On the Alexander polynomials

 of alternating knots of genus 2
In Dae JONG（Osaka City University）

鄭 仁大（大阪市立大学）2008／1／24
in The 4th East Asian School of Knots and Related Topics；The University of Tokyo

Contents

§1. Introduction

- Some terminologies and known results
- Main Theorem.
§2. Proof of Main Theorem
§3-4. Observations

§1. Introduction

Alternating links

An alternating diagram is a link diagram such that an overcrossing and an undercrossing appear alternately along every component.

§1. Introduction

Alternating links

An alternating diagram is a link diagram such that an overcrossing and an undercrossing appear alternately along every component.

An alternating link is a link with an alternating diagram.

The Alexander polynomial
The Alexander polynomial $\Delta_{L}(t) \in \mathbb{Z}\left[t, t^{-1}\right]$ is an invariant for oriented links up to multiplications of $\pm t^{l}(l \in \mathbb{Z})$.

The Alexander polynomial
The Alexander polynomial $\Delta_{L}(t) \in \mathbb{Z}\left[t, t^{-1}\right]$ is an invariant for oriented links up to multiplications of $\pm t^{l}(l \in \mathbb{Z})$.
Today's normalization
mindeg $\Delta(t)=0$ and $\Delta(0)>0$.
(e.g. $\Delta_{3_{1}}(t)=1-t+t^{2}, \Delta_{4_{1}}(t)=1-3 t+t^{2}, \ldots$)

The Alexander polynomial

The Alexander polynomial $\Delta_{L}(t) \in \mathbb{Z}\left[t, t^{-1}\right]$ is an invariant for oriented links up to multiplications of $\pm t^{l}(l \in \mathbb{Z})$.

Today's normalization

mindeg $\Delta(t)=0$ and $\Delta(0)>0$.
(e.g. $\Delta_{3_{1}}(t)=1-t+t^{2}, \Delta_{4_{1}}(t)=1-3 t+t^{2}, \ldots$)

Characterization of Δ_{K}

- K : a knot $\Rightarrow \Delta_{K}\left(t^{-1}\right) \doteq \Delta_{K}(t)$ and $\Delta_{K}(1)= \pm 1$.
- $f(t) \in \mathbb{Z}\left[t, t^{-1}\right]$ with $f\left(t^{-1}\right) \doteq f(t)$ and $f(1)= \pm 1$
$\Rightarrow \exists$ a knot K such that $\Delta_{K}(t)=f(t)$.

My motivation and known results
Motivation
Characterize $\Delta_{K}(t)$ of an alternating knot K.

Known results

- Crowell-Murasugi's theorem
- Trapezoidal conjecture \& Log-concavity conjecture
- Ozsváth-Szabó’s theorem

The Alexander polynomial of an alternating knot

Notation

- $[f]_{i}$: the coefficient of the i-th term of a polynomial f.

The Alexander polynomial of an alternating knot

Notation

- $[f]_{i}$: the coefficient of the i-th term of a polynomial f.
- For an alternating knot K, we denote $\Delta_{K}(-t)$ by Δ_{K}.

The Alexander polynomial of an alternating knot

Notation

- $[f]_{i}$: the coefficient of the i-th term of a polynomial f.
- For an alternating knot K, we denote $\Delta_{K}(-t)$ by Δ_{K}. Proposition 1.1. ['59 R. H. Crowell, K. Murasugi] Let K be an alternating knot. Then
- deg $\Delta_{K}=2 g(K)$.
- $\left[\Delta_{K}\right]_{i}>0$ for $i=0,1, \ldots, 2 g(K)$.

The Alexander polynomial of an alternating knot

Notation

- $[f]_{i}$: the coefficient of the i-th term of a polynomial f.
- For an alternating knot K, we denote $\Delta_{K}(-t)$ by Δ_{K}. Proposition 1.1. ['59 R. H. Crowell, K. Murasugi] Let K be an alternating knot. Then
- deg $\Delta_{K}=2 g(K)$.
- $\left[\Delta_{K}\right]_{i}>0$ for $i=0,1, \ldots, 2 g(K)$.
$\star K$: an alternating knot with $g(K)=2 \Rightarrow$
$\Delta_{K}=\left[\Delta_{K}\right]_{0}+\left[\Delta_{K}\right]_{1} t+\left[\Delta_{K}\right]_{2} t^{2}+\left[\Delta_{K}\right]_{1} t^{3}+\left[\Delta_{K}\right]_{0} t^{4}$,

The Alexander polynomial of an alternating knot

Notation

- $[f]_{i}$: the coefficient of the i-th term of a polynomial f.
- For an alternating knot K, we denote $\Delta_{K}(-t)$ by Δ_{K}. Proposition 1.1. ['59 R. H. Crowell, K. Murasugi] Let K be an alternating knot. Then
- deg $\Delta_{K}=2 g(K)$.
- $\left[\Delta_{K}\right]_{i}>0$ for $i=0,1, \ldots, 2 g(K)$.
$\star K$: an alternating knot with $g(K)=2 \Rightarrow$
$\Delta_{K}=\left[\Delta_{K}\right]_{0}+\left[\Delta_{K}\right]_{1} t+\left[\Delta_{K}\right]_{2} t^{2}+\left[\Delta_{K}\right]_{1} t^{3}+\left[\Delta_{K}\right]_{0} t^{4}$,
and $\left[\Delta_{K}\right]_{2}=2\left(\left[\Delta_{K}\right]_{1}-\left[\Delta_{K}\right]_{0}\right) \pm 1\left(\because \Delta_{K}(1)= \pm 1\right)$.

The Alexander polynomial of an alternating knot

Notation

- $[f]_{i}$: the coefficient of the i-th term of a polynomial f.
- For an alternating knot K, we denote $\Delta_{K}(-t)$ by Δ_{K}. Proposition 1.1. ['59 R. H. Crowell, K. Murasugi] Let K be an alternating knot. Then
- deg $\Delta_{K}=2 g(K)$.
- $\left[\Delta_{K}\right]_{i}>0$ for $i=0,1, \ldots, 2 g(K)$.
$\star K$: an alternating knot with $g(K)=2 \Rightarrow$
$\Delta_{K}=\left[\Delta_{K}\right]_{0}+\left[\Delta_{K}\right]_{1} t+\left[\Delta_{K}\right]_{2} t^{2}+\left[\Delta_{K}\right]_{1} t^{3}+\left[\Delta_{K}\right]_{0} t^{4}$, and $\left[\Delta_{K}\right]_{2}=2\left(\left[\Delta_{K}\right]_{1}-\left[\Delta_{K}\right]_{0}\right) \pm 1\left(\because \Delta_{K}(1)= \pm 1\right)$.

Trapezoidal conjecture \& Log-concavity conjecture
Definition $f(t)=\sum_{i=0}^{m} a_{i} t^{i} \in \mathbb{Z}\left[t, t^{-1}\right]:$ trapezoidal \Leftrightarrow $f\left(t^{-1}\right) \doteq f(t)$ and $0<a_{0}<\cdots<a_{j}=a_{j+1}=\cdots=a_{\left[\frac{m}{2}\right]}$ for some $0 \leq j \leq\left[\frac{m}{2}\right]$.

Trapezoidal conjecture ['62 R. H. Fox]
L : a non-split alternating link $\Rightarrow \Delta_{L}(-t)$: trapezoidal Example

$$
\begin{aligned}
& \Delta_{5_{1}}(-t)=1+t+t^{2}+t^{3}+t^{4} \\
& \Delta_{6_{3}}(-t)=1+3 t+5 t^{2}+3 t^{3}+t^{4} \\
& \Delta_{7_{3}}(-t)=2+3 t+3 t^{2}+3 t^{3}+2 t^{4} \\
& \Delta_{8_{5}}(-t)=1+3 t+4 t^{2}+5 t^{3}+4 t^{4}+3 t^{5}+t^{6} \\
& \Delta_{8_{7}}(-t)=1+3 t+5 t^{2}+5 t^{3}+5 t^{4}+3 t^{5}+t^{6}
\end{aligned}
$$

Fact T.C. is true for 2-bridge links ['79 R. Hartley],

Fact T.C. is true for 2-bridge links ['79 R. Hartley], certain alternating algebraic (\supset 2-bridge) links, certain alternating fibered links ['85 K. Murasugi],

Fact T.C. is true for 2-bridge links ['79 R. Hartley], certain alternating algebraic (\supset 2-bridge) links, certain alternating fibered links ['85 K. Murasugi], alternating knots of genus 2 ['03 P. Ozsváth-Z. Szabó, '07 J.]

Fact T.C. is true for 2-bridge links ['79 R. Hartley], certain alternating algebraic (\supset 2-bridge) links, certain alternating fibered links [' 85 K . Murasugi], alternating knots of genus 2 ['03 P. Ozsváth-Z. Szabó, '07 J.]
Definition A polynomial $f \in \mathbb{Z}\left[t, t^{-1}\right]$ is log-concave $\Leftrightarrow[f]_{i-1}[f]_{i+1} \leq[f]_{i}^{2}$ for all i.
Log-concavity conjecture [05' A. Stoimenow]
L : an alternating link $\Rightarrow \Delta_{L}(t)$: log-concave.

Remark

- Log-concavity conjecture " \supset " Trapezoidal conjecture.

Fact T.C. is true for 2-bridge links ['79 R. Hartley], certain alternating algebraic (\supset 2-bridge) links, certain alternating fibered links ['85 K. Murasugi], alternating knots of genus 2 ['03 P. Ozsváth-Z. Szabó, '07 J.]
Definition A polynomial $f \in \mathbb{Z}\left[t, t^{-1}\right]$ is log-concave

$$
\Leftrightarrow[f]_{i-1}[f]_{i+1} \leq[f]_{i}^{2} \text { for all } i .
$$

Log-concavity conjecture [05' A. Stoimenow]
L : an alternating link $\Rightarrow \Delta_{L}(t)$: log-concave.

Remark

- Log-concavity conjecture " \supset " Trapezoidal conjecture.
- Log-concavity conjecture is true for alternating knots of genus 2. ['07 J.]
Ref. I. D. Jong, "Alexander polynomials of alternating knots of genus two" (submitted to OJM)

Ozsváth-Szabó's inequality

Proposition 1.2. ['03 P. Ozsváth-Z. Szabó]
K : an alternating knot, $\sigma=\sigma(K)$: the signature of K.
$\Delta_{K}(t)$ is normalized so that $\Delta_{K}(1)=1$.
Then, for each $s=0,1, \ldots, g(K)$,
$(-1)^{s+\frac{\sigma}{2}}\left(\sum_{j=1}^{g(K)-s} j\left[\Delta_{K}(t)\right]_{g(K)-s-j}-\max \left(0,\left\lceil\frac{|\sigma|-2|s|}{4}\right\rceil\right)\right) \leq 0$.

Ozsváth-Szabó's inequality

Proposition 1.2. ['03 P. Ozsváth-Z. Szabó]
K : an alternating knot, $\sigma=\sigma(K)$: the signature of K.
$\Delta_{K}(t)$ is normalized so that $\Delta_{K}(1)=1$.
Then, for each $s=0,1, \ldots, g(K)$,
$(-1)^{s+\frac{\sigma}{2}}\left(\sum_{j=1}^{g(K)-s} j\left[\Delta_{K}(t)\right]_{g(K)-s-j}-\max \left(0,\left\lceil\frac{|\sigma|-2|s|}{4}\right\rceil\right)\right) \leq 0$.
In particular, for an alternating knot with $g(K)=2$,

$$
\begin{aligned}
& 2\left[\Delta_{K}\right]_{0} \leq\left[\Delta_{K}\right]_{1} \\
& \text { if } \sigma(K)=0 \\
& 2\left[\Delta_{K}\right]_{0}+1 \leq\left[\Delta_{K}\right]_{1} \\
& \text { if }|\sigma(K)|=2 \\
& 2\left[\Delta_{K}\right]_{0}-1 \leq\left[\Delta_{K}\right]_{1} \text { if }|\sigma(K)|=4 .
\end{aligned}
$$

Remark For \forall knot $K,|\sigma(K)| \leq 2 g(K)$.

Main Theorem

Main Theorem

Let K be an alternating knot of genus 2 .
Then the following inequalities hold $\left([\Delta]_{0} \geq 1\right)$:

$$
\begin{aligned}
& 3\left[\Delta_{K}\right]_{0}-1 \leq\left[\Delta_{K}\right]_{1} \leq 6\left[\Delta_{K}\right]_{0}+1 \text { if } \sigma(K)=0, \\
& 2\left[\Delta_{K}\right]_{0}+1 \leq\left[\Delta_{K}\right]_{1} \leq 6\left[\Delta_{K}\right]_{0}-1 \text { if }|\sigma(K)|=2, \\
& 2\left[\Delta_{K}\right]_{0}-1 \leq\left[\Delta_{K}\right]_{1} \leq 4\left[\Delta_{K}\right]_{0}-2 \text { if }|\sigma(K)|=4 .
\end{aligned}
$$

Main Theorem

Main Theorem

Let K be an alternating knot of genus 2 .
Then the following inequalities hold $\left([\Delta]_{0} \geq 1\right)$:

$$
\begin{aligned}
& 3\left[\Delta_{K}\right]_{0}-1 \leq\left[\Delta_{K}\right]_{1} \leq 6\left[\Delta_{K}\right]_{0}+1 \text { if } \sigma(K)=0, \\
& 2\left[\Delta_{K}\right]_{0}+1 \leq\left[\Delta_{K}\right]_{1} \leq 6\left[\Delta_{K}\right]_{0}-1 \text { if }|\sigma(K)|=2, \\
& 2\left[\Delta_{K}\right]_{0}-1 \leq\left[\Delta_{K}\right]_{1} \leq 4\left[\Delta_{K}\right]_{0}-2 \text { if }|\sigma(K)|=4 .
\end{aligned}
$$

Moreover, any other linear inequality on $[\Delta]_{0}$ and $[\Delta]_{1}$ for all alternating knots of genus 2 is a consequence of our inequalities. (Completeness)

Main Theorem vs
trapezoidal property \& Ozsváth-Szabó's inequality

Main Theorem vs
trapezoidal property \& Ozsváth-Szabó's inequality

Main Theorem vs
trapezoidal property \& Ozsváth-Szabó's inequality

Main Theorem vs $(\sigma=0)$
trapezoidal property \& Ozsváth-Szabó's inequality

> Main Theorem vs $(|\sigma|=2)$
> trapezoidal property \& Ozsváth-Szabó's inequality

$$
\begin{aligned}
& \text { Main Theorem vs }(|\sigma|=4) \\
& \text { trapezoidal property \& Ozsváth-Szabó's inequality }
\end{aligned}
$$

§2. Proof of Main Theorem

Generators for genus 2 knots

Definition ($\overline{t_{ \pm 2}^{\prime}}$ move)

§2. Proof of Main Theorem

Generators for genus 2 knots

Definition ($\overline{t_{ \pm 2}^{\prime}}$ move)

Lemma 2.1. ['05 A. Stoimenow]
\{reduced alternating knot diagrams of genus 2 \}
$/ \overline{t_{ \pm 2}^{\prime}}$ move, mirror image, flype
$=\left\{5_{1}, 6_{2}, 6_{3}, 7_{5}, 7_{6}, 7_{7}, 8_{12}, 8_{14}, 8_{15}, 9_{23}, 9_{25}, 9_{38}, 9_{39}, 9_{41}, 10_{58}\right.$, $10_{97}, 10_{101}, 10_{120}, 11_{123}, 11_{148}, 11_{329}, 12_{1097}, 12_{1202}$, $\left.13_{4233}, 3_{1} \# 3_{1}, 3_{1} \# 4_{1}, 3_{1} \# 3_{1}^{*}, 4_{1} \# 4_{1}\right\}=: G_{2}$

We name crossings of the diagrams in G_{2} as follows:

Notation

D : a diagram, c_{1}, \ldots, c_{m} : crossings of D

Notation

D : a diagram, c_{1}, \ldots, c_{m} : crossings of D
$D\left(c_{1}^{k_{1}}, \ldots, c_{m}^{k_{m}}\right)$: the diagram obtained by applying
k_{i}-times $\overline{t_{2}^{\prime}}$ moves at c_{i} for $i=1,2, \ldots, m$

Notation

D : a diagram, c_{1}, \ldots, c_{m} : crossings of D
$D\left(c_{1}^{k_{1}}, \ldots, c_{m}^{k_{m}}\right)$: the diagram obtained by applying

$$
k_{i} \text {-times } \overline{t_{2}^{\prime}} \text { moves at } c_{i} \text { for } i=1,2, \ldots, m
$$

$D / c_{1} \cdots c_{m}$: the diagram obtained by smoothing c_{1}, \ldots, c_{m}

Main Theorem

Let K be an alternating knot of genus 2 .
Then the following inequalities hold $\left([\Delta]_{0} \geq 1\right)$:

$$
\begin{aligned}
& 3\left[\Delta_{K}\right]_{0}-1 \leq\left[\Delta_{K}\right]_{1} \leq 6\left[\Delta_{K}\right]_{0}+1 \text { if } \sigma(K)=0, \\
& 2\left[\Delta_{K}\right]_{0}+1 \leq\left[\Delta_{K}\right]_{1} \leq 6\left[\Delta_{K}\right]_{0}-1 \text { if }|\sigma(K)|=2, \\
& 2\left[\Delta_{K}\right]_{0}-1 \leq\left[\Delta_{K}\right]_{1} \leq 4\left[\Delta_{K}\right]_{0}-2 \text { if }|\sigma(K)|=4 .
\end{aligned}
$$

Moreover, any other linear inequality on $[\Delta]_{0}$ and $[\Delta]_{1}$ for all alternating knots of genus 2 is a consequence of our inequalities. (Completeness)

Main Theorem

Let K be an alternating knot of genus 2 .
Then the following inequalities hold $\left([\Delta]_{0} \geq 1\right)$:

$$
\begin{array}{ll}
3\left[\Delta_{K}\right]_{0}-1 \leq\left[\Delta_{K}\right]_{1} \leq 6\left[\Delta_{K}\right]_{0}+1 & \text { if } \sigma(K)=0, \\
2\left[\Delta_{K}\right]_{0}+1 \leq\left[\Delta_{K}\right]_{1} \leq 6\left[\Delta_{K}\right]_{0}-1 & \text { if }|\sigma(K)|=2, \\
2\left[\Delta_{K}\right]_{0}-1 \leq\left[\Delta_{K}\right]_{1} \leq 4\left[\Delta_{K}\right]_{0}-2 & \text { if }|\sigma(K)|=4
\end{array}
$$

Moreover, any other linear inequality on $[\Delta]_{0}$ and $[\Delta]_{1}$ for all alternating knots of genus 2 is a consequence of our inequalities. (Completeness)

Main Theorem

Let K be an alternating knot of genus 2 .
Then the following inequalities hold $\left([\Delta]_{0} \geq 1\right)$:

$$
\begin{array}{ll}
3\left[\Delta_{K}\right]_{0}-1 \leq\left[\Delta_{K}\right]_{1} \leq 6\left[\Delta_{K}\right]_{0}+1 & \text { if } \sigma(K)=0, \\
2\left[\Delta_{K}\right]_{0}+1 \leq\left[\Delta_{K}\right]_{1} \leq 6\left[\Delta_{K}\right]_{0}-1 & \text { if }|\sigma(K)|=2, \\
2\left[\Delta_{K}\right]_{0}-1 \leq\left[\Delta_{K}\right]_{1} \leq 4\left[\Delta_{K}\right]_{0}-2 & \text { if }|\sigma(K)|=4
\end{array}
$$

Moreover, any other linear inequality on $[\Delta]_{0}$ and $[\Delta]_{1}$ for all alternating knots of genus 2 is a consequence of our inequalities. (Completeness)

Proposition 2.2.

D : an alternating diagram,
c : a crossing of D. Then

$$
\sigma(D(c))=\sigma(D)
$$

Proposition 2.2.

D : an alternating diagram,
c : a crossing of D. Then

$$
\sigma(D(c))=\sigma(D)
$$

Lemma 2.3. ['05, E. S. Lee]
D : a reduced alternating diagram.
$p(D)=\#\{$ positive crossings of $D\}$
$o(D)=\#\{$ circles obtained by splicing all crossings as

Then

$$
\sigma(D)=o(D)-p(D)-1
$$

Proof of Proposition 2.2.

- c is positive.

$\sigma(D(c))=o(D(c))-p(D(c))-1$

Proof of Proposition 2.2.

- c is positive.

$$
\begin{aligned}
\sigma(D(c)) & =o(D(c))-p(D(c))-1 \\
& =(o(D)+2)-(p(D)+2)-1 \\
& =o(D)-p(D)-1 \\
& =\sigma(D) .
\end{aligned}
$$

Proof of Proposition 2.2.

- c is positive. (c : negative \Rightarrow take the mirror image)

$$
\begin{aligned}
\sigma(D(c)) & =o(D(c))-p(D(c))-1 \\
& =(o(D)+2)-(p(D)+2)-1 \\
& =o(D)-p(D)-1 \\
& =\sigma(D) .
\end{aligned}
$$

Method for calculating $\Delta(-t)$ of an alternating link
D : an alternating diagram
Step 1 : Constructing an oriented graph with a weight map from the alternating diagram D.

- Orientation : terminal points $=$ undercrossings.
- Weight : the weight of the edges which are on the left (resp. right) of the crossings $=1($ resp. $t)$.

Method for calculating $\Delta(-t)$ of an alternating link
D : an alternating diagram
Step 1 : Constructing an oriented graph with a weight map from the alternating diagram D.

- Orientation : terminal points $=$ undercrossings.
- Weight : the weight of the edges which are on the left (resp. right) of the crossings $=1($ resp. $t)$.

Method for calculating $\Delta(-t)$ of an alternating link

D : an alternating diagram
Step 1 : Constructing an oriented graph with a weight map from the alternating diagram D.

- Orientation : terminal points $=$ undercrossings.
- Weight : the weight of the edges which are on the left (resp. right) of the crossings $=1$ (resp. t).

Step 2 : Fixing a root vertex c_{0} and enumerating the maximal rooted trees with the root vertex c_{0}.

Step 2 : Fixing a root vertex c_{0} and enumerating the maximal rooted trees with the root vertex c_{0}.

Step 3 : Summing up the weights of the trees. Here the weight of a tree is multiplication of all weights of the edges in the tree. $1+3 t+t^{2}=\Delta_{4_{1}}$.

Step 2 : Fixing a root vertex c_{0} and enumerating the maximal rooted trees with the root vertex c_{0}.

Step 3 : Summing up the weights of the trees. Here the weight of a tree is multiplication of all weights of the edges in the tree. $1+3 t+t^{2}=\Delta_{4_{1}}$.
※ (ambiguity of choices of c_{0}) " $=$ " (ambiguity of $\times t^{l}$).

Lemma 2.4.
c : a crossing of an alternating diagram D
$\Rightarrow \Delta_{D(c)}=\Delta_{D}+(1+t) \Delta_{D / c}$

Lemma 2.4.
c : a crossing of an alternating diagram D
$\Rightarrow \Delta_{D(c)}=\Delta_{D}+(1+t) \Delta_{D / c}$

Lemma 2.4.

c : a crossing of an alternating diagram D
$\Rightarrow \Delta_{D(c)}=\Delta_{D}+(1+t) \Delta_{D / c}$

Fact
c : a crossing of a reduced alternating diagram D
$\Rightarrow \operatorname{deg} \Delta_{D / c}=\operatorname{deg} \Delta_{D}-1$

Lemma 2.5.

$D \in G_{2}$,
c_{1}, \ldots, c_{m} : crossings of D,
$D^{\prime}=D\left(c_{1}^{k_{1}}, c_{2}^{k_{2}}, \ldots, c_{m}^{k_{m}}\right),\left(k_{1}, \ldots, k_{m} \in \mathbb{Z}_{\geq 0}\right)$. Then

$$
\begin{aligned}
\Delta_{D^{\prime}}=\Delta_{D} & +\sum_{1 \leq i \leq m} k_{i}(1+t) \Delta_{D / c_{i}} \\
& +\sum_{1 \leq i<j \leq m} k_{i} k_{j}(1+t)^{2} \Delta_{D / c_{i} c_{j}} \\
& +\sum_{1 \leq i<j<l \leq m} k_{i} k_{j} k_{l}(1+t)^{3} \Delta_{D / c_{i} c_{j} c_{l}} \\
& +\sum_{1 \leq i<j<l<p \leq m} k_{i} k_{j} k_{l} k_{p}(1+t)^{4} \Delta_{D / c_{i} c_{j} c_{l} c_{p}}
\end{aligned}
$$

Lemma 2.5.

$D \in G_{2}$,
c_{1}, \ldots, c_{m} : crossings of D,
$D^{\prime}=D\left(c_{1}^{k_{1}}, c_{2}^{k_{2}}, \ldots, c_{m}^{k_{m}}\right),\left(k_{1}, \ldots, k_{m} \in \mathbb{Z}_{\geq 0}\right)$. Then

$$
\begin{aligned}
\Delta_{D^{\prime}}=\Delta_{D} & +\sum_{1 \leq i \leq m} k_{i}(1+t) \Delta_{D / c_{i}} \\
& +\sum_{1 \leq i<j \leq m} k_{i} k_{j}(1+t)^{2} \Delta_{D / c_{i} c_{j}} \\
& +\sum_{1 \leq i<j<l \leq m} k_{i} k_{j} k_{l}(1+t)^{3} \Delta_{D / c_{i} c_{j} c_{l}} \\
& +\sum_{1 \leq i<j<l<p \leq m} k_{i} k_{j} k_{l} k_{p}(1+t)^{4} \Delta_{D / c_{i} c_{j} c_{l} c_{p}}
\end{aligned}
$$

Remark
$\left[(1+t)^{l} \Delta_{D / c_{1} \cdots c_{i_{l}}}\right]_{0}=\left[\Delta_{D / c_{i_{1}} \cdots c_{i_{l}}}\right]_{0}$,
$\left[(1+t)^{l} \Delta_{D / c_{i_{1}} \cdots c_{i_{l}}}\right]_{1}=\left[\Delta_{D / c_{i_{1}} \cdots c_{i_{l}}}\right]_{1}+l\left[\Delta_{D / c_{i_{1}} \cdots c_{i_{l}}}\right]_{0}$.

To estimate the ratios

$$
\frac{\left[(1+t)^{l} \Delta_{D / c_{i_{1}} \cdots c_{i_{l}}}\right]_{1}}{\left[(1+t)^{l} \Delta_{D / c_{i_{1}} \cdots c_{i}}\right]_{0}}=\frac{\left[\Delta_{D / c_{i_{1}} \cdots c_{i}}\right]_{1}}{\left[\Delta_{D / c_{i_{1}} \cdots c_{i_{l}}}\right]_{0}}+l
$$

we define $m(D)$ and $M(D)$ by
$m(D)=\min \left\{\frac{\left[\Delta_{D / c_{i}}\right]_{1}}{\left[\Delta_{D / c_{i}}\right]_{0}}+1, \frac{\left[\Delta_{D / c_{i} c_{j}}\right]_{1}}{\left[\Delta_{D / c_{i} c_{j}}\right]_{0}}+2, \frac{\left[\Delta_{D / c_{i} c_{j} c_{l}}\right]_{1}}{\left[\Delta_{D / c_{i} c_{j} c_{l}}\right]_{0}}+3,4\right\}$,
$M(D)=\max \left\{\frac{\left[\Delta_{D / c_{i}}\right]_{1}}{\left[\Delta_{D / c_{i}}\right]_{0}}+1, \frac{\left[\Delta_{D / c_{i} c_{j}}\right]_{1}}{\left[\Delta_{D / c_{i} c_{j}}\right]_{0}}+2, \frac{\left[\Delta_{D / c_{i} c_{j} c_{l}}\right]_{1}}{\left[\Delta_{D / c_{i} c_{j} c_{l}}\right]_{0}}+3,4\right\}$

To estimate the ratios

$$
\frac{\left[(1+t)^{l} \Delta_{D / c_{i_{1}} \cdots c_{i_{l}}}\right]_{1}}{\left[(1+t)^{l} \Delta_{D / c_{i_{1}} \cdots c_{i_{l}}}\right]_{0}}=\frac{\left[\Delta_{D / c_{i_{1}} \cdots c_{i_{l}}}\right]_{1}}{\left[\Delta_{D / c_{i_{1}} \cdots c_{i_{l}}}\right]_{0}}+l
$$

we define $m(D)$ and $M(D)$ by
$m(D)=\min \left\{\frac{\left[\Delta_{D / c_{i}}\right]_{1}}{\left[\Delta_{D / c_{i}}\right]_{0}}+1, \frac{\left[\Delta_{D / c_{i} c_{j}}\right]_{1}}{\left[\Delta_{D / c_{i} c_{j}}\right]_{0}}+2, \frac{\left[\Delta_{D / c_{i} c_{j} c_{l}}\right]_{1}}{\left[\Delta_{D / c_{i} c_{j} c_{l}}\right]_{0}}+3,4\right\}$,
$M(D)=\max \left\{\frac{\left[\Delta_{D / c_{i}}\right]_{1}}{\left[\Delta_{D / c_{i}}\right]_{0}}+1, \frac{\left[\Delta_{D / c_{i} c_{j}}\right]_{1}}{\left[\Delta_{D / c_{i} c_{j}}\right]_{0}}+2, \frac{\left[\Delta_{D / c_{i} c_{j} c_{l}}\right]_{1}}{\left[\Delta_{D / c_{i} c_{j} c_{l}}\right]_{0}}+3,4\right\}$
Set $\widehat{\Delta}_{D^{\prime}}=\Delta_{D^{\prime}}-\Delta_{D}$. Then we obtain

$$
m(D) \leq \frac{\left[\widehat{\Delta}_{D^{\prime}}\right]_{1}}{\left[\widehat{\Delta}_{D^{\prime}}\right]_{0}} \leq M(D)
$$

Lemma 2.5.

$D \in G_{2}$,
c_{1}, \ldots, c_{m} : crossings of D,
$D^{\prime}=D\left(c_{1}^{k_{1}}, c_{2}^{k_{2}}, \ldots, c_{m}^{k_{m}}\right),\left(k_{1}, \ldots, k_{m} \in \mathbb{Z}_{\geq 0}\right)$. Then

$$
\begin{aligned}
\Delta_{D^{\prime}}=\Delta_{D} & +\sum_{1 \leq i \leq m} k_{i}(1+t) \Delta_{D / c_{i}} \\
& +\sum_{1 \leq i<j \leq m} k_{i} k_{j}(1+t)^{2} \Delta_{D / c_{i} c_{j}} \\
& +\sum_{1 \leq i<j<l \leq m} k_{i} k_{j} k_{l}(1+t)^{3} \Delta_{D / c_{i} c_{j} c_{l}} \\
& +\sum_{1 \leq i<j<l<p \leq m} k_{i} k_{j} k_{l} k_{p}(1+t)^{4} \Delta_{D / c_{i} c_{j} c_{l} c_{p}} .
\end{aligned}
$$

Remark
$\left[(1+t)^{l} \Delta_{D / c_{1} \cdots c_{i_{l}}}\right]_{0}=\left[\Delta_{D / c_{i_{1}} \cdots c_{i_{l}}}\right]_{0}$,
$\left[(1+t)^{l} \Delta_{D / c_{i_{1}} \cdots c_{i_{l}}}\right]_{1}=\left[\Delta_{D / c_{i_{1}} \cdots c_{i_{l}}}\right]_{1}+l\left[\Delta_{D / c_{i_{1}} \cdots c_{i_{l}}}\right]_{0}$.

To estimate the ratios

$$
\frac{\left[(1+t)^{l} \Delta_{D / c_{i_{1}} \cdots c_{i_{l}}}\right]_{1}}{\left[(1+t)^{l} \Delta_{D / c_{i_{1}} \cdots c_{i_{l}}}\right]_{0}}=\frac{\left[\Delta_{D / c_{i_{1}} \cdots c_{i_{l}}}\right]_{1}}{\left[\Delta_{D / c_{i_{1}} \cdots c_{i_{l}}}\right]_{0}}+l
$$

we define $m(D)$ and $M(D)$ by
$m(D)=\min \left\{\frac{\left[\Delta_{D / c_{i}}\right]_{1}}{\left[\Delta_{D / c_{i}}\right]_{0}}+1, \frac{\left[\Delta_{D / c_{i} c_{j}}\right]_{1}}{\left[\Delta_{D / c_{i} c_{j}}\right]_{0}}+2, \frac{\left[\Delta_{D / c_{i} c_{j} c_{l}}\right]_{1}}{\left[\Delta_{D / c_{i} c_{j} c_{l}}\right]_{0}}+3,4\right\}$,
$M(D)=\max \left\{\frac{\left[\Delta_{D / c_{i}}\right]_{1}}{\left[\Delta_{D / c_{i}}\right]_{0}}+1, \frac{\left[\Delta_{D / c_{i} c_{j}}\right]_{1}}{\left[\Delta_{D / c_{i} c_{j}}\right]_{0}}+2, \frac{\left[\Delta_{D / c_{i} c_{j} c_{l}}\right]_{1}}{\left[\Delta_{D / c_{i} c_{j} c_{l}}\right]_{0}}+3,4\right\}$
Set $\widehat{\Delta}_{D^{\prime}}=\Delta_{D^{\prime}}-\Delta_{D}$. Then we obtain

$$
m(D) \leq \frac{\left[\widehat{\Delta}_{D^{\prime}}\right]_{1}}{\left[\widehat{\Delta}_{D^{\prime}}\right]_{0}} \leq M(D)
$$

$$
\begin{aligned}
& m(D) \leq \frac{\left[\widehat{\Delta}_{D^{\prime}}\right]_{1}}{\left[\widehat{\Delta}_{D^{\prime}}\right]_{0}} \leq M(D) \\
& \Leftrightarrow m(D)\left[\widehat{\Delta}_{D^{\prime}}\right]_{0} \leq\left[\widehat{\Delta}_{D^{\prime}}\right]_{1} \leq M(D)\left[\widehat{\Delta}_{D^{\prime}}\right]_{0}
\end{aligned}
$$

$$
\begin{aligned}
\Leftrightarrow m(D)\left[\widehat{\Delta}_{D^{\prime}}\right]_{0} \leq\left[\widehat{\Delta}_{D^{\prime}}\right]_{1} & \leq M(D)\left[\widehat{\Delta}_{D^{\prime}}\right]_{0} \\
\Leftrightarrow m(D)\left(\left[\Delta_{D^{\prime}}\right]_{0}-\left[\Delta_{D}\right]_{0}\right) & \leq\left[\Delta_{D^{\prime}}\right]_{1}-\left[\Delta_{D}\right]_{1} \\
& \leq M(D)\left(\left[\Delta_{D^{\prime}}\right]_{0}-\left[\Delta_{D}\right]_{0}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \Leftrightarrow m(D)\left[\widehat{\Delta}_{D^{\prime}}\right]_{0} \leq\left[\widehat{\Delta}_{D^{\prime}}\right]_{1} \leq M(D)\left[\widehat{\Delta}_{D^{\prime}}\right]_{0} \\
& \Leftrightarrow m(D)\left(\left[\Delta_{D^{\prime}}\right]_{0}-\left[\Delta_{D}\right]_{0}\right) \leq\left[\Delta_{D^{\prime}}\right]_{1}-\left[\Delta_{D}\right]_{1} \\
& \leq M(D)\left(\left[\Delta_{D^{\prime}}\right]_{0}-\left[\Delta_{D}\right]_{0}\right) .
\end{aligned}
$$

Set $r(D)=\left[\Delta_{D}\right]_{1}-m(D)\left[\Delta_{D}\right]_{0}$ and

$$
R(D)=\left[\Delta_{D}\right]_{1}-M(D)\left[\Delta_{D}\right] \text {. Then we obtain }
$$

$$
m(D)\left[\Delta_{D^{\prime}}\right]_{0}+r(D) \leq\left[\Delta_{D^{\prime}}\right]_{1} \leq M(D)\left[\Delta_{D^{\prime}}\right]_{0}+R(D) .
$$

By calculating $m(D), M(D), r(D)$, and $R(D)$ of the 27 generators, we obtain 27 inequalities.

By calculating $m(D), M(D), r(D)$, and $R(D)$ of the 27 generators, we obtain 27 inequalities.
By taking the convex hull for each σ, we obtain Main Theorem.

The inequalities which decide the boundary of the convex hull are the following red ones.

$\sigma=0$					
G_{2}	m	M	r	R	$\left([\Delta]_{0},[\Delta]_{1},[\Delta]_{2}\right)$
6_{3}	3	5	0	-2	$(1,3,5)$
77	3	6	2	-1	$(1,5,9)$
8_{12}	4	6	3	1	$(1,7,13)$
9_{41}	3	$\frac{14}{3}$	3	-2	$(3,12,19)$
10_{58}	$\frac{10}{3}$	$\frac{14}{3}$	6	2	$(3,16,27)$
12_{1202}	4	$\frac{13}{3}$	6	3	$(9,42,67)$
$3_{1} \# 3_{1}^{*}$	3	4	-1	-2	$(1,2,3)$

$\underline{\|\sigma\|=2}$					
G_{2}	m	M	r	R	$\left([\Delta]_{0},[\Delta]_{1},[\Delta]_{2}\right)$
62	2	5	1	-2	$(1,3,3)$
76	3	6	2	-1	$(1,5,7)$
814	3	5	2	-2	$(2,8,11)$
9_{25}	$\frac{10}{3}$	$\frac{14}{3}$	2	-2	$(3,12,17)$
939	$\frac{10}{3}$	$\frac{11}{2}$	4	$-\frac{5}{2}$	$(3,14,21)$
10_{97}	$\frac{18}{5}$	$\frac{14}{3}$	4	$-\frac{4}{3}$	$(5,22,33)$
11_{148}	$\frac{25}{7}$	$\frac{23}{5}$	4	$-\frac{16}{5}$	(7, 29, 43)
$3{ }_{1} \# 4_{1}$	3	5	-1	5	$(1,4,5)$

$$
|\sigma|=4
$$

G_{2}	m	M	r	R	$\left([\Delta]_{0},[\Delta]_{1},[\Delta]_{2}\right)$
5_{1}	2	4	-1	-3	$(1,1,1)$
7_{5}	$\frac{5}{2}$	4	-1	-4	$(2,4,5)$
8_{15}	3	4	-1	-4	$(3,8,11)$
9_{23}	$\frac{13}{4}$	4	-2	-5	$(4,11,15)$
9_{38}	3	4	-1	-6	$(5,14,19)$
10_{101}	$\frac{13}{4}$	4	$-\frac{7}{4}$	-7	$(7,21,29)$
10_{120}	$\frac{25}{7}$	4	$-\frac{18}{7}$	-6	$(8,26,37)$
11_{123}	$\frac{24}{7}$	4	$-\frac{13}{7}$	-7	$(9,29,41)$
11_{329}	$\frac{7}{2}$	4	$-\frac{5}{2}$	-8	$(11,36,51)$
12_{1097}	$\frac{7}{2}$	4	-2	-10	$(16,54,77)$
13_{4233}	$\frac{11}{3}$	4	-3	-10	$(21,74,107)$
$3_{1} \# 3_{1}$	3	4	-1	-2	$(1,2,3)$

Main Theorem

Let K be an alternating knot of genus 2 .
Then the following inequalities hold $\left([\Delta]_{0} \geq 1\right)$:

$$
\begin{array}{ll}
3\left[\Delta_{K}\right]_{0}-1 \leq\left[\Delta_{K}\right]_{1} \leq 6\left[\Delta_{K}\right]_{0}+1 & \text { if } \sigma(K)=0, \\
2\left[\Delta_{K}\right]_{0}+1 \leq\left[\Delta_{K}\right]_{1} \leq 6\left[\Delta_{K}\right]_{0}-1 & \text { if }|\sigma(K)|=2, \\
2\left[\Delta_{K}\right]_{0}-1 \leq\left[\Delta_{K}\right]_{1} \leq 4\left[\Delta_{K}\right]_{0}-2 & \text { if }|\sigma(K)|=4
\end{array}
$$

Moreover, any other linear inequality on $[\Delta]_{0}$ and $[\Delta]_{1}$ for all alternating knots of genus 2 is a consequence of our inequalities. (Completeness)

Main Theorem

Let K be an alternating knot of genus 2 .
Then the following inequalities hold $\left([\Delta]_{0} \geq 1\right)$:

$$
\begin{aligned}
& 3\left[\Delta_{K}\right]_{0}-1 \leq\left[\Delta_{K}\right]_{1} \leq 6\left[\Delta_{K}\right]_{0}+1 \text { if } \sigma(K)=0, \\
& 2\left[\Delta_{K}\right]_{0}+1 \leq\left[\Delta_{K}\right]_{1} \leq 6\left[\Delta_{K}\right]_{0}-1 \text { if }|\sigma(K)|=2, \\
& 2\left[\Delta_{K}\right]_{0}-1 \leq\left[\Delta_{K}\right]_{1} \leq 4\left[\Delta_{K}\right]_{0}-2 \text { if }|\sigma(K)|=4 .
\end{aligned}
$$

Moreover, any other linear inequality on $[\Delta]_{0}$ and $[\Delta]_{1}$ for all alternating knots of genus 2 is a consequence of our inequalities. (Completeness)

Proof of the completeness for $\sigma=0$ (upper bound)
Let $D=8_{12}$.
Then $\left[\widehat{\Delta}_{D\left(c_{1}^{n}\right)}\right]_{0}=n,\left[\widehat{\Delta}_{D\left(c_{1}^{n}\right)}\right]_{1}=6 n$, we have

$$
\frac{\left[\widehat{\Delta}_{D\left(c_{1}^{n}\right.}\right]_{1}}{\left[\widehat{\Delta}_{D\left(c_{1}^{n}\right)}\right]_{0}}=6
$$

§3. Characterization of the alternating knots of genus two with $[\Delta]_{0} \leq 3$

Corollary 3.1.

D : a reduced alternating diagram
$\Rightarrow\left[\Delta_{D(c)}\right]_{0}>\left[\Delta_{D}\right]_{0}$.
§3. Characterization of the alternating knots of genus two with $[\Delta]_{0} \leq 3$

Corollary 3.1.
D : a reduced alternating diagram
$\Rightarrow\left[\Delta_{D(c)}\right]_{0}>\left[\Delta_{D}\right]_{0}$.
Lemma 3.2. ['63 K. Murasugi]
Let L be an alternating link. L is fibered $\Leftrightarrow[\Delta]_{0}=1$.
§3. Characterization of the alternating knots of genus two with $[\Delta]_{0} \leq 3$

Corollary 3.1.

D : a reduced alternating diagram
$\Rightarrow\left[\Delta_{D(c)}\right]_{0}>\left[\Delta_{D}\right]_{0}$.
Lemma 3.2. ['63 K. Murasugi]
Let L be an alternating link. L is fibered $\Leftrightarrow[\Delta]_{0}=1$.
Fact
The fibered knots of genus one are just $3_{1}, 3_{1}^{*}$ and 4_{1}.

The alternating fibered knots of genus $2\left([\Delta]_{0}=1\right)$
The knots in G_{2} with $[\Delta]_{0}=1$ are just $5_{1}, 6_{2}, 6_{3}, 7_{6}$, $7_{7}, 8_{12}, 3_{1} \# 3_{1}, 3_{1} \# 3_{1}^{*}, 3_{1} \# 4_{1}$, and $4_{1} \# 4_{1}$ up to $*$.

The alternating fibered knots of genus $2\left([\Delta]_{0}=1\right)$
The knots in G_{2} with $[\Delta]_{0}=1$ are just $5_{1}, 6_{2}, 6_{3}, 7_{6}$, $7_{7}, 8_{12}, 3_{1} \# 3_{1}, 3_{1} \# 3_{1}^{*}, 3_{1} \# 4_{1}$, and $4_{1} \# 4_{1}$ up to $*$.

Corollary 3.1.

D : a reduced alternating diagram
$\Rightarrow\left[\Delta_{D(c)}\right]_{0}>\left[\Delta_{D}\right]_{0}$.

Theorem 3.4.

The alternating fibered knots of genus 2 are just the following knots: $5_{1}, 5_{1}^{*}, 6_{2}, 6_{2}^{*}, 6_{3}, 7_{6}, 7_{6}^{*}, 7_{7}, 7 \frac{*}{7}, 8_{12}$, $3_{1} \# 3_{1}, 3_{1} \# 3_{1}^{*}, 3_{1}^{*} \# 3_{1}^{*}, 3_{1} \# 4_{1}, 3_{1}^{*} \# 4_{1}$, and $4_{1} \# 4_{1}$.

The alternating fibered knots of genus $2\left([\Delta]_{0}=1\right)$
The knots in G_{2} with $[\Delta]_{0}=1$ are just $5_{1}, 6_{2}, 6_{3}, 7_{6}$, $7_{7}, 8_{12}, 3_{1} \# 3_{1}, 3_{1} \# 3_{1}^{*}, 3_{1} \# 4_{1}$, and $4_{1} \# 4_{1}$ up to $*$.

Corollary 3.1.

D : a reduced alternating diagram
$\Rightarrow\left[\Delta_{D(c)}\right]_{0}>\left[\Delta_{D}\right]_{0}$.

Theorem 3.4.

The alternating fibered knots of genus 2 are just the following knots: $5_{1}, 5_{1}^{*}, 6_{2}, 6_{2}^{*}, 6_{3}, 7_{6}, 7_{6}^{*}, 7_{7}, 7_{7}^{*}, 8_{12}$, $3_{1} \# 3_{1}, 3_{1} \# 3_{1}^{*}, 3_{1}^{*} \# 3_{1}^{*}, 3_{1} \# 4_{1}, 3_{1}^{*} \# 4_{1}$, and $4_{1} \# 4_{1}$.

We denote the set of these knot diagrams by $A F_{2}$.

Corollary 3.5.

The Alexander polynomials which have the trapezoidal property

$$
\begin{aligned}
& 1-n_{1} t+\left(2 n_{1}-1\right) t^{2}-n_{1} t^{3}+t^{4} \text { for } n_{1}=4 \text { or } n_{1} \geq 8, \\
& 1-n_{2} t+\left(2 n_{2}-3\right) t^{2}-n_{2} t^{3}+t^{4} \text { for } n_{2} \geq 6 \\
& \text { are never realized by an alternating knot. }
\end{aligned}
$$

Corollary 3.5.

The Alexander polynomials which have the trapezoidal property

$$
\begin{aligned}
& 1-n_{1} t+\left(2 n_{1}-1\right) t^{2}-n_{1} t^{3}+t^{4} \text { for } n_{1}=4 \text { or } n_{1} \geq 8, \\
& 1-n_{2} t+\left(2 n_{2}-3\right) t^{2}-n_{2} t^{3}+t^{4} \text { for } n_{2} \geq 6 \\
& \text { are never realized by an alternating knot. }
\end{aligned}
$$

Remark

$\Delta_{K}(t)=1-4 t+7 t^{2}-4 t^{3}+t^{4}$
The knot with this Δ satisfies the inequality in Main Theorem.

However, this polynomial is never realized by an alternating knot.

Corollary 3.5.

The Alexander polynomials which have the trapezoidal property
$1-n_{1} t+\left(2 n_{1}-1\right) t^{2}-n_{1} t^{3}+t^{4}$ for $n_{1}=4$ or $n_{1} \geq 8$,
$1-n_{2} t+\left(2 n_{2}-3\right) t^{2}-n_{2} t^{3}+t^{4}$ for $n_{2} \geq 6$
are never realized by an alternating knot.

Remark

$\Delta_{K}(t)=1-4 t+7 t^{2}-4 t^{3}+t^{4}$
The knot with this Δ satisfies the inequality in Main Theorem.

However, this polynomial is never realized by an alternating knot.
Incidentally, $\Delta_{9_{44}}(t)=1-4 t+7 t^{2}-4 t^{3}+t^{4}$.
K : a knot with $\Delta_{K}(t)=1-4 t+7 t^{2}-4 t^{3}+t^{4}$,
K : a knot with $\Delta_{K}(t)=1-4 t+7 t^{2}-4 t^{3}+t^{4}$,
For $\forall K,|\sigma(K)| \leq \#\left\{\alpha \in \mathbb{C} \backslash \mathbb{R}\left|\Delta_{K}(\alpha)=0,|\alpha|=1\right\}\right.$.
K : a knot with $\Delta_{K}(t)=1-4 t+7 t^{2}-4 t^{3}+t^{4}$,
For $\forall K,|\sigma(K)| \leq \#\left\{\alpha \in \mathbb{C} \backslash \mathbb{R}\left|\Delta_{K}(\alpha)=0,|\alpha|=1\right\}\right.$. $\alpha_{1}, \alpha_{2}, \overline{\alpha_{1}}, \overline{\alpha_{2}} \in \mathbb{C}$: zeros of $\Delta_{K}(t) \Rightarrow\left|\alpha_{1}\right|,\left|\alpha_{2}\right| \neq 1$.
K : a knot with $\Delta_{K}(t)=1-4 t+7 t^{2}-4 t^{3}+t^{4}$,
For $\forall K,|\sigma(K)| \leq \#\left\{\alpha \in \mathbb{C} \backslash \mathbb{R}\left|\Delta_{K}(\alpha)=0,|\alpha|=1\right\}\right.$.
$\alpha_{1}, \alpha_{2}, \overline{\alpha_{1}}, \overline{\alpha_{2}} \in \mathbb{C}$: zeros of $\Delta_{K}(t) \Rightarrow\left|\alpha_{1}\right|,\left|\alpha_{2}\right| \neq 1$.
$\therefore \sigma(K)=0$. Then
The ineq. in Main Thm $\Leftrightarrow 3[\Delta]_{0}-1 \leq[\Delta]_{1} \leq 6[\Delta]_{0}+1$.
(Ozsváth-Szabó's ineq. $\Leftrightarrow 2[\Delta]_{0} \leq[\Delta]_{1}$.)
K : a knot with $\Delta_{K}(t)=1-4 t+7 t^{2}-4 t^{3}+t^{4}$,
For $\forall K,|\sigma(K)| \leq \#\left\{\alpha \in \mathbb{C} \backslash \mathbb{R}\left|\Delta_{K}(\alpha)=0,|\alpha|=1\right\}\right.$.
$\alpha_{1}, \alpha_{2}, \overline{\alpha_{1}}, \overline{\alpha_{2}} \in \mathbb{C}$: zeros of $\Delta_{K}(t) \Rightarrow\left|\alpha_{1}\right|,\left|\alpha_{2}\right| \neq 1$.
$\therefore \sigma(K)=0$. Then
The ineq. in Main Thm $\Leftrightarrow 3[\Delta]_{0}-1 \leq[\Delta]_{1} \leq 6[\Delta]_{0}+1$.
(Ozsváth-Szabó's ineq. $\Leftrightarrow 2[\Delta]_{0} \leq[\Delta]_{1}$.)
\therefore The knot with $\Delta_{K}(t)=1-4 t+7 t^{2}-4 t^{3}+t^{4}$ satisfies the inequality in Main Theorem. (Trapezoidal property and Ozsváth-Szabó's inequality are also satisfied.) However, a knot with this Δ is non-alternating knot.

The alternating knots of genus 2 with $[\Delta]_{0}=2$
The knots in G_{2} with $[\Delta]_{0}=2$ are just $7_{5}, 8_{14}$ up to $*$.

The alternating knots of genus 2 with $[\Delta]_{0}=2$
The knots in G_{2} with $[\Delta]_{0}=2$ are just $7_{5}, 8_{14}$ up to $*$.
Other alternating knots of genus 2 with $[\Delta]_{0}=2$ are obtained by applying once $\overline{t_{2}^{\prime}}$ move at a crossing of a diagram in $A F_{2}$:

The alternating knots of genus 2 with $[\Delta]_{0}=2$
The knots in G_{2} with $[\Delta]_{0}=2$ are just $7_{5}, 8_{14}$ up to $*$. Other alternating knots of genus 2 with $[\Delta]_{0}=2$ are obtained by applying once $\overline{t_{2}^{\prime}}$ move at a crossing of a diagram in $A F_{2}: 5_{1}\left(c_{1}\right)=7_{3}, 6_{2}\left(c_{1}\right)=8_{11}, 6_{2}\left(c_{2}\right)=8_{4}$, $6_{2}\left(c_{3}\right)=8_{6}, 6_{3}\left(c_{1}\right)=813,6_{3}\left(c_{2}\right)=88,6_{3}\left(c_{3}\right)=8_{8}$, $6_{3}\left(c_{4}\right)=8_{13}, 7_{6}\left(c_{1}\right)=9_{8}, 7_{6}\left(c_{2}\right)=9_{21}, 7_{6}\left(c_{3}\right)=9_{15}$, $7_{6}\left(c_{4}\right)=9_{12}, 7_{7}\left(c_{1}\right)=9_{14}, 7_{7}\left(c_{2}\right)=9_{14}, 7_{7}\left(c_{3}\right)=9_{19}$, $7_{7}\left(c_{4}\right)=9_{37}, 7_{7}\left(c_{5}\right)=9_{19}, 8_{12}\left(c_{1}\right)=10_{13}, 8_{12}\left(c_{2}\right)=$ $10_{35}, 8_{12}\left(c_{3}\right)=10_{13}, 8_{12}\left(c_{4}\right)=10_{35}$.
The composite alternating knots of genus 2 with $[\Delta]_{0}=$ 2 are just $3_{1} \# 5_{2}, 3_{1} \# 6_{1}, 4_{1} \# 5_{2}$, and $4_{1} \# 6_{1}$ up to $*$ for each factor.

Theorem 3.6.
The alternating knots of genus 2 with $[\Delta]_{0}=2$ are just the following knots up to $*: 7_{3}, 7_{5}, 8_{4}, 8_{6}, 8_{8}, 8_{11}$, $8_{13}, 8_{14}, 9_{8}, 9_{12}, 9_{14}, 9_{15}, 9_{19}, 9_{21}, 9_{37}, 10_{13}, 10_{35}$, $3_{1} \# 5_{2}, 3_{1}^{*} \# 5_{2}, 3_{1} \# 6_{1}, 3_{1}^{*} \# 6_{1}, 4_{1} \# 5_{2}$, and $4_{1} \# 6_{1}$.

The alternating knots of genus 2 with $[\Delta]_{0}=3$
By the same way (i.e. by applying twice $\overline{t_{2}^{\prime}}$ moves on $A F_{2}$), we have the following theorem.

Theorem 3.7.

The alternating prime knots of genus 2 with $[\Delta]_{0}=3$ are just the following knots up to $*$: $9_{4}, 9_{7}, 10_{4}$, $10_{7}, 10_{10}, 10_{20}, 10_{34}, 10_{36}, 11_{13}, 11_{59}, 11_{65}, 11_{195}$, $11_{211}, 11_{214}, 11_{230}, 12_{197}, 12_{691}, 3_{1} \# 7_{2}, 3_{1}^{*} \# 7_{2}$, $3_{1} \# 8_{1}, 3_{1}^{*} \# 8_{1}, 4_{1} \# 7_{2}$, and $4_{1} \# 8_{1}$.

Corollary 3.8.

The Alexander polynomials which have the trapezoidal property
$2-n_{1} t+\left(2 n_{1}-3\right) t^{2}-n_{1} t^{3}+2 t^{4}$ for $n_{1}=8$ or $n_{1} \geq 14$,
$2-n_{2} t+\left(2 n_{2}-5\right) t^{2}-n_{2} t^{3}+2 t^{4}$ for $n_{2} \geq 12$
are never realized by an alternating knot.

Corollary 3.9.

The Alexander polynomials which have the trapezoidal property
$3-n_{1} t+\left(2 n_{1}-5\right) t^{2}-n_{1} t^{3}+3 t^{4}$ for $n_{1}=6,10,14,18$ or $n_{1} \geq 20$,
$3-n_{2} t+\left(2 n_{2}-7\right) t^{2}-n_{2} t^{3}+3 t^{4}$ for $n_{2}=8,16$ or $n_{2} \geq 18$ are never realized by an alternating knot.

§4. Non-alternating knots up to 10 crossings

Fact

$[\Delta]_{0} \leq 3$ holds for any non-alternating prime knot up to 10 crossings (in Rolfsen's table).

There exists non-alternating knots which satisfy our inequality. (e.g. $\Delta(t)=1-4 t+7 t^{2}-4 t^{3}+t^{4}$.)

§4. Non-alternating knots up to 10 crossings

Fact

$[\Delta]_{0} \leq 3$ holds for any non-alternating prime knot up to 10 crossings (in Rolfsen's table).

There exists non-alternating knots which satisfy our inequality. (e.g. $\Delta(t)=1-4 t+7 t^{2}-4 t^{3}+t^{4}$.) i.e. we have non-alternating knots whose Δ are similar to those of alternating knots.

§4. Non-alternating knots up to 10 crossings

Fact

$[\Delta]_{0} \leq 3$ holds for any non-alternating prime knot up to 10 crossings (in Rolfsen's table).

There exists non-alternating knots which satisfy our inequality. (e.g. $\Delta(t)=1-4 t+7 t^{2}-4 t^{3}+t^{4}$.) i.e. we have non-alternating knots whose Δ are similar to those of alternating knots.

We enumerate these non-alternating knots with deg $\Delta=$ 4 up to 10 crossings.
$[\Delta]_{0}=1$

K	$\left([\Delta]_{0},[\Delta]_{1},[\Delta]_{2}\right)$	$\|\sigma\|$	alt. knot
8_{20}	$(1,2,3)$	0	$3_{1} \# 3_{1}$
8_{21}	$(1,4,5)$	2	$3_{1} \# 4_{1}$
9_{44}	$(1,4,7)$	0	\nexists
9_{45}	$(1,6,9)$	2	\nexists
9_{48}	$(1,7,11)$	2	\nexists
10_{132}	$(1,1,1)$	0	5_{1}
10_{133}	$(1,5,7)$	2	7_{6}
10_{136}	$(1,4,5)$	2	$3_{1} \# 4_{1}$
10_{137}	$(1,6,11)$	0	$4_{1} \# 4_{1}$
10_{140}	$(1,2,3)$	0	$3_{1} \# 3_{1}$

$$
[\Delta]_{0}=1
$$

K	$\left([\Delta]_{0,},[\Delta]_{1},[\Delta]_{2}\right)$	$\|\sigma\|$	alt. knot
8_{20}	$(1,2,3)$	0	$3_{1} \# 3_{1}$
8_{21}	$(1,4,5)$	2	$3_{1} \# 4_{1}$
9_{44}	$(1,4,7)$	0	\nexists
9_{45}	$(1,6,9)$	2	\nexists
9_{48}	$(1,7,11)$	2	\nexists
10_{132}	$(1,1,1)$	0	5_{1}
10_{133}	$(1,5,7)$	2	7_{6}
10_{136}	$(1,4,5)$	2	$3_{1} \# 4_{1}$
10_{137}	$(1,6,11)$	0	$4_{1} \# 4_{1}$
10_{140}	$(1,2,3)$	0	$3_{1} \# 3_{1}$

Corollary 3.5.
$1-n_{1} t+\left(2 n_{1}-1\right) t^{2}-n_{1} t^{3}+t^{4}$ for $n_{1}=4$ or $n_{1} \geq 8$,
$1-n_{2} t+\left(2 n_{2}-3\right) t^{2}-n_{2} t^{3}+t^{4}$ for $n_{2} \geq 6$
are never realized by an alternating knot.

$[\Delta]_{0}=2$			
K	$\left([\Delta]_{0},[\Delta]_{1},[\Delta]_{2}\right)$	$\|\sigma\|$	alt. knot
10_{129}	$(2,6,9)$	0	88
10_{130}	$(2,4,5)$	0	7_{5}
10_{131}	$(2,8,11)$	2	$8_{14}, 9_{8}$
10_{146}	$(2,8,13)$	0	\nexists
10_{147}	$(2,7,9)$	2	8_{11}
10_{166}	$(2,10,15)$	2	9_{15}

$[\Delta]_{0}=3$			
K	$\left([\Delta]_{0},[\Delta]_{1},[\Delta]_{2}\right)$	$\|\sigma\|$	alt. knot
9_{49}	$(3,6,7)$	4	\nexists
10_{135}	$(3,9,13)$	0	10_{34}
10_{144}	$(3,10,13)$	2	$3_{1} \# 8_{1}$
10_{163}	$(3,9,11)$	2	10_{20}
10_{165}	$(3,11,17)$	0	10_{10}

Symmetric union

K : a knot represented by a closure of a tangle T.
Definition ['57 S. Kinoshita-H. Terasaka]
The symmetric unions of K, denoted by K_{n}, are the knots represented by the following diagrams.

Proposition 4.1. $\Delta_{K_{n}}=\Delta_{K}^{2}$ for $\forall n \in \mathbb{Z}$.

- $K=3_{1} \Rightarrow K_{0}=3_{1} \# 3_{1}^{*}, K_{2}=8_{20}, K_{4}=10_{140}$.
- $K=3_{1} \Rightarrow K_{0}=3_{1} \# 3_{1}^{*}, K_{2}=8_{20}, K_{4}=10_{140}$.
- $K=4_{1} \Rightarrow K_{0}=4_{1} \# 4_{1}, K_{2}=10_{137}$.
- $K=3_{1} \Rightarrow K_{0}=3_{1} \# 3_{1}^{*}, K_{2}=8_{20}, K_{4}=10_{140}$.
- $K=4_{1} \Rightarrow K_{0}=4_{1} \# 4_{1}, K_{2}=10_{137}$.

$[\Delta]_{0}=1$			
K	$\left([\Delta]_{0},[\Delta]_{1},[\Delta]_{2}\right)$	$\|\sigma\|$	alt. knot
8_{20}	$(1,2,3)$	0	$3_{1} \# 3_{1}$
8_{21}	$(1,4,5)$	2	$3_{1} \# 4_{1}$
9_{44}	$(1,4,7)$	0	\nexists
9_{45}	$(1,6,9)$	2	\nexists
9_{48}	$(1,7,11)$	2	\nexists
10_{132}	$(1,1,1)$	0	5_{1}
10_{133}	$(1,5,7)$	2	7_{6}
10_{136}	$(1,4,5)$	2	$3_{1} \# 4_{1}$
10_{137}	$(1,6,11)$	0	$4_{1} \# 4_{1}$
10_{140}	$(1,2,3)$	0	$3_{1} \# 3_{1}$

$[\Delta]_{0}=2$			
K	$\left([\Delta]_{0},[\Delta]_{1},[\Delta]_{2}\right)$	$\|\sigma\|$	alt. knot
10_{129}	$(2,6,9)$	0	88
10_{130}	$(2,4,5)$	0	7_{5}
10_{131}	$(2,8,11)$	2	$8_{14}, 9_{8}$
10_{146}	$(2,8,13)$	0	\nexists
10_{147}	$(2,7,9)$	2	8_{11}
10_{166}	$(2,10,15)$	2	9_{15}

$[\Delta]_{0}=3$			
K	$\left([\Delta]_{0},[\Delta]_{1},[\Delta]_{2}\right)$	$\|\sigma\|$	alt. knot
9_{49}	$(3,6,7)$	4	\nexists
10_{135}	$(3,9,13)$	0	10_{34}
10_{144}	$(3,10,13)$	2	$3_{1} \# 8_{1}$
10_{163}	$(3,9,11)$	2	10_{20}
10_{165}	$(3,11,17)$	0	10_{10}

Kanenobu's knot family

T. Kanenobu discovered families of knots, denoted by $K(a, b)$.

$$
\begin{aligned}
& K(0,-1)=8_{8} \\
& K(2,-1)=10_{129} \\
& K(0,0)=4_{1} \# 4_{1} \\
& K(2,0)=10_{137}
\end{aligned}
$$

Kanenobu's knot family

T. Kanenobu discovered families of knots, denoted by $K(a, b)$.

$$
\begin{aligned}
& K(0,-1)=8_{8} \\
& K(2,-1)=10_{129} \\
& K(0,0)=4_{1} \# 4_{1} \\
& K(2,0)=10_{137}
\end{aligned}
$$

Proposition 4.2. ['86 Т. Kanenobu]
$\Delta_{K(a, b)}=\Delta(\varepsilon, \delta)(\varepsilon \equiv a, \delta \equiv b \bmod 2)$.
Here $\Delta(0,0)=(1,6,11), \Delta(0,1)=\Delta(1,0)=(2,6,9)$,
$\Delta(1,1)=(1,3,5,7)$.

$\underline{\Delta}]_{0}=1$			
K	$\left([\Delta]_{0},[\Delta]_{1},[\Delta]_{2}\right)$	$\|\sigma\|$	alt. knot
8_{20}	$(1,2,3)$	0	$3_{1} \# 3_{1}$
8_{21}	$(1,4,5)$	2	$3_{1} \# 4_{1}$
9_{44}	$(1,4,7)$	0	\nexists
9_{45}	$(1,6,9)$	2	\nexists
9_{48}	$(1,7,11)$	2	\nexists
10_{132}	$(1,1,1)$	0	5_{1}
10_{133}	$(1,5,7)$	2	7_{6}
10_{136}	$(1,4,5)$	2	$3_{1} \# 4_{1}$
10_{137}	$(1,6,11)$	0	$4_{1} \# 4_{1}$
10_{140}	$(1,2,3)$	0	$3_{1} \# 3_{1}$

$[\Delta]_{0}=2$			
K	$\left([\Delta]_{0},[\Delta]_{1},[\Delta]_{2}\right)$	$\|\sigma\|$	alt. knot
10_{129}	$(2,6,9)$	0	88
10_{130}	$(2,4,5)$	0	7_{5}
10_{131}	$(2,8,11)$	2	$8_{14}, 9_{8}$
10_{146}	$(2,8,13)$	0	\nexists
10_{147}	$(2,7,9)$	2	8_{11}
10_{166}	$(2,10,15)$	2	9_{15}

$[\Delta]_{0}=3$			
K	$\left([\Delta]_{0},[\Delta]_{1},[\Delta]_{2}\right)$	$\|\sigma\|$	alt. knot
9_{49}	$(3,6,7)$	4	\nexists
10_{135}	$(3,9,13)$	0	10_{34}
10_{144}	$(3,10,13)$	2	$3_{1} \# 8_{1}$
10_{163}	$(3,9,11)$	2	10_{20}
10_{165}	$(3,11,17)$	0	10_{10}

