A categorification of the one-variable Kamada–Miyazawa polynomial

Atsushi ISHII (RIMS, Kyoto University) Kokoro TANAKA (Gakushuin University)

[January 23, 2008]

A categorification of the one-variable Miyazawa polynomial

Atsushi ISHII (RIMS, Kyoto University) Kokoro TANAKA (Gakushuin University)

[January 23, 2008]

Khovanov homology for classical links [Khovanov]

$$L$$
: an ori. classical link, D : a diagram of L
 $(C(D), d)$: a chain complex of graded \mathbb{Z} -modules
 $C(D) = \bigoplus_i C^i(D), \quad d: C^i(D) \to C^{i+1}(D)$
 $C^i(D) = \bigoplus_j C^{i,j}(D), \quad d: C^{i,j}(D) \to C^{i+1,j}(D)$

Each $H^{i,j}(D) = H^i(C^{*,j}(D), d)$ is an invariant of L. The graded Euler characteristic of H(L)

is the Jones polynomial J(L) of L.

$$\sum_i (-1)^i q^j \operatorname{rank}(H^{i,j}(L)) = J(L) \ (\in \mathbb{Z}[q^{\pm 1}])$$

The aim of this talk

To extend Khovanov homology

from classical links to virtual links.

<u>Note</u>

Other extensions were defined in

[Manturov] and [Turaev–Turner].

Plan of my talk

- Reviews of Khovanov homology
- Review of Virtual links
- Difficulty of extending Khovanov homology to virtual links \rightarrow the existence of **Möbius cobordisms**
- Miyazawa polynomial (one-variable version)

 \nwarrow this is defined by using pole diagrams.

- Construction of our homology: Degree shifts Maps for Möbius and usual saddle cobordisms
- Example of computations

Jones polynomial and Khovanov complex

$$L$$
: an ori. classical link, D : a diagram of L
 $(n_+:=\#\swarrow$ of D , $n_-:=\#\swarrow$ of D)

ullet Jones polynomial $\left(\left\langle D
ight
angle, J(D) \in \mathbb{Z}[q^{\pm 1}]
ight)$

$$igg\{igg< D \ igg> = igg< igg) igg(igg> - q igg< igg> igg> igg> igg> igg> \ igg< O \cup D \ igg> = (q+q^{-1}) igg< D \ igg> igg> \ J(D) := (-1)^{n_-} q^{n_+-2n_-} igg> D \ igg> \in \mathbb{Z}[q^{\pm 1}]$$

• Khovanov complex

$$\begin{cases} \overline{C} (\swarrow) = \operatorname{Cone} \left(\overline{C} () () \to \overline{C} (\rightleftharpoons) \{1\} \right) \\ \overline{C} (\bigcirc \cup D) = V \otimes \overline{C} (D) \quad (\operatorname{qdim}(V) = q + q^{-1}) \\ C(D) := \overline{C} (D) [-n_{-}] \{n_{+} - 2n_{-}\}, \\ & \text{where } (\overline{C}[k] \{l\})^{i,j} = \overline{C}^{i-k,j-l}. \end{cases}$$

Frobenius algebra V and (1+1)-TQFT \mathcal{F}

• Frobenius algebra (the graded \mathbb{Z} -module V)

$$egin{aligned} V &= \mathbb{Z}[X]/(X^2) \cong \mathbb{Z}\langle 1
angle \oplus \mathbb{Z}\langle X
angle \ (\deg(1) = 1, \ \deg(X) = -1) & \leadsto ext{qdim}(V) = q + q^{-1} \end{aligned}$$

We give V a Frobenius algebra structure with

$$\begin{array}{ll} m:V\otimes V\to V & & \Delta:V\to V\otimes V \\ \left\{ \begin{array}{ll} m(1\otimes 1)=1, \ m(X\otimes X)=0 \\ m(1\otimes X)=m(X\otimes 1)=X \end{array} \right. & \left\{ \begin{array}{ll} \Delta(1)=1\otimes X+X\otimes 1 \\ \Delta(X)=X\otimes X \end{array} \right. \\ \iota:\mathbb{Z}\to V & & \epsilon:V\to\mathbb{Z} \\ \iota(1)=1 & & \epsilon(1)=0, \quad \epsilon(X)=1. \end{array} \right. \end{array}$$

• (1+1)-TQFT \mathcal{F}

For objects,

 $\mathcal{F}(\emptyset) = \mathbb{Z}, \ \mathcal{F}(\bigcirc) = V, \ \mathcal{F}(\bigcirc\bigcirc) = V \otimes V, \dots$ etc. For morphisms,

$$egin{aligned} \mathcal{F}\left(\diamondsuit
ight) &= m:V\otimes V o V, \ \mathcal{F}\left(\diamondsuit
ight) &= \iota:\mathbb{Z} o V, \ \mathcal{F}\left(\swarrow
ight) &= \Delta:V o V\otimes V, \ \mathcal{F}\left(\diamondsuit
ight) &= \epsilon:V o \mathbb{Z} \ . \end{aligned}$$

Jones polynomial and Khovanov complex

$$L$$
: an ori. classical link, D : a diagram of L
$$(n_+:=\#\swarrow \ \text{of } D,\ n_-:=\#\swarrow \ \text{of } D)$$

ullet Jones polynomial $\left(\left\langle D
ight
angle, J(D) \in \mathbb{Z}[q^{\pm 1}]
ight)$

$$igg\{igg< D \ igg> = igg< igg) igg(igg> - q igg< igg> igg> igg> igg> igg> \ igg< O \cup D \ igg> = (q+q^{-1}) igg< D \ igg> igg> \ J(D) := (-1)^{n_-} q^{n_+-2n_-} igg> D \ igg> \in \mathbb{Z}[q^{\pm 1}]$$

• Khovanov complex

$$\begin{cases} \overline{C} (\swarrow i) = \operatorname{Cone} \left(\overline{C} (i) (i) \to \overline{C} (\bowtie i) \{1\} \right) \\ \overline{C} (\bigcirc \cup D) = V \otimes \overline{C} (D) \quad (\operatorname{qdim}(V) = q + q^{-1}) \\ C(D) := \overline{C} (D) [-n_{-}] \{n_{+} - 2n_{-}\}, \\ \text{where } (\overline{C}[k] \{l\})^{i,j} = \overline{C}^{i-k,j-l}. \end{cases}$$

<u>Virtual links</u> [Kauffman] {virtual link} := {virtual link diagram}/R1–3, V1–4

Remark

The move) (\leftrightarrow \smile may Not change the number of circles on the plane if they have virtual intersections.

What is the difficulty? (\Rightarrow Möbius cobordisms)

- ullet Classical link diagram bifurcations of type $2 \rightarrow 1$ or of type $1 \rightarrow 2$
- ullet Virtual link diagram bifurcations of type $2 \to 1$ or of type $1 \to 2$ &

It may appear bifurcations of type $1 \rightarrow 1$

We call a bifurcation of type $1 \rightarrow 1$ a <u>Möbius cobordism</u>.

 $\begin{array}{l} \overbrace{for type \ 2 \rightarrow 1} \\ \hline m: V \otimes V \rightarrow V\{1\} \text{ is a degree-preserving map.} \\ -2, 0, 2 & 0, 2 \quad (\text{degrees}) \end{array}$ $\begin{array}{l} \overbrace{for type \ 1 \rightarrow 2} \\ \hline \Delta: V \rightarrow V \otimes V\{1\} \text{ is a degree-preserving map.} \\ -1, 1 & -3, -1, 1 \quad (\text{degrees}) \end{array}$ $\begin{array}{l} \overbrace{for type \ 1 \rightarrow 1} \\ \hline "?": V \rightarrow V\{1\} \text{ is a degree-preserving map??} \\ -1, 1 & 0, 2 \quad (\text{degrees}) \rightsquigarrow "?" \text{ should be the 0-map.} \end{array}$

However...

Maps for Möbius cobordisms (How to overcome?)

- [Manturov] used 0-maps for Möbius cobordisms. He changed (the sign of) the basis of V while passing from one crossing to another, and used exterior product instead of the symmetric product.
- [Turaev-Turner] used an unoriented (1 + 1)-TQFT. Over \mathbb{Q} , their theories are all singly graded. (Over \mathbb{Z}_2 , their theories contain bigraded theories.)
- [Ishii–Tanaka] use non-zero maps for Möbius cobordisms. Our key ideas are
 - to take a suitable grading shift for each states,
 - to assign one of two non-zero maps
 - to each of the usual saddle cobordisms, and to assign one of two non-zero maps

to each of the Möbius cobordisms.

Details are explained later...

One-variable Miyazawa polynomial [Miyazawa] (cf. [Ishii])

L: an ori. virtual link, D: a diagram of L

$$(n_+ := \# \swarrow \text{ of } D, \ n_- := \# \leftthreetimes \text{ of } D)$$
• The bracket polynomial $(\langle D \rangle \in \mathbb{Z}[q^{\pm 1}])$

$$\left\{ egin{array}{l} \left\langle \begin{array}{c} \left\langle \begin{array}{c} \left\langle \end{array} \right\rangle = \left\langle \end{array}
ight
angle \left\langle \begin{array}{c} \left\langle \end{array} - q \left\langle \begin{array}{c} \left\langle \end{array}
ight
angle
ight
angle, \\ \left\langle \begin{array}{c} \left\langle \end{array}
ight
angle = \left\langle \right\rangle \left\langle \left\langle - q \left\langle \begin{array}{c} \left\langle \end{array}
ight
angle, \\ \left\langle \begin{array}{c} \left\langle \end{array}
ight
angle = \left\langle \right\rangle \left\langle \left\langle - q \left\langle \begin{array}{c} \left\langle \end{array}
ight
angle
ight
angle, \\ \left\langle \left\langle \begin{array}{c} \left\langle + \right\rangle
ight
angle = \left\langle \left\langle + \right\rangle
ight
angle, \\ \left\langle \left\langle \left\langle \right\rangle
ight
angle = \left\langle \left\langle + \right\rangle
ight
angle, \\ \left\langle \left\langle \left\langle \right\rangle
ight
angle = \left\langle \left\langle + q^{-1} \right\rangle \left\langle D \right\rangle, \\ \left\langle \left\langle \left\langle \left\langle - \right\rangle
ight
angle = q(q + q^{-1}) \left\langle D \right\rangle. \end{array}
ight\}$$

• The one-variable Miyazawa polynomial

$$\widetilde{J}(D):=(-1)^{n_-}q^{n_+-2n_-}~\langle D
angle~(\in\mathbb{Z}[q^{\pm1}])$$

• <u>Notation</u>: $\bigcirc \rightarrow \bigcirc^{0}, \bigcirc \rightarrow \bigcirc^{1}$

Types of bifurcations

Our homology for virtual links $(H_+(\cdot))$ and $H_-(\cdot))$

L: an ori. virtual link, D: a diagram of L

 $(C_+(D), d)$: a chain complex of graded $\mathbb{Q}[t^{\pm 1}]$ -modules $(C_-(D), d)$: a chain complex of graded $\mathbb{Q}[t^{\pm 1}]$ -modules

Each graded $\mathbb{Q}[t^{\pm 1}]$ -module $H^i_+(D) = H^i(C^*_+(D), d), \ H^i_-(D) = H^i(C^*_-(D), d)$ is an invariant of L.

If L is a classical link, we have $H^i_+(L) \cong H^i_-(L) \cong H^i(L; \mathcal{F}')$ as graded $\mathbb{Q}[t^{\pm 1}]$ -modules. \checkmark is NOT the same as $H^i(L)(=H^i(L; \mathcal{F}))$.

Frobenius algebra V' and $(1+1)\text{-}\mathsf{TQFT}\ \mathcal{F}'$

• Frobenius algebra (the graded $\mathbb{Q}[t^{\pm 1}]$ -module V')

$$V' = \mathbb{Q}[t^{\pm 1}, X] / (X^2 - t) \cong \mathbb{Q}[t^{\pm 1}] \langle 1 \rangle \oplus \mathbb{Q}[t^{\pm 1}] \langle X \rangle$$
$$(\deg(1) = 1, \ \deg(X) = -1, \ \deg(t) = -4)$$

We give V' a Frobenius algebra structure with

$$\begin{split} m: V' \otimes V' \to V' \\ \begin{cases} m(1 \otimes 1) = 1, \ m(X \otimes X) = \underline{t \cdot 1} \\ m(1 \otimes X) = m(X \otimes 1) = X \end{cases} & \Delta: V' \to V' \otimes V' \\ \begin{cases} \Delta(1) = 1 \otimes X + X \otimes 1 \\ \Delta(X) = X \otimes X + \underline{t \cdot 1 \otimes 1} \\ \epsilon: V' \to \mathbb{Q}[t^{\pm 1}] \\ \iota(1) = 1 \end{cases} & \epsilon(1) = 0, \quad \epsilon(X) = 1. \end{split}$$

• (1+1)-TQFT \mathcal{F}'

For objects, $\mathcal{F}'(\emptyset) = \mathbb{Q}[t^{\pm 1}], \ \mathcal{F}'(\bigcirc) = V', \ \mathcal{F}'(\bigcirc\bigcirc) = V' \otimes V', \dots \text{ etc.}$ For morphisms,

$$egin{aligned} \mathcal{F}'\left(igoddowset
ight) &= m: V'\otimes V' o V', \ \mathcal{F}'\left(igoddowset
ight) &= \iota: \mathbb{Q}[t^{\pm 1}] o V', \ \mathcal{F}'\left(igoddowset
ight) &= \Delta: V' o V'\otimes V', \ \mathcal{F}'\left(igoddowset
ight) &= \epsilon: V' o \mathbb{Q}[t^{\pm 1}] \ . \end{aligned}$$

Our maps for Möbius and usual saddle cobordisms

• $C_+(\cdot)$ case (degree shift: $(\overset{1}{\to} \{q^n\} \rightsquigarrow V'\{q^{n+1}\})$ From $\bigoplus^{0} \{q^n\}$ to $\bigoplus^{1} \{q^{n+1}\}$, \checkmark degree -2assign $m \circ \Delta : V'\{q^n\} \to V'\{q^{n+2}\}.$ From $\bigoplus^1 \{q^n\}$ to $\bigoplus^0 \{q^{n+1}\}$, \checkmark degree 0 assign id : $V'\{q^{n+1}\} \rightarrow V'\{q^{n+1}\}$. From $(\overset{1}{\longrightarrow} (\overset{1}{\rightarrow} (q^n)$ to $(\overset{0}{\rightarrow} (q^{n+1})$, \checkmark degree 1 assign $\frac{1}{4t}(m \circ \Delta \circ m) : V' \otimes V'\{q^{n+2}\} \to V'\{q^{n+1}\}.$ From $(\begin{array}{c} 1 \\ \end{array} \{q^n\}$ to $(\begin{array}{c} 1 \\ \end{array} \{q^{n+1}\},$ / degree -3assign $\Delta \circ m \circ \Delta : V'\{q^n\} \to V' \otimes V'\{q^{n+3}\}.$

ullet $C_{-}(\,\cdot\,)$ case (degree shift: $igcup^1 \{q^n\} \rightsquigarrow V'\{q^{n-1}\})$ From $\bigoplus^{0} \{q^n\}$ to $\bigoplus^{1} \{q^{n+1}\}$, \checkmark degree 0 assign $\operatorname{id}: V'\{q^n\} \to V'\{q^n\}.$ From $\bigoplus^1 \{q^n\}$ to $\bigoplus^0 \{q^{n+1}\}$, \checkmark degree -2assign $m \circ \Delta : V'\{q^{n-1}\} \to V'\{q^{n+1}\}.$ From $\bigoplus^1 \{q^n\}$ to $\bigoplus^0 \{q^{n+1}\}$, \swarrow degree -3assign $m \circ \Delta \circ m : V' \otimes V' \{q^{n-2}\} \to V' \{q^{n+1}\}.$ From $\bigoplus^{0} \{q^n\}$ to $\bigoplus^{1} \{q^{n+1}\}$, \swarrow degree 1 assign $\frac{1}{4t}(\Delta \circ m \circ \Delta) : V'\{q^n\} \to V' \otimes V'\{q^{n-1}\}.$

Example (computation of the virtual trefoil)

