2[\Delta_{K}]_{0} \leq [\Delta_{K}]_{1} \text{ if } \sigma(K) = 0,$$

$$2[\Delta_{K}]_{0} + 1 \leq [\Delta_{K}]_{1} \text{ if } |\sigma(K)| = 2,$$

$$2[\Delta_{K}]_{0} - 1 \leq [\Delta_{K}]_{1} \text{ if } |\sigma(K)| = 4.$$

<u>Remark</u> For \forall knot K, $|\sigma(K)| \leq 2g(K)$.

$\begin{array}{l} \underline{\text{Main Theorem}} \\ \hline \text{Let } K \text{ be an alternating knot of genus 2.} \\ \hline \text{Then the following inequalities hold } ([\Delta]_0 \geq 1): \\ 3[\Delta_K]_0 - 1 \leq [\Delta_K]_1 \leq 6[\Delta_K]_0 + 1 \text{ if } \sigma(K) = 0, \\ 2[\Delta_K]_0 + 1 \leq [\Delta_K]_1 \leq 6[\Delta_K]_0 - 1 \text{ if } |\sigma(K)| = 2, \\ 2[\Delta_K]_0 - 1 \leq [\Delta_K]_1 \leq 4[\Delta_K]_0 - 2 \text{ if } |\sigma(K)| = 4. \end{array}$

Moreover, any other linear inequality on $[\Delta]_0$ and $[\Delta]_1$ for all alternating knots of genus 2 is a consequence of our inequalities. (Completeness) Main Theorem vs

Main Theorem vs

Main Theorem vs

Main Theorem vs ($\sigma = 0$)

Main Theorem vs ($|\sigma| = 2$)

Main Theorem vs ($|\sigma| = 4$)

 $\S2$. Proof of Main Theorem

Generators for genus 2 knots

Definition $(\overline{t'_{\pm 2}} \text{ move})$

 $\S2$. Proof of Main Theorem

Generators for genus 2 knots

Definition $(\overline{t'_{\pm 2}} \text{ move})$

$$\int \frac{\overline{t_2}}{\overline{t_2}} \int \int \frac{\overline{t_2}}{\overline{t_2}} \int \int \frac{\overline{t_2}}{\overline{t_2}} \int \int \frac{\overline{t_2}}{\overline{t_2}} \int \int \frac{\overline{t_2}}{\overline{t_2}} \int \frac{\overline{t_2}}{\overline{t_$$

Lemma 2.1. ['05 A. Stoimenow]

{reduced alternating knot diagrams of genus 2} $/\overline{t'_{\pm 2}}$ move, mirror image, flype

 $=\{5_{1}, 6_{2}, 6_{3}, 7_{5}, 7_{6}, 7_{7}, 8_{12}, 8_{14}, 8_{15}, 9_{23}, 9_{25}, 9_{38}, 9_{39}, 9_{41}, 10_{58}, \\10_{97}, 10_{101}, 10_{120}, 11_{123}, 11_{148}, 11_{329}, 12_{1097}, 12_{1202}, \\13_{4233}, 3_{1}\#3_{1}, 3_{1}\#4_{1}, 3_{1}\#3_{1}^{*}, 4_{1}\#4_{1}\} =: G_{2}$

We name crossings of the diagrams in G_2 as follows:

Notation

D: a diagram, c_1, \ldots, c_m : crossings of D
Notation

D: a diagram, c_1, \ldots, c_m : crossings of D $D(c_1^{k_1}, \ldots, c_m^{k_m})$: the diagram obtained by applying k_i -times $\overline{t'_2}$ moves at c_i for $i = 1, 2, \ldots, m$

Notation

D: a diagram, c_1, \ldots, c_m : crossings of D $D(c_1^{k_1}, \ldots, c_m^{k_m})$: the diagram obtained by applying k_i -times $\overline{t'_2}$ moves at c_i for $i = 1, 2, \ldots, m$

 $D/c_1 \cdots c_m$: the diagram obtained by smoothing c_1, \ldots, c_m

Main Theorem

Let K be an alternating knot of genus 2.

Then the following inequalities hold $([\Delta]_0 \ge 1)$:

$$\begin{aligned} 3[\Delta_K]_0 - 1 &\leq [\Delta_K]_1 \leq 6[\Delta_K]_0 + 1 \text{ if } \sigma(K) = 0, \\ 2[\Delta_K]_0 + 1 \leq [\Delta_K]_1 \leq 6[\Delta_K]_0 - 1 \text{ if } |\sigma(K)| = 2, \\ 2[\Delta_K]_0 - 1 \leq [\Delta_K]_1 \leq 4[\Delta_K]_0 - 2 \text{ if } |\sigma(K)| = 4. \end{aligned}$$

Moreover, any other linear inequality on $[\Delta]_0$ and $[\Delta]_1$ for all alternating knots of genus 2 is a consequence of our inequalities. (Completeness)

$$\begin{array}{l} \label{eq:main_series} \hline \textbf{Main_Theorem} \\ \mbox{Let K be an alternating knot of genus 2.} \\ \mbox{Then the following inequalities hold } ([\Delta]_0 \geq 1): \\ \mbox{} & 3[\Delta_K]_0 - 1 \leq [\Delta_K]_1 \leq 6[\Delta_K]_0 + 1 \quad \mbox{if } \sigma(K) = 0, \\ & 2[\Delta_K]_0 + 1 \leq [\Delta_K]_1 \leq 6[\Delta_K]_0 - 1 \quad \mbox{if } |\sigma(K)| = 2, \\ & 2[\Delta_K]_0 - 1 \leq [\Delta_K]_1 \leq 4[\Delta_K]_0 - 2 \quad \mbox{if } |\sigma(K)| = 4. \\ \mbox{Moreover, any other linear inequality on } [\Delta]_0 \mbox{ and } [\Delta]_1 \\ \mbox{for all alternating knots of genus 2 is a consequence} \\ & of our inequalities. (Completeness) \\ \end{array}$$

$$\begin{array}{c} \mbox{Main Theorem} \\ \label{eq:main_star} \end{tabular} \label{eq:main_star} \end{tabular} \$$

Proposition 2.2.

D: an alternating diagram,

c: a crossing of D. Then

 $\sigma(D(c)) = \sigma(D).$

Proposition 2.2.

D: an alternating diagram,

c: a crossing of D. Then

 $\sigma(D(c)) = \sigma(D).$

Lemma 2.3. ['05, E. S. Lee]

D: a reduced alternating diagram.

 $p(D) = #\{\text{positive crossings of } D\}$

 $o(D) = \#\{\text{circles obtained by splicing all crossings as}$

Then

$$\sigma(D) = o(D) - p(D) - 1.$$

Proof of Proposition 2.2.

• c is positive.

$$\sigma(D(c)) = o(D(c)) - p(D(c)) - 1$$

Proof of Proposition 2.2.

• c is positive.

$$\sigma (D(c)) = o (D(c)) - p (D(c)) - 1$$

= (o(D) + 2) - (p(D) + 2) - 1
= o(D) - p(D) - 1
= $\sigma(D).$

Proof of Proposition 2.2.

• c is positive. (c: negative \Rightarrow take the mirror image)

$$\sigma (D(c)) = o (D(c)) - p (D(c)) - 1$$

= (o(D) + 2) - (p(D) + 2) - 1
= o(D) - p(D) - 1
= $\sigma(D).$

Method for calculating $\Delta(-t)$ of an alternating link

D : an alternating diagram

Step 1 : Constructing an oriented graph with a weight map from the alternating diagram D.

- Orientation : terminal points = undercrossings.
- Weight : the weight of the edges which are on the left (resp. right) of the crossings = 1 (resp. t).

Method for calculating $\Delta(-t)$ of an alternating link

\boldsymbol{D} : an alternating diagram

Step 1 : Constructing an oriented graph with a weight map from the alternating diagram D.

- Orientation : terminal points = undercrossings.
- Weight : the weight of the edges which are on the left (resp. right) of the crossings = 1 (resp. t).

Method for calculating $\Delta(-t)$ of an alternating link

\boldsymbol{D} : an alternating diagram

Step 1 : Constructing an oriented graph with a weight map from the alternating diagram D.

- Orientation : terminal points = undercrossings.
- Weight : the weight of the edges which are on the left (resp. right) of the crossings = 1 (resp. t).

Step 2 : Fixing a root vertex c_0 and enumerating the maximal rooted trees with the root vertex c_0 .

Step 2 : Fixing a root vertex c_0 and enumerating the maximal rooted trees with the root vertex c_0 .

Step 3 : Summing up the weights of the trees. Here the weight of a tree is multiplication of all weights of the edges in the tree. $1 + 3t + t^2 = \Delta_{4_1}$. Step 2 : Fixing a root vertex c_0 and enumerating the maximal rooted trees with the root vertex c_0 .

Step 3 : Summing up the weights of the trees. Here the weight of a tree is multiplication of all weights of the edges in the tree. $1 + 3t + t^2 = \Delta_{4_1}$. (ambiguity of choices of c_0) "=" (ambiguity of $\times t^l$).

$$c: a crossing of an alternating diagram D$$
$$\Rightarrow \Delta_{D(c)} = \Delta_D + (1+t)\Delta_{D/c}$$

$$c: a crossing of an alternating diagram D$$
$$\Rightarrow \Delta_{D(c)} = \Delta_D + (1+t)\Delta_{D/c}$$

c: a crossing of an alternating diagram D $\Rightarrow \Delta_{D(c)} = \Delta_D + (1+t)\Delta_{D/c}$

Fact

c : a crossing of a reduced alternating diagram \boldsymbol{D}

$$\Rightarrow \deg \Delta_{D/c} = \deg \Delta_D - 1$$

Lemma 2.5.

$$\begin{split} D \in G_2, \\ c_1, \dots, c_m: \text{ crossings of } D, \\ D' &= D(c_1^{k_1}, c_2^{k_2}, \dots, c_m^{k_m}), \ (k_1, \dots, k_m \in \mathbb{Z}_{\geq 0}). \text{ Then} \\ \Delta_{D'} &= \Delta_D + \sum_{1 \leq i \leq m} k_i (1+t) \Delta_{D/c_i} \\ &+ \sum_{1 \leq i < j \leq m} k_i k_j (1+t)^2 \Delta_{D/c_i c_j} \\ &+ \sum_{1 \leq i < j < l \leq m} k_i k_j k_l (1+t)^3 \Delta_{D/c_i c_j c_l} \\ &+ \sum_{1 \leq i < j < l \leq m} k_i k_j k_l k_p (1+t)^4 \Delta_{D/c_i c_j c_l c_p}. \end{split}$$

Lemma 2.5.

$$\begin{split} D \in G_{2}, \\ c_{1}, \dots, c_{m}: \mbox{ crossings of } D, \\ D' &= D(c_{1}^{k_{1}}, c_{2}^{k_{2}}, \dots, c_{m}^{k_{m}}), \ (k_{1}, \dots, k_{m} \in \mathbb{Z}_{\geq 0}). \ \mbox{ Then} \\ \Delta_{D'} &= \Delta_{D} + \sum_{1 \leq i \leq m} k_{i}(1+t)\Delta_{D/c_{i}} \\ &+ \sum_{1 \leq i < j \leq m} k_{i}k_{j}(1+t)^{2}\Delta_{D/c_{i}c_{j}} \\ &+ \sum_{1 \leq i < j < l \leq m} k_{i}k_{j}k_{l}(1+t)^{3}\Delta_{D/c_{i}c_{j}c_{l}} \\ &+ \sum_{1 \leq i < j < l \leq m} k_{i}k_{j}k_{l}k_{p}(1+t)^{4}\Delta_{D/c_{i}c_{j}c_{l}c_{p}}. \end{split}$$

Remark

$$[(1+t)^{l} \Delta_{D/c_{i_{1}}\cdots c_{i_{l}}}]_{0} = [\Delta_{D/c_{i_{1}}\cdots c_{i_{l}}}]_{0},$$

$$[(1+t)^{l} \Delta_{D/c_{i_{1}}\cdots c_{i_{l}}}]_{1} = [\Delta_{D/c_{i_{1}}\cdots c_{i_{l}}}]_{1} + l[\Delta_{D/c_{i_{1}}\cdots c_{i_{l}}}]_{0}.$$

To estimate the ratios

$$\frac{[(1+t)^{l} \Delta_{D/c_{i_{1}} \cdots c_{i_{l}}}]_{1}}{[(1+t)^{l} \Delta_{D/c_{i_{1}} \cdots c_{i_{l}}}]_{0}} = \frac{[\Delta_{D/c_{i_{1}} \cdots c_{i_{l}}}]_{1}}{[\Delta_{D/c_{i_{1}} \cdots c_{i_{l}}}]_{0}} + l,$$

we define m(D) and M(D) by

$$m(D) = \min\left\{\frac{[\Delta_{D/c_i}]_1}{[\Delta_{D/c_i}]_0} + 1, \frac{[\Delta_{D/c_ic_j}]_1}{[\Delta_{D/c_ic_j}]_0} + 2, \frac{[\Delta_{D/c_ic_jc_l}]_1}{[\Delta_{D/c_ic_jc_l}]_0} + 3, 4\right\},\$$

$$M(D) = \max\left\{\frac{[\Delta_{D/c_i}]_1}{[\Delta_{D/c_i}]_0} + 1, \frac{[\Delta_{D/c_ic_j}]_1}{[\Delta_{D/c_ic_j}]_0} + 2, \frac{[\Delta_{D/c_ic_jc_l}]_1}{[\Delta_{D/c_ic_jc_l}]_0} + 3, 4\right\}$$

To estimate the ratios

$$\frac{[(1+t)^{l} \Delta_{D/c_{i_{1}} \cdots c_{i_{l}}}]_{1}}{[(1+t)^{l} \Delta_{D/c_{i_{1}} \cdots c_{i_{l}}}]_{0}} = \frac{[\Delta_{D/c_{i_{1}} \cdots c_{i_{l}}}]_{1}}{[\Delta_{D/c_{i_{1}} \cdots c_{i_{l}}}]_{0}} + l,$$

we define m(D) and M(D) by

$$m(D) = \min\left\{\frac{[\Delta_{D/c_i}]_1}{[\Delta_{D/c_i}]_0} + 1, \frac{[\Delta_{D/c_ic_j}]_1}{[\Delta_{D/c_ic_j}]_0} + 2, \frac{[\Delta_{D/c_ic_jc_l}]_1}{[\Delta_{D/c_ic_jc_l}]_0} + 3, 4\right\},\$$

$$M(D) = \max\left\{\frac{[\Delta_{D/c_i}]_1}{[\Delta_{D/c_i}]_0} + 1, \frac{[\Delta_{D/c_ic_j}]_1}{[\Delta_{D/c_ic_j}]_0} + 2, \frac{[\Delta_{D/c_ic_jc_l}]_1}{[\Delta_{D/c_ic_jc_l}]_0} + 3, 4\right\}$$

Set $\widehat{\Delta}_{D'} = \Delta_{D'} - \Delta_D$. Then we obtain

$$m(D) \leq \frac{[\widehat{\Delta}_{D'}]_1}{[\widehat{\Delta}_{D'}]_0} \leq M(D).$$

Lemma 2.5.

$$\begin{split} D \in G_2, \\ c_1, \dots, c_m: \text{ crossings of } D, \\ D' &= D(c_1^{k_1}, c_2^{k_2}, \dots, c_m^{k_m}), \ (k_1, \dots, k_m \in \mathbb{Z}_{\geq 0}). \end{split} \text{ Then} \\ \Delta_{D'} &= \Delta_D + \sum_{1 \leq i \leq m} k_i (1+t) \Delta_{D/c_i} \\ &+ \sum_{1 \leq i < j \leq m} k_i k_j (1+t)^2 \Delta_{D/c_i c_j} \\ &+ \sum_{1 \leq i < j < l \leq m} k_i k_j k_l (1+t)^3 \Delta_{D/c_i c_j c_l} \\ &+ \sum_{1 \leq i < j < l \leq m} k_i k_j k_l k_p (1+t)^4 \Delta_{D/c_i c_j c_l c_p}. \end{split}$$

Remark

$$\begin{split} &[(1+t)^{l} \Delta_{D/c_{i_{1}}\cdots c_{i_{l}}}]_{0} = [\Delta_{D/c_{i_{1}}\cdots c_{i_{l}}}]_{0},\\ &[(1+t)^{l} \Delta_{D/c_{i_{1}}\cdots c_{i_{l}}}]_{1} = [\Delta_{D/c_{i_{1}}\cdots c_{i_{l}}}]_{1} + l[\Delta_{D/c_{i_{1}}\cdots c_{i_{l}}}]_{0}. \end{split}$$

To estimate the ratios

$$\frac{[(1+t)^{l} \Delta_{D/c_{i_{1}} \cdots c_{i_{l}}}]_{1}}{[(1+t)^{l} \Delta_{D/c_{i_{1}} \cdots c_{i_{l}}}]_{0}} = \frac{[\Delta_{D/c_{i_{1}} \cdots c_{i_{l}}}]_{1}}{[\Delta_{D/c_{i_{1}} \cdots c_{i_{l}}}]_{0}} + l,$$

we define m(D) and M(D) by

$$m(D) = \min\left\{\frac{[\Delta_{D/c_i}]_1}{[\Delta_{D/c_i}]_0} + 1, \frac{[\Delta_{D/c_ic_j}]_1}{[\Delta_{D/c_ic_j}]_0} + 2, \frac{[\Delta_{D/c_ic_jc_l}]_1}{[\Delta_{D/c_ic_jc_l}]_0} + 3, 4\right\},\$$
$$M(D) = \max\left\{\frac{[\Delta_{D/c_i}]_1}{[\Delta_{D/c_i}]_0} + 1, \frac{[\Delta_{D/c_ic_j}]_1}{[\Delta_{D/c_ic_j}]_0} + 2, \frac{[\Delta_{D/c_ic_jc_l}]_1}{[\Delta_{D/c_ic_jc_l}]_0} + 3, 4\right\}$$

Set $\widehat{\Delta}_{D'} = \Delta_{D'} - \Delta_D$. Then we obtain

$$m(D) \leq \frac{[\widehat{\Delta}_{D'}]_1}{[\widehat{\Delta}_{D'}]_0} \leq M(D).$$

 $m(D) \leq \frac{[\widehat{\Delta}_{D'}]_1}{[\widehat{\Delta}_{D'}]_0} \leq M(D)$ $\Leftrightarrow m(D)[\widehat{\Delta}_{D'}]_0 \le [\widehat{\Delta}_{D'}]_1 \le M(D)[\widehat{\Delta}_{D'}]_0$

$\Leftrightarrow m(D)[\widehat{\Delta}_{D'}]_0 \leq [\widehat{\Delta}_{D'}]_1 \leq M(D)[\widehat{\Delta}_{D'}]_0$ $\Leftrightarrow m(D)([\Delta_{D'}]_0 - [\Delta_D]_0) \leq [\Delta_{D'}]_1 - [\Delta_D]_1$ $\leq M(D)([\Delta_{D'}]_0 - [\Delta_D]_0).$

 $\Leftrightarrow m(D)[\widehat{\Delta}_{D'}]_0 \leq [\widehat{\Delta}_{D'}]_1 \leq M(D)[\widehat{\Delta}_{D'}]_0$ $\Leftrightarrow m(D)([\Delta_{D'}]_0 - [\Delta_D]_0) \leq [\Delta_{D'}]_1 - [\Delta_D]_1$ $\leq M(D)([\Delta_{D'}]_0 - [\Delta_D]_0).$ Set $r(D) = [\Delta_D]_1 - m(D)[\Delta_D]_0$ and $R(D) = [\Delta_D]_1 - M(D)[\Delta_D]_0.$ Then we obtain $m(D)[\Delta_{D'}]_0 + r(D) \leq [\Delta_{D'}]_1 \leq M(D)[\Delta_{D'}]_0 + R(D).$

By calculating m(D), M(D), r(D), and R(D) of the 27 generators, we obtain 27 inequalities.

By calculating m(D), M(D), r(D), and R(D) of the 27 generators, we obtain 27 inequalities. By taking the convex hull for each σ , we obtain Main Theorem.

The inequalities which decide the boundary of the convex hull are the following red ones.

$\underline{\mathbf{o}} = 0$									
<i>G</i> ₂	m	M	r	R	$([\Delta]_0, [\Delta]_1, [\Delta]_2)$				
63	3	5	0	-2	(1,3,5)				
77	3	6	2	-1	(1, 5, 9)				
812	4	6	3	1	(1, 7, 13)				
9 ₄₁	3	$\frac{14}{3}$	3	-2	(3, 12, 19)				
10 ₅₈	$\frac{10}{3}$	$\frac{14}{3}$	6	2	(3, 16, 27)				
121202	4	$\frac{13}{3}$	6	3	(9, 42, 67)				
$3_1 \# 3_1^*$	3	4	-1	-2	(1,2,3)				

 $- \cap$

<i>G</i> ₂	m	M	r	R	$([\Delta]_0, [\Delta]_1, [\Delta]_2)$				
62	2	5	1	-2	(1,3,3)				
76	3	6	2	-1	(1, 5, 7)				
814	3	5	2	-2	(2, 8, 11)				
9 ₂₅	$\frac{10}{3}$	$\frac{14}{3}$	2	-2	(3, 12, 17)				
9 ₃₉	$\frac{10}{3}$	$\frac{11}{2}$	4	- <u>5</u> 2	(3,14,21)				
1097	$\frac{18}{5}$	$\frac{14}{3}$	4	$-\frac{4}{3}$	(5,22,33)				
111148	$\frac{25}{7}$	$\frac{23}{5}$	4	$-\frac{16}{5}$	(7, 29, 43)				
$3_1 \# 4_1$	3	5	-1	1	(1, 4, 5)				

 $|\sigma| = 2$

$ \sigma = 4$									
<i>G</i> ₂	$\mid m$	M	r	R	$([\Delta]_0, [\Delta]_1, [\Delta]_2)$				
51	2	4	-1	-3	(1, 1, 1)				
7 ₅	$\frac{5}{2}$	4	-1	-4	(2,4,5)				
8 ₁₅	3	4	-1	-4	(3,8,11)				
9 ₂₃	$\frac{13}{4}$	4	-2	-5	(4, 11, 15)				
9 ₃₈	3	4	-1	-6	(5, 14, 19)				
10 ₁₀₁	$\frac{13}{4}$	4	$-\frac{7}{4}$	-7	(7, 21, 29)				
10 ₁₂₀	$\frac{25}{7}$	4	$-\frac{18}{7}$	-6	(8, 26, 37)				
11 ₁₂₃	$\frac{24}{7}$	4	$-\frac{13}{7}$	-7	(9,29,41)				
11 ₃₂₉	$\frac{7}{2}$	4	$-\frac{5}{2}$	-8	(11, 36, 51)				
121097	$\frac{7}{2}$	4	-2	-10	(16, 54, 77)				
13 ₄₂₃₃	$\frac{11}{3}$	4	-3	-10	(21, 74, 107)				
$3_1 \# 3_1$	3	4	-1	-2	(1,2,3)				

Main Theorem

Let K be an alternating knot of genus 2.

Then the following inequalities hold $([\Delta]_0 \ge 1)$:

$$\begin{aligned} 3[\Delta_K]_0 - 1 &\leq [\Delta_K]_1 \leq 6[\Delta_K]_0 + 1 \text{ if } \sigma(K) = 0, \\ 2[\Delta_K]_0 + 1 \leq [\Delta_K]_1 \leq 6[\Delta_K]_0 - 1 \text{ if } |\sigma(K)| = 2, \\ 2[\Delta_K]_0 - 1 \leq [\Delta_K]_1 \leq 4[\Delta_K]_0 - 2 \text{ if } |\sigma(K)| = 4. \end{aligned}$$

Moreover, any other linear inequality on $[\Delta]_0$ and $[\Delta]_1$ for all alternating knots of genus 2 is a consequence of our inequalities. (**Completeness**)
Proof of the completeness for $\sigma = 0$ (upper bound) Let $D = 8_{12}$. Then $[\widehat{\Delta}_{D(c_1^n)}]_0 = n$, $[\widehat{\Delta}_{D(c_1^n)}]_1 = 6n$, we have $\frac{[\widehat{\Delta}_{D(c_1^n)}]_1}{[\widehat{\Delta}_{D(c_1^n)}]_0} = 6.$

§3. Characterization of the alternating knots of genus two with $[\Delta]_0 \leq 3$

Corollary 3.1.

D: a reduced alternating diagram

 $\Rightarrow [\Delta_{D(c)}]_0 > [\Delta_D]_0.$

§3. Characterization of the alternating knots of genus two with $[\Delta]_0 \leq 3$

Corollary 3.1.

D: a reduced alternating diagram

 $\Rightarrow [\Delta_{D(c)}]_0 > [\Delta_D]_0.$

Lemma 3.2. ['63 K. Murasugi]

Let L be an alternating link. L is fibered $\Leftrightarrow [\Delta]_0 = 1$.

§3. Characterization of the alternating knots of genus two with $[\Delta]_0 \leq 3$

Corollary 3.1.

D: a reduced alternating diagram

 $\Rightarrow [\Delta_{D(c)}]_0 > [\Delta_D]_0.$

Lemma 3.2. ['63 K. Murasugi]

Let L be an alternating link. L is fibered $\Leftrightarrow [\Delta]_0 = 1$.

Fact

The fibered knots of genus one are just 3_1 , 3_1^* and 4_1 .

The alternating fibered knots of genus 2 ([Δ]₀ = 1)

The knots in G_2 with $[\Delta]_0 = 1$ are just 5_1 , 6_2 , 6_3 , 7_6 , 7_7 , 8_{12} , $3_1 \# 3_1$, $3_1 \# 3_1^*$, $3_1 \# 4_1$, and $4_1 \# 4_1$ up to *.

The alternating fibered knots of genus 2 ([Δ]₀ = 1)

The knots in G_2 with $[\Delta]_0 = 1$ are just 5_1 , 6_2 , 6_3 , 7_6 , 7_7 , 8_{12} , $3_1 \# 3_1$, $3_1 \# 3_1^*$, $3_1 \# 4_1$, and $4_1 \# 4_1$ up to *.

- <u>Corollary 3.1.</u> -

D: a reduced alternating diagram

 $\Rightarrow [\Delta_{D(c)}]_0 > [\Delta_D]_0.$

Theorem 3.4.

The alternating fibered knots of genus 2 are just the following knots: 5_1 , 5_1^* , 6_2 , 6_2^* , 6_3 , 7_6 , 7_6^* , 7_7 , 7_7^* , 8_{12} , $3_1\#3_1$, $3_1\#3_1^*$, $3_1^*\#3_1^*$, $3_1\#4_1$, $3_1^*\#4_1$, and $4_1\#4_1$.

The alternating fibered knots of genus 2 ([Δ]₀ = 1)

The knots in G_2 with $[\Delta]_0 = 1$ are just 5_1 , 6_2 , 6_3 , 7_6 , 7_7 , 8_{12} , $3_1 \# 3_1$, $3_1 \# 3_1^*$, $3_1 \# 4_1$, and $4_1 \# 4_1$ up to *.

- <u>Corollary 3.1.</u> -

D: a reduced alternating diagram

 $\Rightarrow [\Delta_{D(c)}]_0 > [\Delta_D]_0.$

Theorem 3.4.

The alternating fibered knots of genus 2 are just the following knots: 5_1 , 5_1^* , 6_2 , 6_2^* , 6_3 , 7_6 , 7_6^* , 7_7 , 7_7^* , 8_{12} , $3_1\#3_1$, $3_1\#3_1^*$, $3_1^*\#3_1^*$, $3_1\#4_1$, $3_1^*\#4_1$, and $4_1\#4_1$.

We denote the set of these knot diagrams by AF_2 .

The Alexander polynomials which have the trapezoidal property

$$1 - n_1 t + (2n_1 - 1)t^2 - n_1 t^3 + t^4 \text{ for } n_1 = 4 \text{ or } n_1 \ge 8,$$

$$1 - n_2 t + (2n_2 - 3)t^2 - n_2 t^3 + t^4 \text{ for } n_2 \ge 6$$

are never realized by an alternating knot.

The Alexander polynomials which have the trapezoidal property

$$1 - n_1 t + (2n_1 - 1)t^2 - n_1 t^3 + t^4 \text{ for } n_1 = 4 \text{ or } n_1 \ge 8,$$

$$1 - n_2 t + (2n_2 - 3)t^2 - n_2 t^3 + t^4 \text{ for } n_2 \ge 6$$

are never realized by an alternating knot.

<u>Remark</u>

$$\Delta_K(t) = 1 - 4t + 7t^2 - 4t^3 + t^4$$

The knot with this Δ satisfies the inequality in Main Theorem.

However, this polynomial is never realized by an alternating knot.

The Alexander polynomials which have the trapezoidal property

$$1 - n_1 t + (2n_1 - 1)t^2 - n_1 t^3 + t^4 \text{ for } n_1 = 4 \text{ or } n_1 \ge 8,$$

$$1 - n_2 t + (2n_2 - 3)t^2 - n_2 t^3 + t^4 \text{ for } n_2 \ge 6$$

are never realized by an alternating knot.

<u>Remark</u>

$$\Delta_K(t) = 1 - 4t + 7t^2 - 4t^3 + t^4$$

The knot with this Δ satisfies the inequality in Main Theorem.

However, this polynomial is never realized by an alternating knot.

Incidentally,
$$\Delta_{9_{44}}(t) = 1 - 4t + 7t^2 - 4t^3 + t^4$$
.

K: a knot with $\Delta_K(t) = 1 - 4t + 7t^2 - 4t^3 + t^4$,

K: a knot with $\Delta_K(t) = 1 - 4t + 7t^2 - 4t^3 + t^4$, For $\forall K$, $|\sigma(K)| \leq \# \{ \alpha \in \mathbb{C} \setminus \mathbb{R} | \Delta_K(\alpha) = 0, |\alpha| = 1 \}$. K: a knot with $\Delta_K(t) = 1 - 4t + 7t^2 - 4t^3 + t^4$, For $\forall K$, $|\sigma(K)| \leq \# \{ \alpha \in \mathbb{C} \setminus \mathbb{R} | \ \Delta_K(\alpha) = 0, |\alpha| = 1 \}$. $\alpha_1, \alpha_2, \overline{\alpha_1}, \overline{\alpha_2} \in \mathbb{C}$: zeros of $\Delta_K(t) \Rightarrow |\alpha_1|, |\alpha_2| \neq 1$. *K*: a knot with $\Delta_K(t) = 1 - 4t + 7t^2 - 4t^3 + t^4$, For $\forall K$, $|\sigma(K)| \leq \# \{ \alpha \in \mathbb{C} \setminus \mathbb{R} | \ \Delta_K(\alpha) = 0, |\alpha| = 1 \}$. $\alpha_1, \alpha_2, \overline{\alpha_1}, \overline{\alpha_2} \in \mathbb{C}$: zeros of $\Delta_K(t) \Rightarrow |\alpha_1|, |\alpha_2| \neq 1$. $\sigma(K) = 0$. Then The ineq. in Main Thm $\Leftrightarrow 3[\Delta]_0 - 1 \leq [\Delta]_1 \leq 6[\Delta]_0 + 1$.

(Ozsváth-Szabó's ineq. $\Leftrightarrow 2[\Delta]_0 \leq [\Delta]_1$.)

K: a knot with $\Delta_K(t) = 1 - 4t + 7t^2 - 4t^3 + t^4$, For $\forall K$, $|\sigma(K)| \leq \# \{ \alpha \in \mathbb{C} \setminus \mathbb{R} | \ \Delta_K(\alpha) = 0, |\alpha| = 1 \}$. $\alpha_1, \alpha_2, \overline{\alpha_1}, \overline{\alpha_2} \in \mathbb{C}$: zeros of $\Delta_K(t) \Rightarrow |\alpha_1|, |\alpha_2| \neq 1$. $\sigma(K) = 0$. Then The ineq. in Main Thm $\Leftrightarrow 3[\Delta]_0 - 1 \leq [\Delta]_1 \leq 6[\Delta]_0 + 1$. (Ozsváth-Szabó's ineq. $\Leftrightarrow 2[\Delta]_0 \leq [\Delta]_1$.)

The knot with $\Delta_K(t) = 1 - 4t + 7t^2 - 4t^3 + t^4$ satisfies the inequality in Main Theorem. (Trapezoidal property and Ozsváth-Szabó's inequality are also satisfied.) However, a knot with this Δ is non-alternating knot.

The knots in G_2 with $[\Delta]_0 = 2$ are just 7₅, 8₁₄ up to *.

The knots in G_2 with $[\Delta]_0 = 2$ are just 7₅, 8₁₄ up to *.

Other alternating knots of genus 2 with $[\Delta]_0 = 2$ are obtained by applying once $\overline{t'_2}$ move at a crossing of a diagram in AF_2 :

The knots in G_2 with $[\Delta]_0 = 2$ are just 7_5 , 8_{14} up to *.

Other alternating knots of genus 2 with $[\Delta]_0 = 2$ are obtained by applying once $\overline{t'_2}$ move at a crossing of a diagram in AF_2 : $5_1(c_1) = 7_3$, $6_2(c_1) = 8_{11}$, $6_2(c_2) = 8_4$, $6_2(c_3) = 8_6$, $6_3(c_1) = 8_{13}$, $6_3(c_2) = 8_8$, $6_3(c_3) = 8_8$, $6_3(c_4) = 8_{13}$, $7_6(c_1) = 9_8$, $7_6(c_2) = 9_{21}$, $7_6(c_3) = 9_{15}$, $7_6(c_4) = 9_{12}$, $7_7(c_1) = 9_{14}$, $7_7(c_2) = 9_{14}$, $7_7(c_3) = 9_{19}$, $7_7(c_4) = 9_{37}$, $7_7(c_5) = 9_{19}$, $8_{12}(c_1) = 10_{13}$, $8_{12}(c_2) =$ 10_{35} , $8_{12}(c_3) = 10_{13}$, $8_{12}(c_4) = 10_{35}$.

The composite alternating knots of genus 2 with $[\Delta]_0 = 2$ are just $3_1 \# 5_2$, $3_1 \# 6_1$, $4_1 \# 5_2$, and $4_1 \# 6_1$ up to * for each factor.

Theorem 3.6. The alternating knots of genus 2 with $[\Delta]_0 = 2$ are just the following knots up to *: 7₃, 7₅, 8₄, 8₆, 8₈, 8₁₁, 8₁₃, 8₁₄, 9₈, 9₁₂, 9₁₄, 9₁₅, 9₁₉, 9₂₁, 9₃₇, 10₁₃, 10₃₅, 3₁#5₂, 3₁*#5₂, 3₁#6₁, 3₁*#6₁, 4₁#5₂, and 4₁#6₁.

By the same way (i.e. by applying twice $\overline{t'_2}$ moves on AF_2), we have the following theorem.

Theorem 3.7. The alternating prime knots of genus 2 with $[\Delta]_0 = 3$ are just the following knots up to *: 9₄, 9₇, 10₄, 10₇, 10₁₀, 10₂₀, 10₃₄, 10₃₆, 11₁₃, 11₅₉, 11₆₅, 11₁₉₅, 11₂₁₁, 11₂₁₄, 11₂₃₀, 12₁₉₇, 12₆₉₁, 3₁#7₂, 3₁^{*}#7₂, 3₁#8₁, 3₁^{*}#8₁, 4₁#7₂, and 4₁#8₁.

The Alexander polynomials which have the trapezoidal property

$$2 - n_1 t + (2n_1 - 3)t^2 - n_1 t^3 + 2t^4$$
 for $n_1 = 8$ or $n_1 \ge 14$,

 $2 - n_2 t + (2n_2 - 5)t^2 - n_2 t^3 + 2t^4$ for $n_2 \ge 12$

are never realized by an alternating knot.

Corollary 3.9.

The Alexander polynomials which have the trapezoidal property

$$3 - n_1 t + (2n_1 - 5)t^2 - n_1 t^3 + 3t^4$$
 for $n_1 = 6, 10, 14, 18$
or $n_1 \ge 20,$

 $3-n_2t+(2n_2-7)t^2-n_2t^3+3t^4$ for $n_2=8,16$ or $n_2\geq 18$ are never realized by an alternating knot.

$\S4$. Non-alternating knots up to 10 crossings

Fact

 $[\Delta]_0 \leq 3$ holds for any non-alternating prime knot up to 10 crossings (in Rolfsen's table).

There exists non-alternating knots which satisfy our inequality. (e.g. $\Delta(t) = 1 - 4t + 7t^2 - 4t^3 + t^4$.)

$\S4$. Non-alternating knots up to 10 crossings

Fact

 $[\Delta]_0 \leq 3$ holds for any non-alternating prime knot up to 10 crossings (in Rolfsen's table).

There exists non-alternating knots which satisfy our inequality. (e.g. $\Delta(t) = 1 - 4t + 7t^2 - 4t^3 + t^4$.) i.e. we have non-alternating knots whose Δ are similar to those of alternating knots.

$\S4$. Non-alternating knots up to 10 crossings

Fact

 $[\Delta]_0 \leq 3$ holds for any non-alternating prime knot up to 10 crossings (in Rolfsen's table).

There exists non-alternating knots which satisfy our inequality. (e.g. $\Delta(t) = 1 - 4t + 7t^2 - 4t^3 + t^4$.) i.e. we have non-alternating knots whose Δ are similar to those of alternating knots.

We enumerate these non-alternating knots with deg $\Delta =$ 4 up to 10 crossings.

 $[\Delta]_0 = 1$

K	$([\Delta]_0, [\Delta]_1, [\Delta]_2)$	$ \sigma $	alt. knot
820	(1,2,3)	0	3 ₁ #3 ₁
8 ₂₁	(1, 4, 5)	2	$3_1 \# 4_1$
944	(1, 4, 7)	0	₽
945	(1, 6, 9)	2	₽
9 ₄₈	(1, 7, 11)	2	₽
10 ₁₃₂	(1, 1, 1)	0	51
10133	(1, 5, 7)	2	76
10136	(1, 4, 5)	2	$3_1 \# 4_1$
10 ₁₃₇	(1, 6, 11)	0	$4_1 \# 4_1$
10_{140}	(1, 2, 3)	0	$3_1 # 3_1$

 $[\Delta]_0 = 1$

K	$([\Delta]_0, \ [\Delta]_1, \ [\Delta]_2)$	$ \sigma $	alt. knot
820	(1, 2, 3)	0	$3_1 \# 3_1$
8 ₂₁	(1, 4, 5)	2	$3_1 \# 4_1$
944	(1, 4, 7)	0	₽
9 ₄₅	(1, 6, 9)	2	₽
9 ₄₈	(1, 7, 11)	2	₽
10_{132}	(1, 1, 1)	0	51
10_{133}	(1, 5, 7)	2	76
10_{136}	(1, 4, 5)	2	$3_1 \# 4_1$
10 ₁₃₇	(1, 6, 11)	0	$4_1 \# 4_1$
10_{140}	(1, 2, 3)	0	$3_1 # 3_1$

 $1 - n_1 t + (2n_1 - 1)t^2 - n_1 t^3 + t^4 \text{ for } n_1 = 4 \text{ or } n_1 \ge 8,$ $1 - n_2 t + (2n_2 - 3)t^2 - n_2 t^3 + t^4 \text{ for } n_2 \ge 6$

are never realized by an alternating knot.

$[\Delta]_0 = 2$				
K	$([\Delta]_0, [\Delta]_1, [\Delta]_2)$	$ \sigma $	alt. knot	
10129	(2,6,9)	0	88	
10 ₁₃₀	(2,4,5)	0	7 ₅	
10 ₁₃₁	(2, 8, 11)	2	814,98	
10146	(2, 8, 13)	0	₽	
10_{147}	(2,7,9)	2	811	
10166	(2, 10, 15)	2	9 ₁₅	

 $[\Delta]_0 = 3$

K	$([\Delta]_0, [\Delta]_1, [\Delta]_2)$	$ \sigma $	alt. knot
949	(3,6,7)	4	₽
10 ₁₃₅	(3,9,13)	0	10 ₃₄
10_{144}	(3, 10, 13)	2	3 ₁ #8 ₁
10 ₁₆₃	(3, 9, 11)	2	10 ₂₀
10_{165}	(3, 11, 17)	0	1010

K: a knot represented by a closure of a tangle T. **Definition** ['57 S. Kinoshita-H. Terasaka] The *symmetric unions* of K, denoted by K_n , are the knots represented by the following diagrams.

Proposition 4.1. $\Delta_{K_n} = \Delta_K^2$ for $\forall n \in \mathbb{Z}$.

• $K = 3_1 \Rightarrow K_0 = 3_1 \# 3_1^*$, $K_2 = 8_{20}$, $K_4 = 10_{140}$.

- $K = 3_1 \Rightarrow K_0 = 3_1 \# 3_1^*$, $K_2 = 8_{20}$, $K_4 = 10_{140}$.
- $K = 4_1 \Rightarrow K_0 = 4_1 \# 4_1$, $K_2 = 10_{137}$.

- $K = 3_1 \Rightarrow K_0 = 3_1 \# 3_1^*$, $K_2 = 8_{20}$, $K_4 = 10_{140}$.
- $K = 4_1 \Rightarrow K_0 = 4_1 \# 4_1$, $K_2 = 10_{137}$.

$[\Delta]_0 = 1$			
K	$([\Delta]_0, [\Delta]_1, [\Delta]_2)$	$ \sigma $	alt. knot
820	(1, 2, 3)	0	3 ₁ #3 ₁
8 ₂₁	(1, 4, 5)	2	$3_1 \# 4_1$
944	(1, 4, 7)	0	₽
9 ₄₅	(1, 6, 9)	2	₽
9 ₄₈	(1, 7, 11)	2	₽
10 ₁₃₂	(1, 1, 1)	0	51
10133	(1, 5, 7)	2	76
10136	(1, 4, 5)	2	$3_1 \# 4_1$
10137	(1, 6, 11)	0	$4_1 \# 4_1$
10140	(1, 2, 3)	0	3 ₁ #3 ₁

$[\Delta]_0 = 2$				
K	$([\Delta]_0, [\Delta]_1, [\Delta]_2)$	$ \sigma $	alt. knot	
10129	(2,6,9)	0	88	
10 ₁₃₀	(2,4,5)	0	7 ₅	
10 ₁₃₁	(2, 8, 11)	2	814,98	
10146	(2, 8, 13)	0	₽	
10147	(2,7,9)	2	8 ₁₁	
10166	(2, 10, 15)	2	9 ₁₅	

 $[\Delta]_0 = 3$

K	$([\Delta]_0, [\Delta]_1, [\Delta]_2)$	$ \sigma $	alt. knot
949	(3,6,7)	4	₽
10135	(3,9,13)	0	10 ₃₄
10_{144}	(3, 10, 13)	2	3 ₁ #8 ₁
10 ₁₆₃	(3, 9, 11)	2	10 ₂₀
10 ₁₆₅	(3, 11, 17)	0	1010

Kanenobu's knot family

T. Kanenobu discovered families of knots, denoted by K(a, b).

 $K(0, -1) = 8_8,$ $K(2, -1) = 10_{129},$ $K(0, 0) = 4_1 \# 4_1,$ $K(2, 0) = 10_{137}.$ T. Kanenobu discovered families of knots, denoted by K(a,b).

 $K(0, -1) = 8_8,$ $K(2, -1) = 10_{129},$ $K(0, 0) = 4_1 \# 4_1,$ $K(2, 0) = 10_{137}.$

Proposition 4.2. ['86 T. Kanenobu]

 $\Delta_{K(a,b)} = \Delta(\varepsilon, \delta) \ (\varepsilon \equiv a, \delta \equiv b \mod 2).$ Here $\Delta(0,0) = (1,6,11), \ \Delta(0,1) = \Delta(1,0) = (2,6,9),$ $\Delta(1,1) = (1,3,5,7).$

$[\Delta]_0 = 1$			
K	$([\Delta]_0, [\Delta]_1, [\Delta]_2)$	$ \sigma $	alt. knot
820	(1,2,3)	0	3 ₁ #3 ₁
8 ₂₁	(1, 4, 5)	2	$3_1 \# 4_1$
944	(1, 4, 7)	0	₽
945	(1, 6, 9)	2	₽
9 ₄₈	(1, 7, 11)	2	₽
10 ₁₃₂	(1, 1, 1)	0	51
10133	(1, 5, 7)	2	76
10136	(1, 4, 5)	2	$3_1 \# 4_1$
10 ₁₃₇	(1, 6, 11)	0	$4_1 \# 4_1$
10_{140}	(1, 2, 3)	0	$3_1 # 3_1$

$[\Delta]_0 = 2$				
K	$([\Delta]_0, [\Delta]_1, [\Delta]_2)$	$ \sigma $	alt. knot	
10129	(2, 6, 9)	0	88	
10130	(2,4,5)	0	7 ₅	
10 ₁₃₁	(2, 8, 11)	2	814,98	
10146	(2, 8, 13)	0	₽	
10147	(2, 7, 9)	2	8 ₁₁	
10166	(2, 10, 15)	2	9 ₁₅	

 $[\Delta]_0 = 3$

K	$([\Delta]_0, [\Delta]_1, [\Delta]_2)$	$ \sigma $	alt. knot
949	(3,6,7)	4	₽
10 ₁₃₅	(3,9,13)	0	10 ₃₄
10_{144}	(3, 10, 13)	2	3 ₁ #8 ₁
10 ₁₆₃	(3, 9, 11)	2	10 ₂₀
10 ₁₆₅	(3, 11, 17)	0	1010