A categorification of the one-variable Kamada-Miyazawa polynomial

Atsushi ISHII (RIMS, Kyoto University)
Kokoro TANAKA (Gakushuin University)

[January 23, 2008]

A categorification of the one-variable Miyazawa polynomial

Atsushi ISHII (RIMS, Kyoto University)
Kokoro TANAKA (Gakushuin University)

[January 23, 2008]

Khovanov homology for classical links [Khovanov]

\boldsymbol{L} : an ori. classical link, \boldsymbol{D} : a diagram of \boldsymbol{L}
$(C(D), d)$: a chain complex of graded \mathbb{Z}-modules

$$
\begin{array}{ll}
C(D)=\oplus_{i} C^{i}(D), & d: C^{i}(D) \rightarrow C^{i+1}(D) \\
C^{i}(D)=\oplus_{j} C^{i, j}(D), & d: C^{i, j}(D) \rightarrow C^{i+1, j}(D)
\end{array}
$$

Each $\boldsymbol{H}^{i, j}(\boldsymbol{D})=\boldsymbol{H}^{i}\left(\boldsymbol{C}^{*, j}(\boldsymbol{D}), \boldsymbol{d}\right)$ is an invariant of \boldsymbol{L}.
The graded Euler characteristic of $\boldsymbol{H}(\boldsymbol{L})$
is the Jones polynomial $\boldsymbol{J}(\boldsymbol{L})$ of \boldsymbol{L}.

$$
\sum_{i}(-1)^{i} q^{j} \operatorname{rank}\left(H^{i, j}(L)\right)=J(L)\left(\in \mathbb{Z}\left[q^{ \pm 1}\right]\right)
$$

The aim of this talk
To extend Khovanov homology from classical links to virtual links.
Note
Other extensions were defined in
[Manturov] and [Turaev-Turner].

Plan of my talk

- Reviews of Khovanov homology
- Review of Virtual links
- Difficulty of extending Khovanov homology to virtual links
\rightarrow the existence of Möbius cobordisms
- Miyazawa polynomial (one-variable version)
\nwarrow this is defined by using pole diagrams.
- Construction of our homology:

Degree shifts
Maps for Möbius and usual saddle cobordisms

- Example of computations

Jones polynomial and Khovanov complex

L : an ori. classical link, D : a diagram of L

$$
\left(n_{+}:=\#^{\kappa}<\text { of } D, n_{-}:=\# \lambda^{\star} \text { of } D\right)
$$

- Jones polynomial $\left(\langle\boldsymbol{D}\rangle, J(D) \in \mathbb{Z}\left[\boldsymbol{q}^{ \pm 1}\right]\right)$

$$
\begin{gathered}
\left\{\begin{array}{l}
\rangle\rangle=\langle)(\rangle-q\langle \\
\langle\bigcirc \cup D\rangle=\left(q+q^{-1}\right)\langle D\rangle
\end{array}\right\rangle \\
J(D):=(-1)^{n_{-}} q^{n_{+}-2 n_{-}}\langle D\rangle \in \mathbb{Z}\left[q^{ \pm 1}\right]
\end{gathered}
$$

- Khovanov complex

$$
\left\{\begin{array}{l}
\bar{C}(\text { 久) = Cone }(\bar{C}()() \rightarrow \bar{C}(\smile)\{1\}) \\
\bar{C}(\bigcirc \cup D)=V \otimes \bar{C}(D) \quad\left(\operatorname{qdim}(V)=q+q^{-1}\right) \\
C(D):=\bar{C}(D)\left[-n_{-}\right]\left\{n_{+}-2 n_{-}\right\}, \\
\\
\quad \text { where }(\bar{C}[k]\{l\})^{i, j}=\bar{C}^{i-k, j-l} .
\end{array}\right.
$$

Example $(\langle(\mathcal{G})\rangle) \quad\left\{\begin{array}{l}\rangle\rangle=\langle)(\rangle-q\langle\underset{\sim}{~}\rangle \\ \langle\bigcirc \cup D\rangle=\left(q+q^{-1}\right)\langle\boldsymbol{D}\rangle\end{array}\right.$

Example $(J(G)) \quad J(D):=(-1)^{n_{-}} q^{n_{+}-2 n_{-}}\langle D\rangle$

$$
)(\stackrel{0 \text {-smoothing }}{\longleftrightarrow}) /\langle\xrightarrow{1 \text {-smoothing }}
$$

Frobenius algebra V and $(1+1)$-TQFT \mathcal{F}

- Frobenius algebra (the graded \mathbb{Z}-module \boldsymbol{V})

$$
\begin{aligned}
& V=\mathbb{Z}[X] /\left(X^{2}\right) \cong \mathbb{Z}\langle 1\rangle \oplus \mathbb{Z}\langle X\rangle \\
& \quad(\operatorname{deg}(1)=1, \operatorname{deg}(X)=-1) \rightsquigarrow q \operatorname{dim}(V)=q+q^{-1}
\end{aligned}
$$

We give \boldsymbol{V} a Frobenius algebra structure with

$$
\begin{array}{cc}
m: V \otimes V \rightarrow V & \Delta: V \rightarrow V \otimes V \\
\begin{cases}m(1 \otimes 1)=1, m(X \otimes X)=0 \\
m(1 \otimes X)=m(X \otimes 1)=X\end{cases} & \left\{\begin{array}{l}
\Delta(1)=1 \otimes X+X \otimes 1 \\
\Delta(X)=X \otimes X
\end{array}\right. \\
\iota: \mathbb{Z} \rightarrow V & \epsilon: V \rightarrow \mathbb{Z} \\
\iota(1)=1 & \epsilon(1)=0, \quad \epsilon(X)=1 .
\end{array}
$$

- $(1+1)$-TQFT \mathcal{F}

For objects,

$$
\mathcal{F}(\emptyset)=\mathbb{Z}, \mathcal{F}(\bigcirc)=\boldsymbol{V}, \mathcal{F}(\bigcirc \bigcirc)=\boldsymbol{V} \otimes \boldsymbol{V}, \ldots \text { etc }
$$

For morphisms,

$$
\begin{aligned}
& \mathcal{F}(\sqrt{\mathcal{S}})=m: V \otimes V \rightarrow V, \mathcal{F}(\square)=\iota: \mathbb{Z} \rightarrow \boldsymbol{V} \\
& \mathcal{F}(\mathcal{S})=\Delta: V \rightarrow V \otimes V, \mathcal{F}(D)=\epsilon: V \rightarrow \mathbb{Z} .
\end{aligned}
$$

Jones polynomial and Khovanov complex

L : an ori. classical link, D : a diagram of L

$$
\left(n_{+}:=\#^{\kappa}<\text { of } D, n_{-}:=\# \lambda^{\star} \text { of } D\right)
$$

- Jones polynomial $\left(\langle\boldsymbol{D}\rangle, J(D) \in \mathbb{Z}\left[\boldsymbol{q}^{ \pm 1}\right]\right)$

$$
\begin{gathered}
\left\{\begin{array}{l}
\rangle\rangle=\langle)(\rangle-q\langle \\
\langle\bigcirc \cup D\rangle=\left(q+q^{-1}\right)\langle D\rangle
\end{array}\right\rangle \\
J(D):=(-1)^{n_{-}} q^{n_{+}-2 n_{-}}\langle D\rangle \in \mathbb{Z}\left[q^{ \pm 1}\right]
\end{gathered}
$$

- Khovanov complex

$$
\left\{\begin{array}{l}
\bar{C}(\text { 久) = Cone }(\bar{C}()() \rightarrow \bar{C}(\smile)\{1\}) \\
\bar{C}(\bigcirc \cup D)=V \otimes \bar{C}(D) \quad\left(\operatorname{qdim}(V)=q+q^{-1}\right) \\
C(D):=\bar{C}(D)\left[-n_{-}\right]\left\{n_{+}-2 n_{-}\right\}, \\
\\
\quad \text { where }(\bar{C}[k]\{l\})^{i, j}=\bar{C}^{i-k, j-l} .
\end{array}\right.
$$

Example $(\bar{C}(\mathcal{G})))\left\{\begin{array}{l}\bar{C}(\text { 久 })=\text { Cone }(\bar{C}()() \rightarrow \bar{C}(\asymp)\{1\}) \\ \bar{C}(\bigcirc \cup D)=V \otimes \bar{C}(D)\end{array}\right.$

$$
)(\stackrel{0 \text {-smoothing }}{\longleftrightarrow}
$$

Example $(C(G))) \quad C(D):=\bar{C}(D)\left[-n_{-}\right]\left\{n_{+}-2 n_{-}\right\}$

$$
)(\stackrel{0 \text {-smoothing }}{\longleftrightarrow}) /<
$$

Virtual links [Kauffman]
$\{$ virtual link $\}:=\{$ virtual link diagram $\} / R 1-3, ~ V 1-4$

Remark

The move $)(\leftrightarrow \Longleftarrow$ may Not change the number of circles on the plane if they have virtual intersections.

What is the difficulty? (\Rightarrow Möbius cobordisms)

- Classical link diagram
bifurcations of type $2 \rightarrow 1$ or of type $1 \rightarrow 2$
- Virtual link diagram
bifurcations of type $2 \rightarrow 1$ or of type $1 \rightarrow 2$
\&
It may appear bifurcations of type $\mathbf{1} \rightarrow \mathbf{1}$
We call a bifurcation of type $1 \rightarrow 1$ a Möbius cobordism.
for type $2 \rightarrow 1$
$m: V \otimes \boldsymbol{V} \rightarrow \boldsymbol{V}\{1\}$ is a degree-preserving map.

$$
-2,0,2 \quad 0,2 \quad \text { (degrees) }
$$

for type $1 \rightarrow 2$
$\Delta: V \rightarrow V \otimes V\{1\}$ is a degree-preserving map.
$-1,1 \quad-3,-1,1 \quad$ (degrees)
for type $1 \rightarrow 1$
"?": $V \rightarrow V\{1\}$ is a degree-preserving map??
$-1,1 \quad 0,2$ (degrees) \rightsquigarrow "?" should be the 0-map.

However...

Maps for Möbius cobordisms (How to overcome?)

- [Manturov] used 0-maps for Möbius cobordisms. He changed (the sign of) the basis of \boldsymbol{V} while passing from one crossing to another, and used exterior product instead of the symmetric product.
- [Turaev-Turner] used an unoriented ($\mathbf{1}+\mathbf{1}$)-TQFT.

Over \mathbb{Q}, their theories are all singly graded. (Over $\mathbb{Z}_{\mathbf{2}}$, their theories contain bigraded theories.)

- [Ishii-Tanaka] use non-zero maps for Möbius cobordisms.

Our key ideas are
to take a suitable grading shift for each states,
to assign one of two non-zero maps
to each of the usual saddle cobordisms, and
to assign one of two non-zero maps
to each of the Möbius cobordisms.
Details are explained later...

One-variable Miyazawa polynomial [Miyazawa] (cf. [Ishii])
\boldsymbol{L} : an ori. virtual link, \boldsymbol{D} : a diagram of \boldsymbol{L}

$$
\left(n_{+}:=\#^{\kappa}<\text { of } D, n_{-}:=\#^{\star} \text { of } D\right)
$$

- The bracket polynomial $\left(\langle\boldsymbol{D}\rangle \in \mathbb{Z}\left[\boldsymbol{q}^{ \pm 1}\right]\right)$
- The one-variable Miyazawa polynomial

$$
\widetilde{J}(D):=(-1)^{n_{-}} q^{n_{+}-2 n_{-}}\langle D\rangle\left(\in \mathbb{Z}\left[q^{ \pm 1}\right]\right)
$$

- Notation: $\bigcirc \rightarrow \circlearrowleft^{0} \bigcirc \rightarrow \circlearrowleft^{1}$

Example (state of the diagram (-)

Types of bifurcations

Our homology for virtual links $\left(\boldsymbol{H}_{+}(\cdot)\right.$ and $\left.\boldsymbol{H}_{-}(\cdot)\right)$

\boldsymbol{L} : an ori. virtual link, \boldsymbol{D} : a diagram of \boldsymbol{L}
$\left(C_{+}(D), d\right)$: a chain complex of graded $\mathbb{Q}\left[t^{ \pm 1}\right]$-modules $\left(C_{-}(D), d\right)$: a chain complex of graded $\mathbb{Q}\left[\boldsymbol{t}^{ \pm 1}\right]$-modules

Each graded $\mathbb{Q}\left[\boldsymbol{t}^{ \pm 1}\right]$-module

$$
H_{+}^{i}(D)=H^{i}\left(C_{+}^{*}(D), d\right), H_{-}^{i}(D)=H^{i}\left(C_{-}^{*}(D), d\right)
$$

is an invariant of \boldsymbol{L}.

If \boldsymbol{L} is a classical link, we have

$$
H_{+}^{i}(L) \cong H_{-}^{i}(L) \cong H^{i}\left(L ; \mathcal{F}^{\prime}\right)
$$

as graded $\mathbb{Q}\left[\boldsymbol{t}^{ \pm 1}\right]$-modules. $\quad \backslash$ is NOT the same as $\boldsymbol{H}^{i}(\boldsymbol{L})\left(=\boldsymbol{H}^{i}(\boldsymbol{L} ; \mathcal{F})\right)$.

Frobenius algebra \boldsymbol{V}^{\prime} and $(1+1)$-TQFT \mathcal{F}^{\prime}

- Frobenius algebra (the graded $\mathbb{Q}\left[\boldsymbol{t}^{ \pm 1}\right]$-module V^{\prime})

$$
\begin{aligned}
V^{\prime}=\mathbb{Q}\left[t^{ \pm 1}, X\right] / & \left(X^{2}-t\right) \cong \mathbb{Q}\left[t^{ \pm 1}\right]\langle 1\rangle \oplus \mathbb{Q}\left[t^{ \pm 1}\right]\langle X\rangle \\
& (\operatorname{deg}(1)=1, \operatorname{deg}(X)=-1, \operatorname{deg}(t)=-4)
\end{aligned}
$$

We give \boldsymbol{V}^{\prime} a Frobenius algebra structure with
$m: V^{\prime} \otimes V^{\prime} \rightarrow V^{\prime}$
$\Delta: V^{\prime} \rightarrow V^{\prime} \otimes V^{\prime}$
$\left\{\begin{array}{l}m(1 \otimes 1)=1, m(X \otimes X)=\underline{t \cdot 1} \\ m(1 \otimes X)=m(X \otimes 1)=X\end{array}\right.$

$$
\left\{\begin{array}{l}
\Delta(1)=1 \otimes X+X \otimes 1 \\
\Delta(X)=X \otimes X+\underline{t \cdot 1 \otimes 1}
\end{array}\right.
$$

$\iota: \mathbb{Q}\left[t^{ \pm 1}\right] \rightarrow V^{\prime}$ $\iota(1)=1$
$\epsilon: V^{\prime} \rightarrow \mathbb{Q}\left[t^{ \pm 1}\right]$
$\epsilon(1)=0, \quad \epsilon(X)=1$.

- $(1+1)$-TQFT \mathcal{F}^{\prime}

For objects,
$\mathcal{F}^{\prime}(\emptyset)=\mathbb{Q}\left[\boldsymbol{t}^{ \pm 1}\right], \mathcal{F}^{\prime}(\bigcirc)=\boldsymbol{V}^{\prime}, \mathcal{F}^{\prime}(\bigcirc \bigcirc)=\boldsymbol{V}^{\prime} \otimes \boldsymbol{V}^{\prime}, \ldots$ etc.
For morphisms,

$$
\begin{aligned}
& \mathcal{F}^{\prime}(\mathfrak{S})=m: V^{\prime} \otimes V^{\prime} \rightarrow V^{\prime}, \quad \mathcal{F}^{\prime}(\boxtimes)=\iota: \mathbb{Q}\left[t^{ \pm 1}\right] \rightarrow V^{\prime} \\
& \mathcal{F}^{\prime}(\Omega)=\Delta: V^{\prime} \rightarrow V^{\prime} \otimes V^{\prime}, \\
& \mathcal{F}^{\prime}(D)=\epsilon: V^{\prime} \rightarrow \mathbb{Q}\left[t^{ \pm 1}\right]
\end{aligned}
$$

Our maps for Möbius and usual saddle cobordisms

- $C_{+}(\cdot)$ case (degree shift: $\bigodot^{1}\left\{q^{n}\right\} \rightsquigarrow V^{\prime}\left\{q^{n+1}\right\}$)

From $\wp^{\circ}\left\{q^{n}\right\}$ to $\bigodot^{1}\left\{q^{n+1}\right\}$, $\quad \swarrow$ degree $-\mathbf{2}$ assign $m \circ \Delta: V^{\prime}\left\{q^{n}\right\} \rightarrow V^{\prime}\left\{q^{n+2}\right\}$.

From $\Im^{1}\left\{q^{n}\right\}$ to $\circlearrowleft\left\{q^{n+1}\right\}$,
\swarrow degree 0 assign id: $V^{\prime}\left\{q^{n+1}\right\} \rightarrow V^{\prime}\left\{q^{n+1}\right\}$.
From $\bigcirc^{1}\left\{q^{n}\right\}$ to $\bigcirc^{0}\left\{q^{n+1}\right\}$, $\quad \swarrow$ degree 1 assign $\frac{1}{4 t}(m \circ \Delta \circ m): V^{\prime} \otimes V^{\prime}\left\{q^{n+2}\right\} \rightarrow V^{\prime}\left\{q^{n+1}\right\}$.
From $\circlearrowleft^{\rho}\left\{q^{n}\right\}$ to $\circlearrowleft^{1}\left\{q^{n+1}\right\}$, $\quad \swarrow$ degree -3 assign $\Delta \circ m \circ \Delta: V^{\prime}\left\{q^{n}\right\} \rightarrow V^{\prime} \otimes V^{\prime}\left\{q^{n+3}\right\}$.

- $C_{-}(\cdot)$ case (degree shift: $\bigcirc^{1}\left\{q^{n}\right\} \rightsquigarrow V^{\prime}\left\{q^{n-1}\right\}$)

From $\circlearrowleft^{\rho}\left\{q^{n}\right\}$ to $\bigodot^{1}\left\{q^{n+1}\right\}$,
\swarrow degree 0 assign id : $V^{\prime}\left\{q^{n}\right\} \rightarrow V^{\prime}\left\{q^{n}\right\}$.
From $\circlearrowleft^{1}\left\{q^{n}\right\}$ to $\wp^{\wp}\left\{q^{n+1}\right\}$,
\swarrow degree - $\mathbf{2}$
assign $m \circ \Delta: V^{\prime}\left\{q^{n-1}\right\} \rightarrow V^{\prime}\left\{q^{n+1}\right\}$.
From $\bigcirc^{1} \bigodot^{1}\left\{q^{n}\right\}$ to $\bigodot^{0}\left\{q^{n+1}\right\}$, $\quad \swarrow$ degree -3 assign $m \circ \Delta \circ m: V^{\prime} \otimes V^{\prime}\left\{q^{n-2}\right\} \rightarrow V^{\prime}\left\{q^{n+1}\right\}$.
From $\circlearrowleft^{\circ}\left\{q^{n}\right\}$ to $\bigcirc^{1}\left\{q^{n+1}\right\}, \quad \quad \swarrow$ degree 1 assign $\frac{1}{4 t}(\Delta \circ m \circ \Delta): V^{\prime}\left\{q^{n}\right\} \rightarrow V^{\prime} \otimes V^{\prime}\left\{q^{n-1}\right\}$.

Recall (state of the diagram

Example $\left(C_{+}(\Theta)\right)$

$$
\mathcal{O}^{1}\left\{q^{n}\right\} \rightsquigarrow V^{\prime}\left\{q^{n+1}\right\}
$$

Example $\left(C_{-}(\Theta)\right)$ $\circlearrowleft^{1}\left\{q^{n}\right\} \rightsquigarrow V^{\prime}\left\{q^{n-1}\right\}$

Example (computation of the virtual trefoil)

