Topological types of 3-dimensional small covers

-A joint work with Li Yu

Zhi Lü

School of Mathematical Sciences Fudan University, Shanghai

January 22, 2008

・ロト ・同ト ・ヨト ・ヨト

-

- Background
- Objective
- Main results
- An application to cobordism
- Six operations

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Background

- Objective
- Main results
- An application to cobordism
- Six operations

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Background

- Objective
- Main results
- An application to cobordism
- Six operations

(日) (同) (三) (三)

- Background
- Objective
- Main results
- An application to cobordism
- Six operations

(日) (同) (三) (三)

- Background
- Objective
- Main results
- An application to cobordism
- Six operations

- Background
- Objective
- Main results
- An application to cobordism
- Six operations

з

§2 Objective of this talk §3 Main results §4 Application to cobordism §5 Six operations §1.1 Standard $(\mathbb{Z}_2)^n$ -representation

§1.2 Convex polytopes

§1.3 Examples for small covers

§1.4 Two Key points

§1.5 Reconstruction for small covers

 $\S1$ Background—Theory of small covers

Theory of small covers: introduced by M. Davis and T. Januszkiewicz, [Duke Math. J., 1991]

A small cover Mⁿ is a closed manifold Mⁿ with an effective action of (Z₂)ⁿ such that

1) M^n is locally equiv. to the standard $(\mathbb{Z}_2)^n$ -representation;

2) its orbit space $M/(\mathbb{Z}_2)^n$ is a simple convex polytope.

A connection

Equivariant topology \longleftrightarrow Combinatorics

イロン 不同 とくほう イロン

§2 Objective of this talk §3 Main results §4 Application to cobordism §5 Six operations §1.1 Standard $(\mathbb{Z}_2)^n$ -representation

§1.2 Convex polytopes

§1.3 Examples for small covers

§1.4 Two Key points

§1.5 Reconstruction for small covers

 $\S1$ Background—Theory of small covers

Theory of small covers: introduced by M. Davis and T. Januszkiewicz, [Duke Math. J., 1991]

• A small cover M^n is a closed manifold M^n with an effective action of $(\mathbb{Z}_2)^n$ such that

1) M^n is locally equiv. to the standard $(\mathbb{Z}_2)^n$ -representation;

2) its orbit space $M/(\mathbb{Z}_2)^n$ is a simple convex polytope.

A connection

Equivariant topology \longleftrightarrow Combinatorics

イロト 不得 とうせん きょうしゅ

§2 Objective of this talk §3 Main results §4 Application to cobordism §5 Six operations §1.1 Standard $(\mathbb{Z}_2)^n$ -representation

§1.2 Convex polytopes

§1.3 Examples for small covers

§1.4 Two Key points

§1.5 Reconstruction for small covers

 $\S1$ Background—Theory of small covers

Theory of small covers: introduced by M. Davis and T. Januszkiewicz, [Duke Math. J., 1991]

- A small cover M^n is a closed manifold M^n with an effective action of $(\mathbb{Z}_2)^n$ such that
 - 1) M^n is locally equiv. to the standard $(\mathbb{Z}_2)^n$ -representation;
 - 2) its orbit space $M/(\mathbb{Z}_2)^n$ is a simple convex polytope.

A connection

Equivariant topology \longleftrightarrow Combinatorics

イロト 不得 とうせん きょうしゅ

§2 Objective of this talk
 §3 Main results
 §4 Application to cobordism
 §5 Six operations

§1.1 Standard $(\mathbb{Z}_2)^n$ -representation

§1.2 Convex polytopes

§1.3 Examples for small covers

§1.4 Two Key points

§1.5 Reconstruction for small covers

 $\S1$ Background—Theory of small covers

Theory of small covers: introduced by M. Davis and T. Januszkiewicz, [Duke Math. J., 1991]

- A small cover M^n is a closed manifold M^n with an effective action of $(\mathbb{Z}_2)^n$ such that
 - 1) M^n is locally equiv. to the standard $(\mathbb{Z}_2)^n$ -representation;
 - 2) its orbit space $M/(\mathbb{Z}_2)^n$ is a simple convex polytope.

A connection

Equivariant topology \longleftrightarrow Combinatorics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シの()~

§2 Objective of this talk
 §3 Main results
 §4 Application to cobordism
 §5 Six operations

§1.1 Standard $(\mathbb{Z}_2)^n$ -representation

§1.2 Convex polytopes

§1.3 Examples for small covers

§1.4 Two Key points

§1.5 Reconstruction for small covers

 $\S1$ Background—Theory of small covers

Theory of small covers: introduced by M. Davis and T. Januszkiewicz, [Duke Math. J., 1991]

- A small cover M^n is a closed manifold M^n with an effective action of $(\mathbb{Z}_2)^n$ such that
 - 1) M^n is locally equiv. to the standard $(\mathbb{Z}_2)^n$ -representation;
 - 2) its orbit space $M/(\mathbb{Z}_2)^n$ is a simple convex polytope.

A connection

Equivariant topology \longleftrightarrow Combinatorics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シの()~

§2 Objective of this talk §3 Main results §4 Application to cobordism §5 Six operations $\S1.1$ Standard $(\mathbb{Z}_2)^n$ -representation

§1.2 Convex polytopes

§1.3 Examples for small covers

§1.4 Two Key points

§1.5 Reconstruction for small covers

 $\S1$ Background—Theory of small covers

Theory of small covers: introduced by M. Davis and T. Januszkiewicz, [Duke Math. J., 1991]

- A small cover M^n is a closed manifold M^n with an effective action of $(\mathbb{Z}_2)^n$ such that
 - 1) M^n is locally equiv. to the standard $(\mathbb{Z}_2)^n$ -representation;
 - 2) its orbit space $M/(\mathbb{Z}_2)^n$ is a simple convex polytope.

A connection

 $\mathsf{Equivariant\ topology\ }\longleftrightarrow\ \mathsf{Combinatorics}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シの()~

§2 Objective of this talk
 §3 Main results
 §4 Application to cobordism
 §5 Six operations

§1.1 Standard $(\mathbb{Z}_2)^n$ -representation

- §1.2 Convex polytopes
- §1.3 Examples for small covers
- §1.4 Two Key points
- §1.5 Reconstruction for small covers

Standard $(\mathbb{Z}_2)^n$ -representation

$$(\mathbb{Z}_2)^n \curvearrowright \mathbb{R}^n$$
 by

$$(x_1,...,x_n)\longmapsto (g_1x_1,...,g_nx_n)$$

where $(x_1,...,x_n) \in \mathbb{R}^n$ and $(g_1,...,g_n) \in (\mathbb{Z}_2)^n$.

The orbit space is $\mathbb{R}^n_{>0}$ (i.e., the positive cone in \mathbb{R}^n).

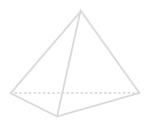
イロト イポト イヨト イヨト

§2 Objective of this talk
 §3 Main results
 §4 Application to cobordism
 §5 Six operations

§1.1 Standard $(\mathbb{Z}_2)^n$ -representation §1.2 Convex polytopes §1.3 Examples for small covers §1.4 Two Key points §1.5 Reconstruction for small covers

Convex polytopes

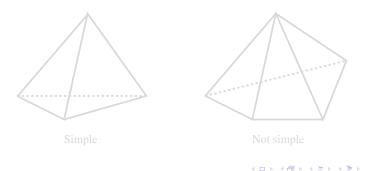
- A convex polytope P^n is a convex hull of finite points in \mathbb{R}^n .
- A convex polytope Pⁿ is said to be simple if the number of codim-one faces (facets) meeting at each vertex is n.



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

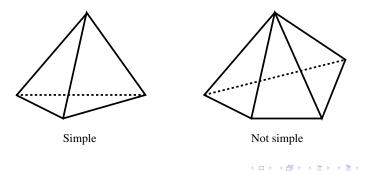
Convex polytopes

- A convex polytope P^n is a convex hull of finite points in \mathbb{R}^n .
- A convex polytope P^n is said to be **simple** if the number of codim-one faces (facets) meeting at each vertex is *n*.



Convex polytopes

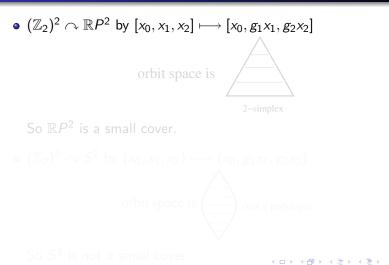
- A convex polytope P^n is a convex hull of finite points in \mathbb{R}^n .
- A convex polytope P^n is said to be **simple** if the number of codim-one faces (facets) meeting at each vertex is *n*.



§2 Objective of this talk
 §3 Main results
 §4 Application to cobordism
 §5 Six operations

§1.1 Standard (Z₂)ⁿ-representation
§1.2 Convex polytopes
§1.3 Examples for small covers
§1.4 Two Key points
§1.5 Reconstruction for small covers

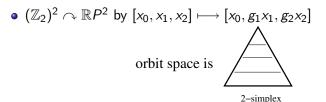
Examples for small covers



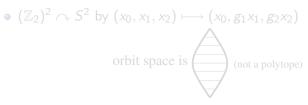
§2 Objective of this talk
 §3 Main results
 §4 Application to cobordism
 §5 Six operations

§1.1 Standard (Z₂)ⁿ-representation
§1.2 Convex polytopes
§1.3 Examples for small covers
§1.4 Two Key points
§1.5 Reconstruction for small covers

Examples for small covers



So $\mathbb{R}P^2$ is a small cover.



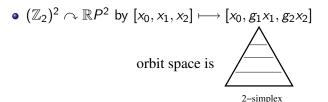
So S^2 is not a small cover.

イロン 不同 とくほう イロン

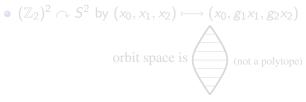
§2 Objective of this talk
 §3 Main results
 §4 Application to cobordism
 §5 Six operations

§1.1 Standard (Z₂)ⁿ-representation
§1.2 Convex polytopes
§1.3 Examples for small covers
§1.4 Two Key points
§1.5 Reconstruction for small covers

Examples for small covers



So $\mathbb{R}P^2$ is a small cover.



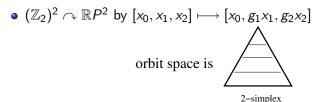
So S^2 is not a small cover.

イロト 不得 とうせん きょうしゅ

§2 Objective of this talk
 §3 Main results
 §4 Application to cobordism
 §5 Six operations

§1.1 Standard $(\mathbb{Z}_2)^n$ -representation §1.2 Convex polytopes §1.3 Examples for small covers §1.4 Two Key points §1.5 Reconstruction for small covers

Examples for small covers



So $\mathbb{R}P^2$ is a small cover.

•
$$(\mathbb{Z}_2)^2 \curvearrowright S^2$$
 by $(x_0, x_1, x_2) \longmapsto (x_0, g_1 x_1, g_2 x_2)$
orbit space is (not a polytope)

So S^2 is not a small cover.

イロト 不得 とうせん きょうしゅ

§2 Objective of this talk §3 Main results §4 Application to cobordism §5 Six operations §1.1 Standard (Z₂)ⁿ-representation
§1.2 Convex polytopes
§1.3 Examples for small covers
§1.4 Two Key points
§1.5 Reconstruction for small covers

Examples for small covers

•
$$(\mathbb{Z}_2)^2 \curvearrowright \mathbb{R}P^2$$
 by $[x_0, x_1, x_2] \longmapsto [x_0, g_1 x_1, g_2 x_2]$
orbit space is
 $\xrightarrow{2-\text{simplex}}$

So $\mathbb{R}P^2$ is a small cover.

•
$$(\mathbb{Z}_2)^2 \curvearrowright S^2$$
 by $(x_0, x_1, x_2) \longmapsto (x_0, g_1 x_1, g_2 x_2)$
orbit space is (not a polytope)

So S^2 is not a small cover.

§2 Objective of this talk §3 Main results §4 Application to cobordism §5 Six operations §1.1 Standard (Z₂)ⁿ-representation
§1.2 Convex polytopes
§1.3 Examples for small covers
§1.4 Two Key points
§1.5 Reconstruction for small covers

Examples for small covers

•
$$(\mathbb{Z}_2)^2 \curvearrowright \mathbb{R}P^2$$
 by $[x_0, x_1, x_2] \longmapsto [x_0, g_1 x_1, g_2 x_2]$
orbit space is

2-simplex

So $\mathbb{R}P^2$ is a small cover.

•
$$(\mathbb{Z}_2)^2 \curvearrowright S^2$$
 by $(x_0, x_1, x_2) \longmapsto (x_0, g_1 x_1, g_2 x_2)$
orbit space is (not a polytope)

So S^2 is not a small cover.

§2 Objective of this talk
 §3 Main results
 §4 Application to cobordism
 §5 Six operations

1.1 Standard $(\mathbb{Z}_2)^n$ -representation

§1.3 Examples for small covers

§1.4 Two Key points

§1.5 Reconstruction for small covers

Two key points for theory of small covers

$\pi: M^n \longrightarrow P^n$: a small cover over P^n .

-Algebraic topology

Equivariant cohomology: H^{*}_{(ℤ2)ⁿ}(Mⁿ; ℤ2) ≅ R(Pⁿ; ℤ2) where R(Pⁿ; ℤ2) is the Reisner-Stanley face ring of Pⁿ:

$$R(P^n;\mathbb{Z}_2)=\mathbb{Z}_2[F_1,...,F_l]/I$$

 $I = (F_{i_1} \cdots F_{i_r} | F_{i_1} \cap \cdots \cap F_{i_r} = \emptyset)$ is an ideal, and each F_i is a facet (ie., codim-one face) of P^n .

• Mod 2 Betti numbers: $(b_0, b_1, ..., b_n) = (h_0, h_1, ..., h_n)$ where $(h_0, h_1, ..., h_n)$ is the *h*-vector of P^n

§2 Objective of this talk
 §3 Main results
 §4 Application to cobordism
 §5 Six operations

 $\S{1.1}$ Standard $(\mathbb{Z}_2)^n$ -representation

1.2 Convex polytopes

§1.3 Examples for small covers

§1.4 Two Key points

§1.5 Reconstruction for small covers

Two key points for theory of small covers

$\pi: M^n \longrightarrow P^n$: a small cover over P^n .

-Algebraic topology

Equivariant cohomology: H^{*}_{(Z₂)ⁿ}(Mⁿ; Z₂) ≅ R(Pⁿ; Z₂) where R(Pⁿ; Z₂) is the Reisner-Stanley face ring of Pⁿ:

$$R(P^n;\mathbb{Z}_2)=\mathbb{Z}_2[F_1,...,F_l]/I$$

 $I = (F_{i_1} \cdots F_{i_r} | F_{i_1} \cap \cdots \cap F_{i_r} = \emptyset)$ is an ideal, and each F_i is a facet (ie., codim-one face) of P^n .

• Mod 2 Betti numbers: $(b_0, b_1, ..., b_n) = (h_0, h_1, ..., h_n)$ where $(h_0, h_1, ..., h_n)$ is the *h*-vector of P^n

(日) (同) (三) (三)

§2 Objective of this talk §3 Main results §4 Application to cobordism §5 Six operations 1.1 Standard $(\mathbb{Z}_2)^n$ -representation 1.2 Convex polytopes 1.3 Examples for small covers

§1.4 Two Key points

§1.5 Reconstruction for small covers

Two key points for theory of small covers

 $\pi: M^n \longrightarrow P^n$: a small cover over P^n .

-Algebraic topology

Equivariant cohomology: H^{*}_{(ℤ₂)ⁿ}(Mⁿ; ℤ₂) ≅ R(Pⁿ; ℤ₂) where R(Pⁿ; ℤ₂) is the Reisner-Stanley face ring of Pⁿ:

$$R(P^n;\mathbb{Z}_2) = \mathbb{Z}_2[F_1,...,F_l]/I$$

 $I = (F_{i_1} \cdots F_{i_r} | F_{i_1} \cap \cdots \cap F_{i_r} = \emptyset)$ is an ideal, and each F_i is a facet (ie., codim-one face) of P^n .

• Mod 2 Betti numbers: $(b_0, b_1, ..., b_n) = (h_0, h_1, ..., h_n)$ where $(h_0, h_1, ..., h_n)$ is the *h*-vector of P^n

イロン イロン イヨン イヨン

§2 Objective of this talk §3 Main results §4 Application to cobordism §5 Six operations 1.1 Standard $(\mathbb{Z}_2)^n$ -representation 1.2 Convex polytopes

§1.3 Examples for small covers

§1.4 Two Key points

§1.5 Reconstruction for small covers

Two key points for theory of small covers

 $\pi: M^n \longrightarrow P^n$: a small cover over P^n .

-Algebraic topology

Equivariant cohomology: H^{*}_{(ℤ₂)ⁿ}(Mⁿ; ℤ₂) ≅ R(Pⁿ; ℤ₂) where R(Pⁿ; ℤ₂) is the Reisner-Stanley face ring of Pⁿ:

$$R(P^n;\mathbb{Z}_2) = \mathbb{Z}_2[F_1,...,F_l]/I$$

 $I = (F_{i_1} \cdots F_{i_r} | F_{i_1} \cap \cdots \cap F_{i_r} = \emptyset)$ is an ideal, and each F_i is a facet (ie., codim-one face) of P^n .

• Mod 2 Betti numbers: $(b_0, b_1, ..., b_n) = (h_0, h_1, ..., h_n)$ where $(h_0, h_1, ..., h_n)$ is the *h*-vector of P^n

・ロン ・雪 と ・ ヨ と ・ ヨ と …

§2 Objective of this talk
 §3 Main results
 §4 Application to cobordism
 §5 Six operations

 $\S1.1$ Standard $(\mathbb{Z}_2)^n$ -representation

1.2 Convex polytopes

§1.3 Examples for small covers

§1.4 Two Key points

§1.5 Reconstruction for small covers

Two key points for theory of small covers

-Geometric topology

• $(\mathbb{Z}_2)^n$ -coloring: Each small cover $\pi: M^n \longrightarrow P^n$ determines

$$\lambda: \mathcal{F}(P^n) \longrightarrow (\mathbb{Z}_2)^n$$

mapping *n* facets at each vertex to *n* linearly independent vectors, where $\mathcal{F}(P^n)$:=all facets of P^n .

 Reconstruction: Up to equivariant homeomorphism, Mⁿ can be recovered by the pair (Pⁿ, λ).

§2 Objective of this talk §3 Main results §4 Application to cobordism §5 Six operations $\S1.1$ Standard $(\mathbb{Z}_2)^n$ -representation

1.2 Convex polytopes

§1.3 Examples for small covers

§1.4 Two Key points

§1.5 Reconstruction for small covers

Two key points for theory of small covers

-Geometric topology

• $(\mathbb{Z}_2)^n$ -coloring: Each small cover $\pi: M^n \longrightarrow P^n$ determines

 $\lambda: \mathcal{F}(P^n) \longrightarrow (\mathbb{Z}_2)^n$

mapping *n* facets at each vertex to *n* linearly independent vectors, where $\mathcal{F}(P^n)$:=all facets of P^n .

 Reconstruction: Up to equivariant homeomorphism, Mⁿ can be recovered by the pair (Pⁿ, λ).

・ロン ・回 と ・ ヨ と ・ ヨ と …

§2 Objective of this talk §3 Main results §4 Application to cobordism §5 Six operations §1.1 Standard (Z₂)ⁿ-representation

1.2 Convex polytopes

§1.3 Examples for small covers

§1.4 Two Key points

§1.5 Reconstruction for small covers

Two key points for theory of small covers

-Geometric topology

• $(\mathbb{Z}_2)^n$ -coloring: Each small cover $\pi: M^n \longrightarrow P^n$ determines

$$\lambda: \mathcal{F}(P^n) \longrightarrow (\mathbb{Z}_2)^n$$

mapping *n* facets at each vertex to *n* linearly independent vectors, where $\mathcal{F}(P^n)$:=all facets of P^n .

 Reconstruction: Up to equivariant homeomorphism, Mⁿ can be recovered by the pair (Pⁿ, λ).

イロン 不同 とくほう イロン

§2 Objective of this talk §3 Main results §4 Application to cobordism §5 Six operations §1.1 Standard (Z₂)ⁿ-representation

1.2 Convex polytopes

§1.3 Examples for small covers

§1.4 Two Key points

§1.5 Reconstruction for small covers

Two key points for theory of small covers

-Geometric topology

• $(\mathbb{Z}_2)^n$ -coloring: Each small cover $\pi: M^n \longrightarrow P^n$ determines

$$\lambda: \mathcal{F}(P^n) \longrightarrow (\mathbb{Z}_2)^n$$

mapping *n* facets at each vertex to *n* linearly independent vectors, where $\mathcal{F}(P^n)$:=all facets of P^n .

 Reconstruction: Up to equivariant homeomorphism, Mⁿ can be recovered by the pair (Pⁿ, λ).

イロン 不同 とくほう イロン

§2 Objective of this talk §3 Main results §4 Application to cobordism §5 Six operations §1.1 Standard $(\mathbb{Z}_2)^n$ -representation §1.2 Convex polytopes §1.3 Examples for small covers §1.4 Two Key points **81.5 Reconstruction for small covers**

Reconstruction

Take a point $x \in \partial P^n$, then \exists a *l*-face F^l of P^n s. t. x is in the relative interior of F^l , where $0 \leq l \leq n-1$. $\because P^n$ is simple $\therefore \exists n-l$ facets $F_1, ..., F_{n-l}$ s.t. $F^l = F_1 \cap \cdots \cap F_{n-l}$.

$$G_{F'}$$
:= the rank- $(n - l)$ subgroup of $(\mathbb{Z}_2)^n$ determined by $\lambda(F_1), ..., \lambda(F_{n-l})$.

Define an equivalence relation \sim on $P^n \times (\mathbb{Z}_2)^n$ as follows:

$$(x,g) \sim (y,h) \iff \begin{cases} x = y \text{ and } g = h & \text{if } x \in \text{int}P^n \\ x = y \text{ and } gh^{-1} \in G_{F^I} & \text{if } x \in \text{int}F^I \subset \partial P^n. \end{cases}$$

§2 Objective of this talk
 §3 Main results
 §4 Application to cobordism
 §5 Six operations

§1.1 Standard $(\mathbb{Z}_2)^n$ -representation §1.2 Convex polytopes §1.3 Examples for small covers §1.4 Two Key points §1.5 Reconstruction for small covers

Reconstruction

Take a point $x \in \partial P^n$, then \exists a *l*-face F^l of P^n s. t. x is in the relative interior of F^l , where $0 \leq l \leq n-1$. $\therefore P^n$ is simple $\therefore \exists n-l$ facets $F_1, ..., F_{n-l}$ s.t. $F^l = F_1 \cap \cdots \cap F_{n-l}$.

 $G_{F'}$:= the rank-(n - l) subgroup of $(\mathbb{Z}_2)^n$ determined by $\lambda(F_1), ..., \lambda(F_{n-l})$.

Define an equivalence relation \sim on $P^n \times (\mathbb{Z}_2)^n$ as follows:

 $(x,g) \sim (y,h) \iff \begin{cases} x = y \text{ and } g = h & \text{if } x \in \text{int}P^n \\ x = y \text{ and } gh^{-1} \in G_{F^I} & \text{if } x \in \text{int}F^I \subset \partial P^n. \end{cases}$

§1 Background—Theory of small covers §2 Objective of this talk

§3 Main results §4 Application to cobordism §5 Six operations §1.1 Standard $(\mathbb{Z}_2)^n$ -representation §1.2 Convex polytopes §1.3 Examples for small covers §1.4 Two Key points **§1.5 Reconstruction for small covers**

Reconstruction

Take a point $x \in \partial P^n$, then \exists a *l*-face F^l of P^n s. t. x is in the relative interior of F^l , where $0 \leq l \leq n-1$. $\therefore P^n$ is simple $\therefore \exists n-l$ facets $F_1, ..., F_{n-l}$ s.t. $F^l = F_1 \cap \cdots \cap F_{n-l}$.

$$G_{F^{l}}:=$$
 the rank- $(n - l)$ subgroup of $(\mathbb{Z}_{2})^{n}$ determined by $\lambda(F_{1}), ..., \lambda(F_{n-l}).$

Define an equivalence relation \sim on $P^n \times (\mathbb{Z}_2)^n$ as follows:

 $(x,g) \sim (y,h) \iff \begin{cases} x = y \text{ and } g = h & \text{if } x \in \text{int}P^n \\ x = y \text{ and } gh^{-1} \in G_{F^I} & \text{if } x \in \text{int}F^I \subset \partial P^n. \end{cases}$

Reconstruction

Take a point $x \in \partial P^n$, then \exists a *l*-face F^l of P^n s. t. x is in the relative interior of F^l , where $0 \leq l \leq n-1$. $\therefore P^n$ is simple $\therefore \exists$ n-l facets $F_1, ..., F_{n-l}$ s.t. $F^l = F_1 \cap \cdots \cap F_{n-l}$.

$$G_{F^{l}}$$
:= the rank- $(n - l)$ subgroup of $(\mathbb{Z}_{2})^{n}$ determined by $\lambda(F_{1}), ..., \lambda(F_{n-l})$.

Define an equivalence relation \sim on $P^n \times (\mathbb{Z}_2)^n$ as follows:

 $(x,g) \sim (y,h) \iff \begin{cases} x = y \text{ and } g = h & \text{if } x \in \text{int}P^n \\ x = y \text{ and } gh^{-1} \in G_{F^I} & \text{if } x \in \text{int}F^I \subset \partial P^n. \end{cases}$

Reconstruction

Take a point $x \in \partial P^n$, then \exists a *l*-face F^l of P^n s. t. x is in the relative interior of F^l , where $0 \le l \le n - 1$. $\therefore P^n$ is simple $\therefore \exists n - l$ facets $F_1, ..., F_{n-l}$ s.t. $F^l = F_1 \cap \cdots \cap F_{n-l}$.

$$G_{F^{l}}$$
:= the rank- $(n - l)$ subgroup of $(\mathbb{Z}_{2})^{n}$ determined by $\lambda(F_{1}), ..., \lambda(F_{n-l})$.

Define an equivalence relation \sim on $P^n \times (\mathbb{Z}_2)^n$ as follows:

$$(x,g) \sim (y,h) \iff \begin{cases} x = y \text{ and } g = h & \text{if } x \in \text{int}P^n \\ x = y \text{ and } gh^{-1} \in G_{F^I} & \text{if } x \in \text{int}F^I \subset \partial P^n. \end{cases}$$

Reconstruction

Take a point $x \in \partial P^n$, then \exists a *l*-face F^l of P^n s. t. x is in the relative interior of F^l , where $0 \le l \le n - 1$. $\therefore P^n$ is simple $\therefore \exists n - l$ facets $F_1, ..., F_{n-l}$ s.t. $F^l = F_1 \cap \cdots \cap F_{n-l}$.

$$G_{F^{l}}$$
:= the rank- $(n - l)$ subgroup of $(\mathbb{Z}_{2})^{n}$ determined by $\lambda(F_{1}), ..., \lambda(F_{n-l})$.

Define an equivalence relation \sim on $P^n \times (\mathbb{Z}_2)^n$ as follows:

$$(x,g) \sim (y,h) \iff \begin{cases} x = y \text{ and } g = h & \text{if } x \in \text{int}P^n \\ x = y \text{ and } gh^{-1} \in G_{F^I} & \text{if } x \in \text{int}F^I \subset \partial P^n. \end{cases}$$

The quotient space $P^n \times (\mathbb{Z}_2)^n / \sim$ denoted by $M(P^n, \lambda)$ recovers M^n up to equivariant homeomorphism.

§2 Objective of this talk §3 Main results §4 Application to cobordism §5 Six operations §1.1 Standard $(\mathbb{Z}_2)^n$ -representation

§1.2 Convex polytopes

§1.3 Examples for small covers

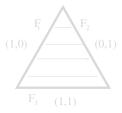
§1.4 Two Key points

§1.5 Reconstruction for small covers

An example of $(\mathbb{Z}_2)^n$ -coloring

Example: $(\mathbb{Z}_2)^2 \curvearrowright \mathbb{R}P^2$ by $[x_0, x_1, x_2] \longmapsto [x_0, g_1x_1, g_2x_2]$.

Then its $(\mathbb{Z}_2)^2$ -coloring λ is as follows:



where

 $\lambda(F_1) = (1,0) \iff \mathbb{Z}_2 \times \{0\} \iff \pi^{-1}(F_1) = \{[x_0,0,x_2]\} \subset \mathbb{R}P^2$ $\lambda(F_2) = (0,1) \iff \{0\} \times \mathbb{Z}_2 \iff \pi^{-1}(F_2) = \{[x_0,x_1,0]\} \subset \mathbb{R}P^2$ $\lambda(F_3) = (1,1) \iff \{(0,0),(1,1)\} \iff \pi^{-1}(F_3) = \{[0,x_1,x_2\} \subset \mathbb{R}P^2$

・ロト ・回ト ・ヨト ・ヨト

3

§2 Objective of this talk §3 Main results §4 Application to cobordism §5 Six operations §1.1 Standard $(\mathbb{Z}_2)^n$ -representation

§1.2 Convex polytopes

§1.3 Examples for small covers

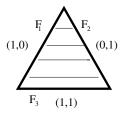
§1.4 Two Key points

§1.5 Reconstruction for small covers

An example of $(\mathbb{Z}_2)^n$ -coloring

Example:
$$(\mathbb{Z}_2)^2 \curvearrowright \mathbb{R}P^2$$
 by $[x_0, x_1, x_2] \longmapsto [x_0, g_1x_1, g_2x_2]$.

Then its $(\mathbb{Z}_2)^2$ -coloring λ is as follows:



where

 $\lambda(F_1) = (1,0) \iff \mathbb{Z}_2 \times \{0\} \iff \pi^{-1}(F_1) = \{[x_0,0,x_2]\} \subset \mathbb{R}P^2$ $\lambda(F_2) = (0,1) \iff \{0\} \times \mathbb{Z}_2 \iff \pi^{-1}(F_2) = \{[x_0,x_1,0]\} \subset \mathbb{R}P^2$ $\lambda(F_3) = (1,1) \iff \{(0,0),(1,1)\} \iff \pi^{-1}(F_3) = \{[0,x_1,x_2\} \subset \mathbb{R}P^2$

A B + A B +

-

§2 Objective of this talk §3 Main results §4 Application to cobordism §5 Six operations §1.1 Standard $(\mathbb{Z}_2)^n$ -representation

§1.2 Convex polytopes

§1.3 Examples for small covers

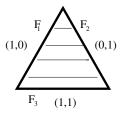
§1.4 Two Key points

§1.5 Reconstruction for small covers

An example of $(\mathbb{Z}_2)^n$ -coloring

Example:
$$(\mathbb{Z}_2)^2 \curvearrowright \mathbb{R}P^2$$
 by $[x_0, x_1, x_2] \longmapsto [x_0, g_1x_1, g_2x_2]$.

Then its $(\mathbb{Z}_2)^2$ -coloring λ is as follows:



where

$$\lambda(F_1) = (1,0) \iff \mathbb{Z}_2 \times \{0\} \iff \pi^{-1}(F_1) = \{[x_0,0,x_2]\} \subset \mathbb{R}P^2$$

$$\lambda(F_2) = (0,1) \iff \{0\} \times \mathbb{Z}_2 \iff \pi^{-1}(F_2) = \{[x_0,x_1,0]\} \subset \mathbb{R}P^2$$

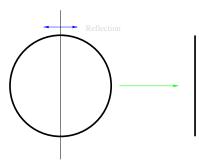
$$\lambda(F_3) = (1,1) \iff \{(0,0),(1,1)\} \iff \pi^{-1}(F_3) = \{[0,x_1,x_2\} \subset \mathbb{R}P^2$$

§2 Objective of this talk §3 Main results §4 Application to cobordism §5 Six operations

- §1.1 Standard $(\mathbb{Z}_2)^n$ -representation
- §1.2 Convex polytopes
- §1.3 Examples for small covers
- §1.4 Two Key points
- §1.5 Reconstruction for small covers

An Example of Reconstruction

First, consider $\mathbb{Z}_2 \curvearrowright S^1$ by $(x_0, x_1) \longmapsto (x_0, gx_1)$ \implies orbit space S^1/\mathbb{Z}_2 is an interval (or a 1-simplex)



§2 Objective of this talk §3 Main results §4 Application to cobordism §5 Six operations §1.1 Standard $(\mathbb{Z}_2)^n$ -representation

§1.2 Convex polytopes

§1.3 Examples for small covers

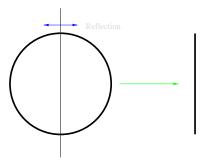
§1.4 Two Key points

§1.5 Reconstruction for small covers

An Example of Reconstruction

First, consider $\mathbb{Z}_2 \curvearrowright S^1$ by $(x_0, x_1) \longmapsto (x_0, gx_1)$

 \implies orbit space S^1/\mathbb{Z}_2 is an interval (or a 1-simplex).



§2 Objective of this talk §3 Main results §4 Application to cobordism §5 Six operations §1.1 Standard $(\mathbb{Z}_2)^n$ -representation

§1.2 Convex polytopes

§1.3 Examples for small covers

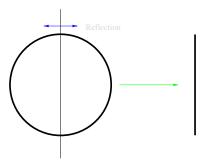
§1.4 Two Key points

§1.5 Reconstruction for small covers

An Example of Reconstruction

First, consider $\mathbb{Z}_2 \curvearrowright S^1$ by $(x_0, x_1) \longmapsto (x_0, gx_1)$

 \implies orbit space S^1/\mathbb{Z}_2 is an interval (or a 1-simplex).



- 4 同 2 4 回 2 4 回 2 4

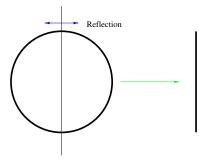
§2 Objective of this talk §3 Main results §4 Application to cobordism §5 Six operations

- §1.1 Standard $(\mathbb{Z}_2)^n$ -representation
- §1.2 Convex polytopes
- §1.3 Examples for small covers
- §1.4 Two Key points
- §1.5 Reconstruction for small covers

An Example of Reconstruction

First, consider $\mathbb{Z}_2 \curvearrowright S^1$ by $(x_0, x_1) \longmapsto (x_0, gx_1)$

 \implies orbit space S^1/\mathbb{Z}_2 is an interval (or a 1-simplex).



§2 Objective of this talk §3 Main results §4 Application to cobordism §5 Six operations §1.1 Standard $(\mathbb{Z}_2)^n$ -representation

§1.2 Convex polytopes

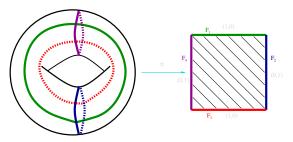
§1.3 Examples for small covers

§1.4 Two Key points

§1.5 Reconstruction for small covers

An Example of Reconstruction

The product of two copies of the above action gives the following: $(\mathbb{Z}_2)^2 \curvearrowright S^1 \times S^1 = \mathcal{T}^2 \implies \mathcal{T}^2/(\mathbb{Z}_2)^2$ is a square.



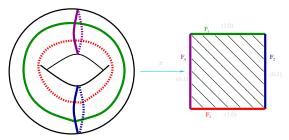
 $\pi^{-1}(F_1)$ and $\pi^{-1}(F_3)$ are two circles in T^2 fixed by subgroup $\mathbb{Z}_2 \times \{0\} \iff (1,0)$ $\pi^{-1}(F_2)$ and $\pi^{-1}(F_4)$ are two circles in T^2 fixed by subgroup $\{0\} \times \mathbb{Z}_2 \iff (0,1)$

§2 Objective of this talk §3 Main results §4 Application to cobordism §5 Six operations

- §1.1 Standard $(\mathbb{Z}_2)^n$ -representation
- 1.2 Convex polytopes
- §1.3 Examples for small covers
- §1.4 Two Key points
- §1.5 Reconstruction for small covers

An Example of Reconstruction

The product of two copies of the above action gives the following: $(\mathbb{Z}_2)^2 \frown S^1 \times S^1 = T^2 \Rightarrow T^2/(\mathbb{Z}_2)^2$ is a square.



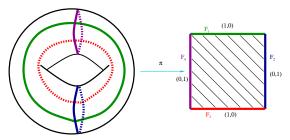
 $\pi^{-1}(F_1)$ and $\pi^{-1}(F_3)$ are two circles in T^2 fixed by subgroup $\mathbb{Z}_2 \times \{0\} \iff (1,0)$ $\pi^{-1}(F_2)$ and $\pi^{-1}(F_4)$ are two circles in T^2 fixed by subgroup $\{0\} \times \mathbb{Z}_2 \iff (0,1)$

§2 Objective of this talk §3 Main results §4 Application to cobordism §5 Six operations

§1.5 Reconstruction for small covers

An Example of Reconstruction

The product of two copies of the above action gives the following: $(\mathbb{Z}_2)^2 \curvearrowright S^1 \times S^1 = T^2 \Rightarrow T^2/(\mathbb{Z}_2)^2$ is a square.



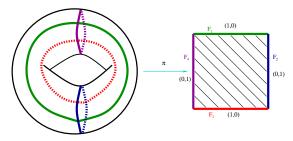
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ Topological types of 3-dimensional small covers — A ioint w

§2 Objective of this talk §3 Main results §4 Application to cobordism §5 Six operations

- §1.1 Standard $(\mathbb{Z}_2)^n$ -representation
- §1.2 Convex polytopes
- §1.3 Examples for small covers
- §1.4 Two Key points
- §1.5 Reconstruction for small covers

An Example of Reconstruction

The product of two copies of the above action gives the following: $(\mathbb{Z}_2)^2 \frown S^1 \times S^1 = T^2 \Rightarrow T^2/(\mathbb{Z}_2)^2$ is a square.



 $\pi^{-1}(F_1)$ and $\pi^{-1}(F_3)$ are two circles in T^2 fixed by subgroup $\mathbb{Z}_2 \times \{0\} \iff (1,0)$ $\pi^{-1}(F_2)$ and $\pi^{-1}(F_4)$ are two circles in T^2 fixed by subgroup $\{0\} \times \mathbb{Z}_2 \iff (0,1)$

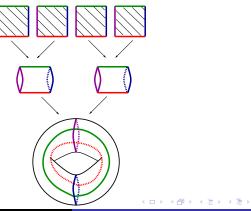
§2 Objective of this talk §3 Main results §4 Application to cobordism §5 Six operations

- §1.1 Standard $(\mathbb{Z}_2)^n$ -representation
- §1.2 Convex polytopes
- §1.3 Examples for small covers
- §1.4 Two Key points
- §1.5 Reconstruction for small covers

An Example of Reconstruction

Reconstruction process of T^2 :

 $(\mathbb{Z}_2)^2 imes P^2$ (i.e., four copies of P^2)



§2 Objective of this talk §3 Main results §4 Application to cobordism §5 Six operations §1.1 Standard $(\mathbb{Z}_2)^n$ -representation

§1.2 Convex polytopes

§1.3 Examples for small covers

§1.4 Two Key points

§1.5 Reconstruction for small covers

Reconstruction of small covers

We see that

Reconstruction of small covers

- Geometrically, M(Pⁿ, λ) is exactly obtained by gluing 2ⁿ copies of Pⁿ along their boundaries by using (Z₂)ⁿ-coloring λ.
- This reconstruction of small covers provides a way of studying closed manifolds by using (Z₂)ⁿ-colored polytopes.

< ロ > < 同 > < 回 > < 回 > < 回 > <

§2 Objective of this talk §3 Main results §4 Application to cobordism §5 Six operations §1.1 Standard $(\mathbb{Z}_2)^n$ -representation

31.2 Convex polytopes

§1.3 Examples for small covers

§1.4 Two Key points

§1.5 Reconstruction for small covers

Reconstruction of small covers

We see that

Reconstruction of small covers

- Geometrically, M(Pⁿ, λ) is exactly obtained by gluing 2ⁿ copies of Pⁿ along their boundaries by using (Z₂)ⁿ-coloring λ.
- This reconstruction of small covers provides a way of studying closed manifolds by using $(\mathbb{Z}_2)^n$ -colored polytopes.

イロト 不得 とうせん きょうしゅ

§2 Objective of this talk §3 Main results §4 Application to cobordism §5 Six operations §1.1 Standard $(\mathbb{Z}_2)^n$ -representation

1.2 Convex polytopes

§1.3 Examples for small covers

§1.4 Two Key points

§1.5 Reconstruction for small covers

Reconstruction of small covers

We see that

Reconstruction of small covers

- Geometrically, M(Pⁿ, λ) is exactly obtained by gluing 2ⁿ copies of Pⁿ along their boundaries by using (Z₂)ⁿ-coloring λ.
- This reconstruction of small covers provides a way of studying closed manifolds by using (Z₂)ⁿ-colored polytopes.

イロト 不得 とうせん きょうしゅ

2.1 3-colorable case–lzmestiev's work 2.2 Objective of this talk

3-colorable case–Izmestiev's work

In 2001, Izmestiev [Math. Notes **69** (2001)] studied a class of 3-dimensional small covers such that each λ of $(\mathbb{Z}_2)^3$ -colorings on their orbit spaces is **3-colorable** (i.e., the image of λ contains only three linearly independent elements of $(\mathbb{Z}_2)^3$), and showed that

Izmestiev's Theorem

Each such small cover can be formed from finitely many **3-dimensional tori** with the canonical $(\mathbb{Z}_2)^3$ -action under the operations of the equivariant connected sum and the equivariant Dehn surgery.

2.1 3-colorable case–lzmestiev's work 2.2 Objective of this talk

3-colorable case–Izmestiev's work

In 2001, Izmestiev [Math. Notes **69** (2001)] studied a class of 3-dimensional small covers such that each λ of $(\mathbb{Z}_2)^3$ -colorings on their orbit spaces is **3-colorable** (i.e., the image of λ contains only three linearly independent elements of $(\mathbb{Z}_2)^3$), and showed that

Izmestiev's Theorem

Each such small cover can be formed from finitely many **3-dimensional tori** with the canonical $(\mathbb{Z}_2)^3$ -action under the operations of the equivariant connected sum and the equivariant Dehn surgery.

2.1 3-colorable case–lzmestiev's work 2.2 Objective of this talk

3-colorable case–Izmestiev's work

In 2001, Izmestiev [Math. Notes **69** (2001)] studied a class of 3-dimensional small covers such that each λ of $(\mathbb{Z}_2)^3$ -colorings on their orbit spaces is **3-colorable** (i.e., the image of λ contains only three linearly independent elements of $(\mathbb{Z}_2)^3$), and showed that

Izmestiev's Theorem

Each such small cover can be formed from finitely many **3-dimensional tori** with the canonical $(\mathbb{Z}_2)^3$ -action under the operations of the equivariant connected sum and the equivariant Dehn surgery.

§2.1 3-colorable case–Izmestiev's work §2.2 Objective of this talk

Objective of this talk

We shall consider all possible 3-dimensional small covers.

Our objective

To determine the (equivariant) topological types of such a class of 3-dimensional manifolds.

RK: Four Color Theorem makes sure that **each simple convex 3-polytope always admits** $(\mathbb{Z}_2)^3$ -colorings. Thus, all simple convex 3-polytopes with $(\mathbb{Z}_2)^3$ -colorings can recover all 3-dimensional small covers.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

§2.1 3-colorable case–Izmestiev's work §2.2 Objective of this talk

Objective of this talk

We shall consider all possible 3-dimensional small covers.

Our objective

To determine the (equivariant) topological types of such a class of 3-dimensional manifolds.

RK: Four Color Theorem makes sure that **each simple convex 3-polytope always admits** $(\mathbb{Z}_2)^3$ -colorings. Thus, all simple **convex 3-polytopes** with $(\mathbb{Z}_2)^3$ -colorings can recover all **3-dimensional small covers**.

§2.1 3-colorable case–Izmestiev's work §2.2 Objective of this talk

Objective of this talk

We shall consider all possible 3-dimensional small covers.

Our objective

To determine the (equivariant) topological types of such a class of 3-dimensional manifolds.

RK: Four Color Theorem makes sure that each simple convex 3-polytope always admits $(\mathbb{Z}_2)^3$ -colorings. Thus, all simple convex 3-polytopes with $(\mathbb{Z}_2)^3$ -colorings can recover all 3-dimensional small covers.

イロン 不同 とくほう イロン

§2.1 3-colorable case–Izmestiev's work §2.2 Objective of this talk

Objective of this talk

We shall consider all possible 3-dimensional small covers.

Our objective

To determine the (equivariant) topological types of such a class of 3-dimensional manifolds.

RK: Four Color Theorem makes sure that each simple convex 3-polytope always admits $(\mathbb{Z}_2)^3$ -colorings. Thus, all simple convex 3-polytopes with $(\mathbb{Z}_2)^3$ -colorings can recover all 3-dimensional small covers.

・ロト ・同ト ・ヨト ・ヨト

§2.1 3-colorable case–Izmestiev's work §2.2 Objective of this talk

A one-to-one correspondence

 $\mathcal{P} :=$ the set of all pairs (P^3, λ) where P^3 is a simple convex 3-polytope and λ is a $(\mathbb{Z}_2)^3$ -coloring on it.

 $\mathcal{M} :=$ the set of all 3-dimensional small covers.

A one-to-one correspondence

$$\mathcal{P} \longleftrightarrow \mathcal{M}$$

 $(P^3, \lambda) \longmapsto \mathcal{M}(P^3, \lambda)$

§2.1 3-colorable case–Izmestiev's work §2.2 Objective of this talk

A one-to-one correspondence

 $\mathcal{P} :=$ the set of all pairs (P^3, λ) where P^3 is a simple convex 3-polytope and λ is a $(\mathbb{Z}_2)^3$ -coloring on it.

 $\mathcal{M} :=$ the set of all 3-dimensional small covers.

A one-to-one correspondence

$$\mathcal{P} \longleftrightarrow \mathcal{M}$$

 $(P^3, \lambda) \longmapsto \mathcal{M}(P^3, \lambda)$

§2.1 3-colorable case–Izmestiev's work §2.2 Objective of this talk

A one-to-one correspondence

 $\mathcal{P} :=$ the set of all pairs (P^3, λ) where P^3 is a simple convex 3-polytope and λ is a $(\mathbb{Z}_2)^3$ -coloring on it.

 $\mathcal{M} :=$ the set of all 3-dimensional small covers.

A one-to-one correspondence

 $\mathcal{P} \longleftrightarrow \mathcal{M}$ $(P^3, \lambda) \longmapsto \mathcal{M}(P^3, \lambda)$

イロン 不同 とくほう イロン

§2.1 3-colorable case–Izmestiev's work §2.2 Objective of this talk

$\operatorname{GL}(3, \mathbb{Z}_2)$ -equivalence

Define a natural action of $GL(3, \mathbb{Z}_2)$ on \mathcal{P} by

 $(P^3, \lambda) \longmapsto (P^3, \sigma \circ \lambda)$ where $\sigma \in GL(3, \mathbb{Z}_2)$

This action is free, and induces an action of $GL(3, \mathbb{Z}_2)$ on \mathcal{M} by mapping $M(P^3, \lambda)$ to $M(P^3, \sigma \circ \lambda)$.

Both $M(P^3,\lambda)$ and $M(P^3,\sigma\circ\lambda)$ are σ -equivariantly homeomorphic

All elements of each equivalence class of $\mathcal{P}/GL(3,\mathbb{Z}_2)$ (resp. $\mathcal{M}/GL(3,\mathbb{Z}_2)$) are said to be $GL(3,\mathbb{Z}_2)$ -equivalent.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

§2.1 3-colorable case–Izmestiev's work §2.2 Objective of this talk

$GL(3, \mathbb{Z}_2)$ -equivalence

Define a natural action of $GL(3, \mathbb{Z}_2)$ on \mathcal{P} by

$$(P^3, \lambda) \longmapsto (P^3, \sigma \circ \lambda)$$
 where $\sigma \in \mathsf{GL}(3, \mathbb{Z}_2)$

This action is free, and induces an action of $GL(3, \mathbb{Z}_2)$ on \mathcal{M} by mapping $\mathcal{M}(\mathcal{P}^3, \lambda)$ to $\mathcal{M}(\mathcal{P}^3, \sigma \circ \lambda)$.

Both $M(P^3,\lambda)$ and $M(P^3,\sigma\circ\lambda)$ are σ -equivariantly homeomorphic

All elements of each equivalence class of $\mathcal{P}/GL(3,\mathbb{Z}_2)$ (resp. $\mathcal{M}/GL(3,\mathbb{Z}_2)$) are said to be $GL(3,\mathbb{Z}_2)$ -equivalent.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

§2.1 3-colorable case–Izmestiev's work §2.2 Objective of this talk

$GL(3, \mathbb{Z}_2)$ -equivalence

Define a natural action of $GL(3, \mathbb{Z}_2)$ on \mathcal{P} by

$$(P^3, \lambda) \longmapsto (P^3, \sigma \circ \lambda)$$
 where $\sigma \in GL(3, \mathbb{Z}_2)$

This action is free, and induces an action of $GL(3, \mathbb{Z}_2)$ on \mathcal{M} by mapping $\mathcal{M}(P^3, \lambda)$ to $\mathcal{M}(P^3, \sigma \circ \lambda)$.

Both $M(P^3,\lambda)$ and $M(P^3,\sigma\circ\lambda)$ are σ -equivariantly homeomorphic

All elements of each equivalence class of $\mathcal{P}/GL(3,\mathbb{Z}_2)$ (resp. $\mathcal{M}/GL(3,\mathbb{Z}_2)$) are said to be $GL(3,\mathbb{Z}_2)$ -equivalent.

イロト イポト イヨト イヨト

3

§2.1 3-colorable case–Izmestiev's work §2.2 Objective of this talk

$GL(3, \mathbb{Z}_2)$ -equivalence

Define a natural action of $GL(3, \mathbb{Z}_2)$ on \mathcal{P} by

$$(P^3, \lambda) \longmapsto (P^3, \sigma \circ \lambda)$$
 where $\sigma \in GL(3, \mathbb{Z}_2)$

This action is free, and induces an action of $GL(3, \mathbb{Z}_2)$ on \mathcal{M} by mapping $M(P^3, \lambda)$ to $M(P^3, \sigma \circ \lambda)$.

Both $M(P^3, \lambda)$ and $M(P^3, \sigma \circ \lambda)$ are σ -equivariantly homeomorphic

All elements of each equivalence class of $\mathcal{P}/GL(3,\mathbb{Z}_2)$ (resp. $\mathcal{M}/GL(3,\mathbb{Z}_2)$) are said to be $GL(3,\mathbb{Z}_2)$ -equivalent.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

§2.1 3-colorable case–Izmestiev's work §2.2 Objective of this talk

$GL(3, \mathbb{Z}_2)$ -equivalence

Define a natural action of $GL(3, \mathbb{Z}_2)$ on \mathcal{P} by

$$(P^3, \lambda) \longmapsto (P^3, \sigma \circ \lambda)$$
 where $\sigma \in GL(3, \mathbb{Z}_2)$

This action is free, and induces an action of $GL(3, \mathbb{Z}_2)$ on \mathcal{M} by mapping $M(P^3, \lambda)$ to $M(P^3, \sigma \circ \lambda)$.

Both $M(P^3, \lambda)$ and $M(P^3, \sigma \circ \lambda)$ are σ -equivariantly homeomorphic

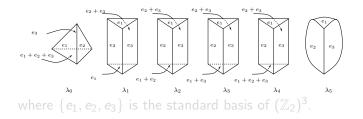
All elements of each equivalence class of $\mathcal{P}/GL(3,\mathbb{Z}_2)$ (resp. $\mathcal{M}/GL(3,\mathbb{Z}_2)$) are said to be $GL(3,\mathbb{Z}_2)$ -equivalent.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

§3.1 Combinatorial version of main result §3.2 Topological version of main result §3.3 Remark

Combinatorial version of main result

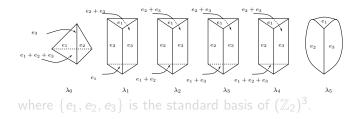
- To introduce six operations $\sharp^{v}, \sharp^{e}, \sharp^{eve}, \natural, \sharp^{\Delta}, \sharp^{\mathfrak{S}}$ on \mathcal{P} .
- Under these six operations, up to GL(3, Z₂)-equivalence we find five basic pairs (Δ³, λ₀), (P³(3), λ₁), (P³(3), λ₂), (P³(3), λ₃), (P³(3), λ₄) of P and an exceptional pair (⊘, λ₅), where Δ³ is a 3-simplex, P³(3) is a 3-sided prism, and λ_i, i = 0, 1, ..., 5, are shown as follows:



§3.1 Combinatorial version of main result §3.2 Topological version of main result §3.3 Remark

Combinatorial version of main result

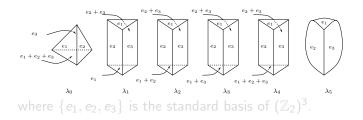
- To introduce six operations $\sharp^{\nu}, \sharp^{e}, \sharp^{eve}, \natural, \sharp^{\Delta}, \sharp^{\mathbb{C}}$ on \mathcal{P} .
- Under these six operations, up to GL(3, Z₂)-equivalence we find five basic pairs (Δ³, λ₀), (P³(3), λ₁), (P³(3), λ₂), (P³(3), λ₃), (P³(3), λ₄) of P and an exceptional pair (⊘, λ₅), where Δ³ is a 3-simplex, P³(3) is a 3-sided prism, and λ_i, i = 0, 1, ..., 5, are shown as follows:



§3.1 Combinatorial version of main result §3.2 Topological version of main result §3.3 Remark

Combinatorial version of main result

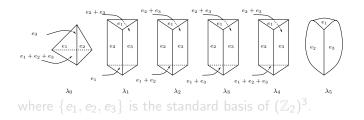
- To introduce six operations $\sharp^{v}, \sharp^{e}, \sharp^{eve}, \natural, \sharp^{\Delta}, \sharp^{\mathbb{C}}$ on \mathcal{P} .
- Under these six operations, up to GL(3, Z₂)-equivalence we find five basic pairs (Δ³, λ₀), (P³(3), λ₁), (P³(3), λ₂), (P³(3), λ₃), (P³(3), λ₄) of P and an exceptional pair (⊘, λ₅), where Δ³ is a 3-simplex, P³(3) is a 3-sided prism, and λ_i, i = 0, 1, ..., 5, are shown as follows:



§3.1 Combinatorial version of main result §3.2 Topological version of main result §3.3 Remark

Combinatorial version of main result

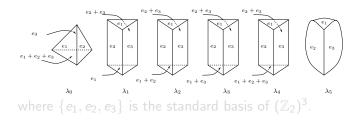
- To introduce six operations $\sharp^{v}, \sharp^{e}, \sharp^{eve}, \natural, \sharp^{\Delta}, \sharp^{C}$ on \mathcal{P} .
- Under these six operations, up to GL(3, Z₂)-equivalence we find five basic pairs (Δ³, λ₀), (P³(3), λ₁), (P³(3), λ₂), (P³(3), λ₃), (P³(3), λ₄) of P and an exceptional pair (⊘, λ₅), where Δ³ is a 3-simplex, P³(3) is a 3-sided prism, and λ_i, i = 0, 1, ..., 5, are shown as follows:



§3.1 Combinatorial version of main result §3.2 Topological version of main result §3.3 Remark

Combinatorial version of main result

- To introduce six operations $\sharp^{v}, \sharp^{e}, \sharp^{eve}, \natural, \sharp^{\Delta}, \sharp^{\mathbb{C}}$ on \mathcal{P} .
- Under these six operations, up to GL(3, Z₂)-equivalence we find five basic pairs (Δ³, λ₀), (P³(3), λ₁), (P³(3), λ₂), (P³(3), λ₃), (P³(3), λ₄) of P and an exceptional pair (⊘, λ₅), where Δ³ is a 3-simplex, P³(3) is a 3-sided prism, and λ_i i = 0, 1, 5, are shown as follows:

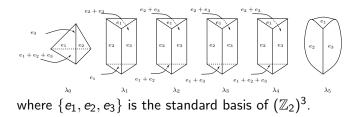


・ロト ・同ト ・ヨト ・ヨト

§3.1 Combinatorial version of main result §3.2 Topological version of main result §3.3 Remark

Combinatorial version of main result

- To introduce six operations $\sharp^{\nu}, \sharp^{e}, \sharp^{eve}, \natural, \sharp^{\Delta}, \sharp^{\mathbb{C}}$ on \mathcal{P} .
- Under these six operations, up to GL(3, Z₂)-equivalence we find five basic pairs (Δ³, λ₀), (P³(3), λ₁), (P³(3), λ₂), (P³(3), λ₃), (P³(3), λ₄) of P and an exceptional pair (⊘, λ₅), where Δ³ is a 3-simplex, P³(3) is a 3-sided prism, and λ_i, i = 0, 1, ..., 5, are shown as follows:



イロト イポト イラト イラト

§3.1 Combinatorial version of main result §3.2 Topological version of main result §3.3 Remark

Combinatorial version of main result

Combinatorial version of main result

Each pair (P^3, λ) of \mathcal{P} is an expression of $(\Delta^3, \sigma \circ \lambda_0)$, $(P^3(3), \sigma \circ \lambda_1)$, $(P^3(3), \sigma \circ \lambda_2)$, $(P^3(3), \sigma \circ \lambda_3)$, $(P^3(3), \sigma \circ \lambda_4)$, $(\oslash, \sigma \circ \lambda_5)$, $\sigma \in GL(3, \mathbb{Z}_2)$, under six operations \sharp^v , \sharp^e , \sharp^{eve}, \natural , \sharp^{\bigtriangleup} , $\sharp^{\mathbb{C}}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

§3.1 Combinatorial version of main result §3.2 Topological version of main result §3.3 Remark

Topological version of main result

By the reconstruction of small covers,

 $\sharp^{\nu}, \sharp^{e}, \sharp^{eve}, \natural, \sharp^{\triangle}, \sharp^{\bigcirc} \text{ on } \mathcal{P} \longleftrightarrow \widetilde{\sharp^{\nu}}, \widetilde{\sharp^{e}}, \widetilde{\sharp^{eve}}, \widetilde{\natural}, \widetilde{\sharp^{\triangle}}, \widetilde{\sharp^{\bigcirc}} \text{ on } \mathcal{M}$

Six operations on \mathcal{M}

 $\widetilde{\sharp^{\nu}}$ is the equivariant connected sum, and $\widetilde{\natural}$ is the equivariant Dehn surgery, and other four operations $\widetilde{\sharp^{e}}, \widetilde{\sharp^{eve}}, \widetilde{\sharp^{\Delta}}, \widetilde{\sharp^{\mathbb{C}}}$ can be understood as the generalized equivariant connected sums.

Algebraic system

 $M(\Delta^3, \sigma \circ \lambda_0)$ and $M(P^3(3), \sigma \circ \lambda_i)(i = 1, ..., 4), \sigma \in GL(3, \mathbb{Z}_2),$ $M(\oslash, \sigma \circ \lambda_5)$, give all elementary generators of the algebraic system $\langle \mathcal{M}; \tilde{\sharp}^v, \tilde{\sharp}^e, \tilde{\sharp}^{eve}, \tilde{\mathfrak{h}}, \tilde{\sharp}^{\widetilde{\bigtriangleup}}, \tilde{\sharp}^{\widetilde{\boxdot}} \rangle.$

§3.1 Combinatorial version of main result §3.2 Topological version of main result §3.3 Remark

Topological version of main result

By the reconstruction of small covers,

$$\sharp^{\nu}, \sharp^{e}, \sharp^{eve}, \natural, \sharp^{\bigtriangleup}, \sharp^{\textcircled{C}} \text{ on } \mathcal{P} \longleftrightarrow \widetilde{\sharp^{\nu}}, \widetilde{\sharp^{e}}, \widetilde{\sharp^{eve}}, \widetilde{\natural}, \widetilde{\sharp^{\Huge{C}}}, \widetilde{\sharp^{\textcircled{C}}} \text{ on } \mathcal{M}$$

Six operations on \mathcal{M}

 $\hat{\sharp^{\nu}}$ is the equivariant connected sum, and $\hat{\natural}$ is the equivariant Dehn surgery, and other four operations $\hat{\sharp^{e}}, \hat{\sharp^{eve}}, \hat{\sharp^{\Delta}}, \hat{\sharp^{\mathbb{C}}}$ can be understood as the generalized equivariant connected sums.

Algebraic system

$$\begin{split} &M(\Delta^3, \sigma \circ \lambda_0) \text{ and } M(P^3(3), \sigma \circ \lambda_i)(i = 1, ..., 4), \sigma \in \mathrm{GL}(3, \mathbb{Z}_2), \\ &M(\oslash, \sigma \circ \lambda_5), \text{ give all elementary generators of the algebraic} \\ &\text{system } \langle \mathcal{M}; \widetilde{\sharp^v}, \ \widetilde{\sharp^e}, \ \widetilde{\sharp^{eve}}, \ \widetilde{\natural}, \ \widetilde{\sharp^{\bigtriangleup}}, \ \widetilde{\sharp^{\odot}} \rangle. \end{split}$$

§3.1 Combinatorial version of main result §3.2 Topological version of main result §3.3 Remark

Topological version of main result

By the reconstruction of small covers,

 $\sharp^{\nu}, \sharp^{e}, \sharp^{eve}, \natural, \sharp^{\bigtriangleup}, \sharp^{\textcircled{C}} \text{ on } \mathcal{P} \longleftrightarrow \widetilde{\sharp^{\nu}}, \widetilde{\sharp^{e}}, \widetilde{\sharp^{eve}}, \widetilde{\natural}, \widetilde{\sharp^{\Huge{C}}}, \widetilde{\sharp^{\textcircled{C}}} \text{ on } \mathcal{M}$

Six operations on $\ensuremath{\mathcal{M}}$

 $\widetilde{\sharp^{\nu}}$ is the equivariant connected sum, and $\widetilde{\natural}$ is the equivariant Dehn surgery, and other four operations $\widetilde{\sharp^{e}}, \widetilde{\sharp^{eve}}, \widetilde{\sharp^{\Delta}}, \widetilde{\sharp^{\mathbb{O}}}$ can be understood as the generalized equivariant connected sums.

Algebraic system

$$\begin{split} &M(\Delta^3, \sigma \circ \lambda_0) \text{ and } M(P^3(3), \sigma \circ \lambda_i)(i = 1, ..., 4), \sigma \in \mathrm{GL}(3, \mathbb{Z}_2), \\ &M(\oslash, \sigma \circ \lambda_5), \text{ give all elementary generators of the algebraic} \\ &\text{system } \langle \mathcal{M}; \sharp^{\widetilde{v}}, \ \widetilde{\sharp^e}, \ \widetilde{\sharp^{eve}}, \ \widetilde{\natural}, \ \widetilde{\sharp^{\bigtriangleup}}, \ \widetilde{\sharp^{\odot}} \rangle. \end{split}$$

§3.1 Combinatorial version of main result §3.2 Topological version of main result §3.3 Remark

Topological version of main result

By the reconstruction of small covers,

 $\sharp^{\nu}, \sharp^{e}, \sharp^{eve}, \natural, \sharp^{\bigtriangleup}, \sharp^{\textcircled{C}} \text{ on } \mathcal{P} \longleftrightarrow \widetilde{\sharp^{\nu}}, \widetilde{\sharp^{e}}, \widetilde{\sharp^{eve}}, \widetilde{\natural}, \widetilde{\sharp^{\Huge{C}}}, \widetilde{\sharp^{\textcircled{C}}} \text{ on } \mathcal{M}$

Six operations on $\ensuremath{\mathcal{M}}$

 $\widetilde{\sharp^{\nu}}$ is the equivariant connected sum, and $\widetilde{\natural}$ is the equivariant Dehn surgery, and other four operations $\widetilde{\sharp^{e}}, \widetilde{\sharp^{eve}}, \widetilde{\sharp^{\Delta}}, \widetilde{\sharp^{\mathbb{O}}}$ can be understood as the generalized equivariant connected sums.

Algebraic system

 $\begin{array}{l} M(\Delta^3, \sigma \circ \lambda_0) \text{ and } M(P^3(3), \sigma \circ \lambda_i) (i = 1, ..., 4), \sigma \in \mathrm{GL}(3, \mathbb{Z}_2), \\ M(\oslash, \sigma \circ \lambda_5), \text{ give all elementary generators of the algebraic} \\ \text{system } \langle \mathcal{M}; \widetilde{\sharp^v}, \ \widetilde{\sharp^e}, \ \widetilde{\sharp^{eve}}, \ \widetilde{\natural}, \ \widetilde{\sharp^{\bigtriangleup}}, \ \widetilde{\sharp^{\odot}} \rangle. \end{array}$

§3.1 Combinatorial version of main result §3.2 Topological version of main result §3.3 Remark

Topological version of main result

On the other hand, we shall show that

Generators

 $M(\Delta^3, \lambda_0) \approx \mathbb{R}P^3$ with the canonical linear $(\mathbb{Z}_2)^3$ -action $M(P^3(3), \lambda_i)(i = 1, ..., 4) \approx S^1 \times \mathbb{R}P^2$ with four differ. $(\mathbb{Z}_2)^3$ -actions $M(\oslash, \sigma \circ \lambda_5) \approx S^3$ with standard $(\mathbb{Z}_2)^3$ -action

Topological version of our main result

Each 3-dimensional small cover can be obtained from S^3 , $\mathbb{R}P^3$ and $S^1 \times \mathbb{R}P^2$ with certain $(\mathbb{Z}_2)^3$ -actions by using six operations $\widetilde{\sharp^{\nu}}, \widetilde{\sharp^{e, \nu}}, \widetilde{\sharp}, \widetilde{\sharp^{\Delta}}, \widetilde{\sharp^{\mathbb{O}}}.$

§3.1 Combinatorial version of main result §3.2 Topological version of main result §3.3 Remark

Topological version of main result

On the other hand, we shall show that

Generators

 $M(\Delta^3, \lambda_0) \approx \mathbb{R}P^3$ with the canonical linear $(\mathbb{Z}_2)^3$ -action $M(P^3(3), \lambda_i)(i = 1, ..., 4) \approx S^1 \times \mathbb{R}P^2$ with four differ. $(\mathbb{Z}_2)^3$ -actions $M(\oslash, \sigma \circ \lambda_5) \approx S^3$ with standard $(\mathbb{Z}_2)^3$ -action

Topological version of our main result

Each 3-dimensional small cover can be obtained from S^3 , $\mathbb{R}P^3$ and $S^1 \times \mathbb{R}P^2$ with certain $(\mathbb{Z}_2)^3$ -actions by using six operations $\tilde{\sharp^v}, \tilde{\sharp^e}, \tilde{\sharp^{eve}}, \tilde{\xi}, \tilde{\sharp^{\Delta}}, \tilde{\sharp^{\mathbb{O}}}$.

§3.1 Combinatorial version of main result §3.2 Topological version of main result §3.3 Remark

Topological version of main result

On the other hand, we shall show that

Generators

 $M(\Delta^3, \lambda_0) \approx \mathbb{R}P^3$ with the canonical linear $(\mathbb{Z}_2)^3$ -action $M(P^3(3), \lambda_i)(i = 1, ..., 4) \approx S^1 \times \mathbb{R}P^2$ with four differ. $(\mathbb{Z}_2)^3$ -actions $M(\oslash, \sigma \circ \lambda_5) \approx S^3$ with standard $(\mathbb{Z}_2)^3$ -action

Topological version of our main result

Each 3-dimensional small cover can be obtained from S^3 , $\mathbb{R}P^3$ and $S^1 \times \mathbb{R}P^2$ with certain $(\mathbb{Z}_2)^3$ -actions by using six operations $\widetilde{\sharp^{\nu}}, \widetilde{\sharp^{e,\nu}}, \widetilde{\widetilde{\sharp}}, \widetilde{\widetilde{\sharp^{o}}}, \widetilde{\widetilde{\sharp^{o}}}$.

Remark

Remark

Main result is an **equivariant analogue** of a well-known result as follows: "Each closed 3-manifold can be obtained from a 3-sphere by using a finite number of Dehn surgeries". (See, [Lickorish, Ann. of Math. **76** (1962); Proc. Camb. Phil. Soc. **59** (1963)] or [Kirby, Invent. Math. **45** (1978)])

§3.3 Remark

Remark

Remark

Main result is an **equivariant analogue** of a well-known result as follows: "Each closed 3-manifold can be obtained from a 3-sphere by using a finite number of Dehn surgeries". (See, [Lickorish, Ann. of Math. **76** (1962); Proc. Camb. Phil. Soc. **59** (1963)] or [Kirby, Invent. Math. **45** (1978)])

§3.3 Remark

・ロト ・同ト ・ヨト ・ヨト

Application to cobordism

 $\widehat{\mathcal{M}}:=$ the set of equivariant unoriented cobordism classes of all 3-manifolds in $\mathcal{M}.$

Fact

 $\widehat{\mathcal{M}}$ forms an abelian group under disjoint union, so it is also a vector space over \mathbb{Z}_2 .

Theorem (Equivariant cobordism classification)

 $\widehat{\mathcal{M}}$ is generated by classes of $\mathbb{R}P^3$ and $S^1 \times \mathbb{R}P^2$ with certain $(\mathbb{Z}_2)^3$ -actions.

Application to cobordism

 $\widehat{\mathcal{M}}:=$ the set of equivariant unoriented cobordism classes of all 3-manifolds in \mathcal{M} .

Fact

 $\widehat{\mathcal{M}}$ forms an abelian group under disjoint union, so it is also a vector space over $\mathbb{Z}_2.$

Theorem (Equivariant cobordism classification)

 $\widehat{\mathcal{M}}$ is generated by classes of $\mathbb{R}P^3$ and $S^1 imes\mathbb{R}P^2$ with certain $(\mathbb{Z}_2)^3$ -actions.

Application to cobordism

 $\widehat{\mathcal{M}}:=$ the set of equivariant unoriented cobordism classes of all 3-manifolds in \mathcal{M} .

Fact

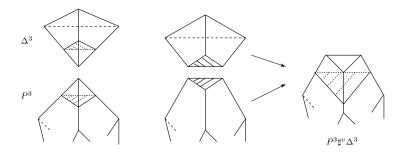
 $\widehat{\mathcal{M}}$ forms an abelian group under disjoint union, so it is also a vector space over $\mathbb{Z}_2.$

Theorem (Equivariant cobordism classification)

 $\widehat{\mathcal{M}}$ is generated by classes of $\mathbb{R}P^3$ and $S^1 \times \mathbb{R}P^2$ with certain $(\mathbb{Z}_2)^3$ -actions.

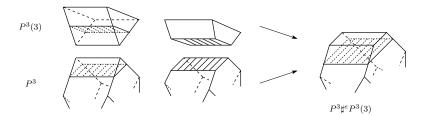
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Operation \sharp^{v} on \mathcal{P}



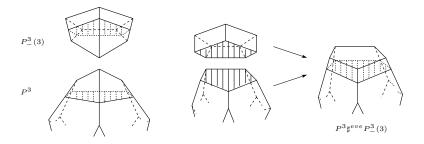
<ロ> <同> <同> < 同> < 同>

Operation \sharp^e on \mathcal{P}



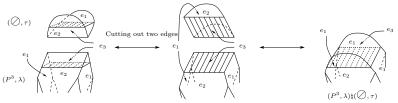
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Operation \sharp^{eve} on \mathcal{P}



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Operation atural on \mathcal{P}



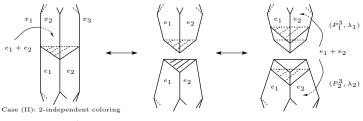
Note that two neighboring facets marked by e_2 and e_3 are needed to be **big**.

Zhi Lü Topological types of 3-dimensional small covers —A joint w

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

з

Operation $\sharp^{ riangle}$ on $\mathcal P$

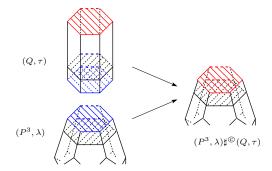


$$(P^3, \lambda) = (P_1^3, \lambda_1) \sharp^{\bigtriangleup}(P_2^3, \lambda_2)$$

(日) (同) (三) (三)

§5 Six operations §5.6 Operation \sharp° on \mathcal{P}
--

Operation $\sharp^{(c)}$ on \mathcal{P}

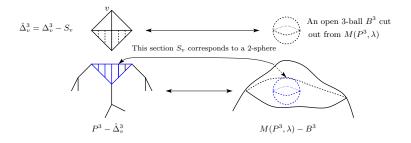


-

문제 문

Section corresponding to operation \sharp^{ν}

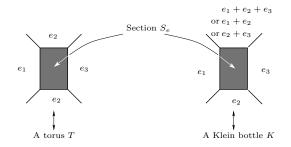
Cutting out a vertex gives a triangular section S_v , which corresponds to a 2-sphere.



(日) (同) (三) (三)

Sections corresponding to operations \sharp^e and \natural

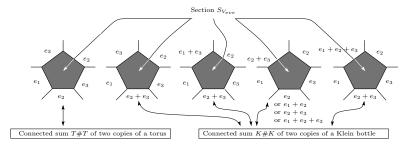
Cutting out an edge gives a 4-polygon section S_e , which corresponds to a 2-dimensional torus T or a Klein bottle K



・ロト ・同ト ・ヨト ・ヨト

Sections corresponding to operation #eve

Cutting out a V_{eve} gives a 5-polygon section $S_{V_{eve}}$, which corresponds to a T # T or a K # K



(日) (同) (三) (三)

-

Sections corresponding to operations \sharp^{\triangle} and \sharp^{\bigcirc}

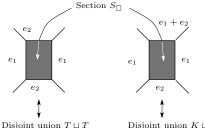
Cutting out a 2-independent triangular facet gives a triangular section S_{\triangle} , which corresponds to a disjoint union $\mathbb{R}P^2 \sqcup \mathbb{R}P^2$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト ・

§1 Background—Theory of small covers §2 Objective of this talk §4 Application to cobordism §5 Six operations 5.6 Operation \pm° on \mathcal{P}

Sections corresponding to operation #©

Cutting out a 2-independent 4-polygon facet gives a 5-polygon section S_{\Box} , which corresponds to a $T \sqcup T$ or a $K \sqcup K$



Disjoint union $K \sqcup K$

< 67 ▶

Sections corresponding to operation \sharp^{\bigcirc}

Cutting out a 2-independent 5-polygon facet gives a 5-polygon section $S_{\mathfrak{P}}$, which corresponds to a disjoint union $(\mathbb{R}P^2 \# \mathbb{R}P^2 \# \mathbb{R}P^2) \sqcup (\mathbb{R}P^2 \# \mathbb{R}P^2 \# \mathbb{R}P^2)$

(日)

$$\begin{split} & [M(P^{3},\lambda)\widehat{\sharp^{eve}}\,M(P^{3}_{-}(3),\tau)] = [M(P^{3},\lambda)] + [M(P^{3}_{-}(3),\tau)] \\ & [M(P^{3},\lambda)\widehat{\natural}M(\oslash,\tau)] = [M(P^{3},\lambda)] \\ & [M(P^{3},\lambda)\widehat{\sharp^{\odot}}M(P^{3}(i),\tau)] = [M(P^{3},\lambda)] + [M(P^{3}(i),\tau)], i = 3,4,5. \\ & [M(P^{3}_{1},\lambda_{1})]\widehat{\sharp^{\bigtriangleup}}[M(P^{3}_{2},\lambda_{2})] \\ & = \begin{cases} [M(P^{3}_{1},\lambda_{1})] + [M(P^{3}_{2},\lambda_{2})] \\ & \text{or } [M(P^{3}_{1},\lambda_{1})] + [M(P^{3}_{2},\lambda_{2})] + [M(P^{3}(3),\lambda_{1}\sharp^{\bigtriangleup}\lambda_{2})]. \end{cases} \end{split}$$

Let $[M(P_1^3, \lambda_1)]$ and $[M(P_2^3, \lambda_2)]$ be two classes in $\widehat{\mathcal{M}}$. Then

 $[M(P_1^3, \lambda_1) \stackrel{\vee}{\exists^{\nu}} M(P_2^3, \lambda_2)] = [M(P_1^3, \lambda_1)] + [M(P_2^3, \lambda_2)]$ $[M(P^{3},\lambda)] \stackrel{\text{``}}{=} M(P^{3}(3),\tau)] = [M(P^{3},\lambda)] + [M(P^{3}(3),\tau)]$

§1 Background—Theory of small covers §2 Objective of this talk §3 Main results §4 Application to cobordism §5 Six operations .6 Operation $\mathbb{H}^{(\mathbb{C})}$ on \mathcal{P}