Incompressible Surfaces in Graph Link Exteriors

Toru IKEDA (Kochi University)

January 22, 2008

The Fourth East Asian School of Knots and Related Topics – 1 / 21

Problems

Preliminaries

2-sided case

1-sided case

Graph link case

 $L \subset S^3$: a non-splittable graph link

F: an incompressible surface in E(L)

Problems

Preliminaries

2-sided case

1-sided case

Graph link case

 $L \subset S^3$: a non-splittable graph link F: an incompressible surface in E(L)

(1) $\partial F \neq \phi$

(2) $\partial F = \phi$

Problems

Preliminaries

2-sided case

1-sided case

Graph link case

 $L \subset S^3$: a non-splittable graph link F: an incompressible surface in E(L)(1) $\partial F \neq \phi$

L: a knot F: 1- or 2-sided

(2) $\partial F = \phi$

Problems

Preliminaries

2-sided case

1-sided case

Graph link case

 $L \subset S^{3} : \text{ a non-splittable graph link}$ F : an incompressible surface in E(L)(1) $\partial F \neq \phi$ L : a knot F : 1 or 2-sidedWhat are the possible types of ∂F ? (2) $\partial F = \phi$

Problems

Preliminaries

2-sided case

1-sided case

Graph link case

 $L \subset S^3$: a non-splittable graph link F: an incompressible surface in E(L)(1) $\partial F \neq \phi$ L : a knot F: 1- or 2-sidedWhat are the possible types of ∂F ? (2) $\partial F = \phi$ L : a knot or a link F: 2-sided, $\chi(F) < 0$

Problems

Preliminaries

2-sided case

1-sided case

Graph link case

 $L \subset S^3$: a non-splittable graph link F: an incompressible surface in E(L)(1) $\partial F \neq \phi$ L : a knot F: 1- or 2-sidedWhat are the possible types of ∂F ? (2) $\partial F = \phi$ L : a knot or a link F: 2-sided, $\chi(F) < 0$ What are the possible types of L?

Problems

Preliminaries

2-sided case

1-sided case

Graph link case

 $L \subset S^3$: a non-splittable graph link F: an incompressible surface in E(L)(1) $\partial F \neq \phi$ L : a knot F: 1- or 2-sidedWhat are the possible types of ∂F ? (2) $\partial F = \phi$ L: a knot or a link F: 2-sided, $\chi(F) < 0$ What are the possible types of L? What are the possible $\chi(F)$?

I TODICITIS	Ρ	ro	b	lems	5
-------------	---	----	---	------	---

Preliminaries

Definition 1

Definition 2

2-sided case

1-sided case

Graph link case

Preliminaries

Problems

Preliminaries

Definition 1 Definition 2

Definition 2

2-sided case

1-sided case

Graph link case

$L \subset S^3$: a non-splittable link

L : a graph link \Leftrightarrow

E(L) is splitted into Seifert manifold pieces

Problems

Preliminaries

Definition 1 Definition 2

2-sided case

1-sided case

Graph link case

$L \subset S^3$: a non-splittable link

L : a graph link \Leftrightarrow

E(L) is splitted into Seifert manifold pieces

i.e. torus knot space, cable space or composing space

Problems

Preliminaries

Definition 1 Definition 2

2-sided case

1-sided case

Graph link case

$L \subset S^3$: a non-splittable link

L : a graph link \Leftrightarrow

E(L) is splitted into Seifert manifold pieces

i.e. torus knot space, cable space or composing space

Examples

(1) the granny knot

Problems

Preliminaries

Definition 1 Definition 2

2-sided case

1-sided case

Graph link case

$L \subset S^3$: a non-splittable link

L : a graph link \Leftrightarrow

E(L) is splitted into Seifert manifold pieces

i.e. torus knot space, cable space or composing space

Examples

(1) the granny knot

Problems

Preliminaries

Definition 1 Definition 2

2-sided case

1-sided case

Graph link case

$L \subset S^3$: a non-splittable link

L : a graph link \Leftrightarrow

E(L) is splitted into Seifert manifold pieces

i.e. torus knot space, cable space or composing space

Examples

(1) the granny knot

Problems

Preliminaries

Definition 1 Definition 2

2-sided case

1-sided case

Graph link case

$L \subset S^3$: a non-splittable link

L : a graph link \Leftrightarrow

E(L) is splitted into Seifert manifold pieces

i.e. torus knot space, cable space or composing space

Examples

(1) the granny knot

Problems

Preliminaries

Definition 1 Definition 2

2-sided case

1-sided case

Graph link case

$L \subset S^3$: a non-splittable link

L : a graph link \Leftrightarrow

E(L) is splitted into Seifert manifold pieces

i.e. torus knot space, cable space or composing space

Examples

(1) the granny knot

Problems

Preliminaries

Definition 1 Definition 2

2-sided case

1-sided case

Graph link case

$L \subset S^3$: a non-splittable link

L : a graph link \Leftrightarrow

E(L) is splitted into Seifert manifold pieces

i.e. torus knot space, cable space or composing space

Examples

(1) the granny knot

Problems

Preliminaries

Definition 1

Definition 2

2-sided case

1-sided case

Graph link case

- (1) P: a Seifert manifold piece in E(L) $T\subset \partial P$
 - V : a solid torus s.t. $\partial V = T$
 - T: an outer torus of $P \Leftrightarrow P \subset V$

an inner torus \Leftrightarrow otherwise

Problems

Preliminaries

Definition 1

Definition 2

2-sided case

1-sided case

Graph link case

(1) P: a Seifert manifold piece in E(L) $T \subset \partial P$

V : a solid torus s.t. $\partial V = T$

- $\begin{array}{rcl} T: & \text{an outer torus of } P & \Leftrightarrow & P \subset V \\ & & \text{an inner torus} & \Leftrightarrow & \text{otherwise} \end{array}$
- (2) $F \subset E(L)$: a bounded proper surface

Problems

Preliminaries

Definition 1

Definition 2

2-sided case

1-sided case

Graph link case

(1) P: a Seifert manifold piece in E(L) $T \subset \partial P$

V : a solid torus s.t. $\partial V = T$

- $T: an outer torus of P \Leftrightarrow P \subset V$ an inner torus \Leftrightarrow otherwise
- (2) $F \subset E(L)$: a bounded proper surface
- (3) M : a Seifert manifold
 - $F\subset M$: a proper surface
 - $\begin{array}{rcl}F: & {\sf vertical} & \Leftrightarrow F = \bigcup {\sf fibers} \\ & {\sf horizontal} & \Leftrightarrow {\sf a} {\sf ~fiber~of~a} {\sf ~surface~bundle~over~} S^1\end{array}$

Preliminaries

 \triangleright 2-sided case

Table 1

Theorem 1

Theorem 2

Example

1-sided case

Graph link case

2-sided case

The Fourth East Asian School of Knots and Related Topics – 6 / 21

Table 1

Problems

Preliminaries

2-sided case

Table 1

> Theorem 1

Theorem 2

Example

1-sided case

Graph link case

K : a graph knot $F \subset E(K)$: a 2-sided essential surface

Problems

Preliminaries

2-sided case

Table 1

> Theorem 1

Theorem 2

Example

1-sided case

Graph link case

K : a graph knot $F \subset E(K)$: a 2-sided essential surface

(1) F: meridional or longitudinal

Problems	Pr	0	b	lei	ms
----------	----	---	---	-----	----

Preliminaries

2-sided case

Table 1

> Theorem 1

Theorem 2

Example

1-sided case

Graph link case

K: a graph knot $F \subset E(K)$: a 2-sided essential surface

- (1) F : meridional or longitudinal
- (2) $\exists F$: meridional \Leftrightarrow K: not an iterated torus knot

Problems

Preliminaries

2-sided case

Table 1

> Theorem 1

Theorem 2

Example

1-sided case

Graph link case

- K: a graph knot $F \subset E(K)$: a 2-sided essential surface
 - (1) F : meridional or longitudinal
 - (2) $\exists F$: meridional \Leftrightarrow K: not an iterated torus knot
 - (3) K: an iterated torus knot F: preferred longitudinal \Rightarrow F: a Seifert surface

Problems

Preliminaries

2-sided case

Table 1

> Theorem 1

Theorem 2

Example

1-sided case

Graph link case

- K: a graph knot $F \subset E(K)$: a 2-sided essential surface
 - (1) F: meridional or longitudinal
 - (2) $\exists F$: meridional \Leftrightarrow K: not an iterated torus knot
 - (3) K: an iterated torus knot F: preferred longitudinal \Rightarrow F: a Seifert surface

Example

Problems

Preliminaries

2-sided case

Table 1

> Theorem 1

Theorem 2

Example

1-sided case

Graph link case

- K: a graph knot $F \subset E(K)$: a 2-sided essential surface
 - (1) F : meridional or longitudinal
 - (2) $\exists F :$ meridional $\Leftrightarrow K :$ not an iterated torus knot
 - (3) K: an iterated torus knot F: preferred longitudinal \Rightarrow F: a Seifert surface

Example

Problems

Preliminaries

2-sided case

Table 1

Theorem 1

> Theorem 2

Example

1-sided case

Graph link case

K : a graph knot $F \subset E(K)$: a closed essential surface of $\chi(F) < 0$

Then

Problems

Preliminaries

2-sided case

Table 1

Theorem 1

> Theorem 2

Example

1-sided case

Graph link case

K : a graph knot $F \subset E(K) : \text{ a closed essential surface of } \chi(F) < 0$ Then

F = (essential annuli in composing spaces)

 \cup (horizontal surfaces in cable spaces)

Problems

Preliminaries

2-sided case

 Table 1

Theorem 1 Theorem 2

Example

1-sided case

Graph link case

```
K : a graph knot F \subset E(K) : \text{ a closed essential surface of } \chi(F) < 0 Then
```

F = (essential annuli in composing spaces)

 \cup (horizontal surfaces in cable spaces)

Corollary

Any iterated torus knot exterior contains no closed essential surface F of $\chi(F) < 0$.

Example

Problems

Preliminaries

2-sided case

Table 1

Theorem 1

Theorem 2

Example

1-sided case

Graph link case

Ρ	ro	b	lems
	•••	~	

Preliminaries

2-sided case

▶ 1-sided case

Known results

Table 2

Theorem 3

Graph link case

1-sided case

The Fourth East Asian School of Knots and Related Topics – $11\ /\ 21$

Problems

Preliminaries

2-sided case

1-sided case

Known results

Table 2

Theorem 3

Graph link case

Lemma (Frohman and Rannard)

- M : a Seifert manifold
- $\varepsilon_1, \ldots, \varepsilon_n$: exceptional fibers
- $F \subset M$: an incompressible surface
- Then F can be isotoped so that

Problems

Preliminaries

2-sided case

1-sided case

Known results

Table 2

Theorem 3

Graph link case

Lemma (Frohman and Rannard)

 $\begin{array}{l} M: \text{ a Seifert manifold} \\ \varepsilon_1, \dots, \varepsilon_n : \text{ exceptional fibers} \\ F \subset M: \text{ an incompressible surface} \\ \end{array}$ $\begin{array}{l} \text{Then } F \text{ can be isotoped so that} \\ F \cap N(\partial M \cup \varepsilon_1 \cup \dots \cup \varepsilon_n) : \text{ possibly 1-sided} \\ F \cap E(\partial M \cup \varepsilon_1 \cup \dots \cup \varepsilon_n) : \text{ horizontal} \end{array}$

Problems

Preliminaries

2-sided case

1-sided case

Known results

Table 2

Theorem 3

Graph link case

Lemma (Frohman and Rannard)

 $\begin{array}{l} M: \text{ a Seifert manifold} \\ \varepsilon_1, \dots, \varepsilon_n : \text{ exceptional fibers} \\ F \subset M: \text{ an incompressible surface} \\ \end{array}$ $\begin{array}{l} \text{Then } F \text{ can be isotoped so that} \\ F \cap N(\partial M \cup \varepsilon_1 \cup \dots \cup \varepsilon_n) : \text{ possibly 1-sided} \\ F \cap E(\partial M \cup \varepsilon_1 \cup \dots \cup \varepsilon_n) : \text{ horizontal} \end{array}$

Lemma (Frohman)

- V: a solid torus
- (1) $\forall F \subset V$: 1-sided incompressible surface, ∂F : type (2p, 2q + 1), where $p \neq 0$

Problems

Preliminaries

2-sided case

1-sided case

Known results

Table 2

Theorem 3

Graph link case

Lemma (Frohman and Rannard)

M : a Seifert manifold $\varepsilon_1, \dots, \varepsilon_n : \text{ exceptional fibers}$ $F \subset M : an \text{ incompressible surface}$ Then F can be isotoped so that $F \cap N(\partial M \cup \varepsilon_1 \cup \dots \cup \varepsilon_n) : \text{ possibly 1-sided}$ $F \cap E(\partial M \cup \varepsilon_1 \cup \dots \cup \varepsilon_n) : \text{ horizontal}$

Lemma (Frohman)

- V : a solid torus
- (1) $\forall F \subset V$: 1-sided incompressible surface, ∂F : type (2p, 2q + 1), where $p \neq 0$

(2) $\forall l \subset \partial V$: a loop of type (2p, 2q + 1), $\exists F \subset V$: 1-sided incompressible surface s.t. $\partial F = l$

Table 2

	cable space of type (p,q)	torus knot space of type (p,q)
inner torus	(λ,μ)	$(\lambda,2\mu)$
outer torus	$\left(p\lambda+2\lambda',rac{\mu+2q\lambda'}{p} ight)$	
remark	$rac{\mu+2q\lambda'}{p}\in\mathbb{Z},\ \mu eq pq\lambda$	$2\mu eq pq\lambda$

Boundaries of possibly 1-sided horizontal surfaces

Problems

Preliminaries

2-sided case

1-sided case

Known results

Table 2

> Theorem 3

Graph link case

K: a graph knot

 $F \subset E(K)$: a bounded incompressible surface

Then

Problems

Preliminaries

2-sided case

1-sided case

Known results

Table 2

> Theorem 3

Graph link case

K : a graph knot $F \subset E(K)$: a bounded incompressible surface Then

 ∂F : not of type (2p,2q+1), where $p,q\in\mathbb{Z}$

Preliminaries

2-sided case

1-sided case

➢ Graph link case Composing spaces Table 3-1 Table 3-2 Theorem 4 Table 4 Theorem 5

Graph link case

The Fourth East Asian School of Knots and Related Topics – 15 / 21

Composing spaces

Problems

Preliminaries

2-sided case

1-sided case

Graph link case

Composing spaces Table 3-1 Table 3-2 Theorem 4 Table 4

Theorem 5

Type I

Red : outer tori

Black or **Blue** : inner tori

Composing spaces

Problems

Preliminaries

2-sided case

1-sided case

Graph link case Composing Spaces Table 3-1 Table 3-2 Theorem 4 Table 4 Theorem 5

Type I

Type II

Red : outer tori

Black or Blue : inner tori

The Fourth East Asian School of Knots and Related Topics – 16 / 21

Composing spaces

Problems

Preliminaries

2-sided case

1-sided case

Graph link case Composing Spaces Table 3-1 Table 3-2 Theorem 4 Table 4 Theorem 5

Type I

Black or Blue : inner tori

Type II

Type III

The Fourth East Asian School of Knots and Related Topics – 16 / 21

Table 3-1

Problems

Preliminaries

2-sided case

1-sided case

Graph link case Composing spaces Table 3-1

Table 3-2 Theorem 4

Table 4

Theorem 5

Boundaries of 2-sided horizontal surfaces

The Fourth East Asian School of Knots and Related Topics – 17 / 21

Table 3-2

Problems

Preliminaries 2-sided case		<i>n</i> -fold composing space	cable space	torus link space
Graph link case	type	III - (np, nq)	(np, nq)	(np, nq)
Composing spaces Table 3-1 Table 3-2 Theorem 4 Table 4 Theorem 5	inner tori	$egin{aligned} &(\lambda_1,\mu+q\lambda_1),\ &\cdots,\ &(\lambda_n,\mu+q\lambda_n) \end{aligned}$	$egin{aligned} & (\lambda_1,\mu+pq\lambda_1), \ & \dots, \ & (\lambda_n,\mu+pq\lambda_n) \end{aligned}$	$egin{aligned} & (\lambda_1,\mu+pq\lambda_1), \ & \dots, \ & (\lambda_n,\mu+pq\lambda_n) \end{aligned}$
	outer tori	$(\overline{\lambda},\mu+q\overline{\lambda})$	$\left[\left(\overline{\lambda},rac{\mu}{ p }+rac{q\overline{\lambda}}{p} ight) ight]$	
	remark	$\overline{\lambda} = \sum_{i=1}^n \lambda_i$	$\overline{\lambda} = p \sum_{i=1}^n \lambda_i$	$\mu = -pq\sum_{i=1}^n \lambda_i$
		$\gcd(p,q)$	=1, p >1,	$\mu e 0$

Boundaries of 2-sided horizontal surfaces

The Fourth East Asian School of Knots and Related Topics – 18 / 21

Problems

Preliminaries

2-sided case

1-sided case

Graph link case Composing spaces Table 3-1 Table 3-2 Theorem 4 Table 4 Theorem 5

L : a non-splittable graph link

E(L) : N Seifert manifold pieces

```
\exists F \subset E(L) : a closed essential surface of \chi(F) < 0
```

Then

Problems

Preliminaries

2-sided case

1-sided case

Graph link case

Composing spaces Table 3-1 Table 3-2 Theorem 4 Table 4 Theorem 5 L : a non-splittable graph link E(L) : N Seifert manifold pieces $\exists F \subset E(L)$: a closed essential surface of $\chi(F) < 0$ Then

 $N=2 \quad \Rightarrow \quad L: \text{ an } ((p,q),(r,0)) \text{-iterated torus link}$

Problems

Preliminaries

2-sided case

1-sided case

Graph link case Composing spaces Table 3-1 Table 3-2 ▷ Theorem 4 Table 4 Theorem 5 L : a non-splittable graph link E(L) : N Seifert manifold pieces $\exists F \subset E(L)$: a closed essential surface of $\chi(F) < 0$ Then

$$\begin{split} N &= 2 \quad \Rightarrow \quad L: \text{ an } ((p,q),(r,0))\text{-iterated torus link} \\ N &= 3 \quad \Rightarrow \quad L: (1) \text{ an iterated torus link of type} \\ &((p,q),(r,0),(t,u)), ((p,q),(r,s),(t,0)), \\ &((0,q),(r,s),(0,u)), ((0,q),(r,s),(t,0)), \\ &((p,q),(r,s),(n,npqr^2)) \text{ or } ((p,q),(r,s),(t,u)), \end{split}$$
 $(2) \text{ an iterated cable of the Hopf link of type} \\ &((p,q),(r,s),(n,npqr^2)) \text{ or } ((p,q),(r,s),(t,u)) \\ (3) \text{ a } (2p,2q)\text{-torus link with both components cabled} \\ &\begin{pmatrix} \text{red : special cable, blue : cable or special cable,} \\ &underline : exceptional component for iterated cabling \end{pmatrix}$

Table 4

Problems		(nn, na)-cable space	(nn, na)-torus link space
Preliminaries			
-sided case	χ	(k,n, p)	(k,n, p , q)
-sided case	-1	(2,1,2)	(6, 1, 2, 3), (6, 1, 3, 2)
Graph link case	ົງ	(2 1 2) (4 1 2)	(10, 1, 0, 2) $(10, 1, 2, 0)$
Composing spaces		(0 , 1 , 0), (4 , 1 , 2)	(12, 1, 2, 3), (12, 1, 3, 2)
able 3-1 able 3-2	-3	(6, 1, 2), (4, 1, 4),	(18, 1, 2, 3), (18, 1, 3, 2),
heorem 4			
> Table 4		(2,2,2)	(10, 1, 2, 5), (10, 1, 5, 2)
Theorem 5	-4	(8, 1, 2), (6, 1, 3),	(24, 1, 2, 3), (24, 1, 3, 2)
		(5,1,5)	

Horizontal surfaces of $\chi \ge -4$ (k-fold branched covers of the orbit-manifolds)

Table 4

Problems		(nn na)-cable space	(nn, na)-torus link space
Preliminaries		(np, nq)-cable space	(np, nq)-corus mik space
2-sided case	χ	(k,n, p)	(k,n, p , q)
1-sided case	-1	(2, 1, 2)	(6, 1, 2, 3), (6, 1, 3, 2)
Graph link case Composing spaces	-2	(3,1,3),(4,1,2)	(12, 1, 2, 3), (12, 1, 3, 2)
Table 3-1 Table 3-2	-3	(6, 1, 2), (4, 1, 4),	(18, 1, 2, 3), (18, 1, 3, 2),
Theorem 4 Table 4		(2, 2, 2)	(10, 1, 2, 5), (10, 1, 5, 2)
Theorem 5	-4	(8, 1, 2), (6, 1, 3),	(24, 1, 2, 3), (24, 1, 3, 2)
		(5,1,5)	

Horizontal surfaces of $\chi \geq -4$ (k-fold branched covers of the orbit-manifolds)

Problems

Preliminaries

2-sided case

1-sided case

Graph link case Composing spaces Table 3-1 Table 3-2 Theorem 4 Table 4 ▷ Theorem 5

L: a non-splittable graph link

- E(L) : no composing space
- $F \subset E(L)$: closed essential surface

Then

Problems

Preliminaries

2-sided case

1-sided case

Graph link case Composing spaces Table 3-1 Table 3-2 Theorem 4 Table 4 ▷ Theorem 5

L: a non-splittable graph link E(L): no composing space $F \subset E(L)$: closed essential surface

Then

(1)
$$\chi(F) \geq 0$$
 or $\chi(F) \leq -6$

Problems

Preliminaries

2-sided case

1-sided case

Graph link case Composing spaces Table 3-1 Table 3-2 Theorem 4 Table 4 ▷ Theorem 5 L: a non-splittable graph link E(L): no composing space $F \subset E(L)$: closed essential surface

Then

(1)
$$\chi(F) \geq 0$$
 or $\chi(F) \leq -6$

(2) no cable space of type (4, 4r + 2) $\Rightarrow \chi(F) \neq -6, -8$

Problems

Preliminaries

2-sided case

1-sided case

Graph link case Composing spaces Table 3-1 Table 3-2 Theorem 4 Table 4 ▷ Theorem 5 L: a non-splittable graph link E(L): no composing space $F \subset E(L)$: closed essential surface

Then

(1)
$$\chi(F) \geq 0$$
 or $\chi(F) \leq -6$

(2) no cable space of type (4, 4r + 2) $\Rightarrow \chi(F) \neq -6, -8$

(3) no cable space of type (2, 2r + 1)

$$\Rightarrow \chi(F)
eq -8$$