Polynomial splittings of metabelian von Neumann rho-invariants of knots

Se-Goo Kim

Kyung Hee University, Korea

sgkim@khu.ac.kr

joint with

Taehee Kim Konkuk University, Korea

January 21, 2008

The Fourth East Asian School of Knots and Related Topics The University of Tokyo, Japan

Knot concordance

A knot K in S^3 is *slice* if $K = \partial D$ for a locally flat 2-disk D in B^4 . Note that $S^3 = \partial B^4$.

Two knots K_1 and K_2 are *concordant* if $K_1 \# - K_2$ is slice. Here -K denotes the mirror image of K with reversed orientation. The *knot concordance group* C:

Concordance is an equivalence relation and the concordance classes form an abelian group C under # operation.

Cochran, Orr, Teichner (1999) found a filtration of C:

$$\cdots \subset \mathcal{F}_{(n.5)} \subset \mathcal{F}_{(n)} \subset \cdots \subset \mathcal{F}_{(1.5)} \subset \mathcal{F}_{(1)} \subset \mathcal{F}_{(0.5)} \subset \mathcal{F}_{(0)} \subset \mathcal{C}$$

 $\mathcal{F}_{(m)}$ = the set of *m*-solvable knots which is a subgroup of \mathcal{C} .

m-solvable knots

 M_K = zero surgery on K in S^3 .

For a group G, let $G^{(0)} = G$ and $G^{(n)} = [G^{(n-1)}, G^{(n-1)}]$, inductively. **Definition.** K is called *n*-solvable if M_K bounds a (spin) 4-manifold W such that

- The inclusion $M_K \to W$ induces an isomorphism on H_1 .
- The intersection form on $H_2(W; \mathbb{Z}[\pi/\pi^{(n)}])$ has a dual pair of self-annihilating submodules L_1 and L_2 .
- The images of L_1 and L_2 in $H_2(W)$ generate $H_2(W)$.

Here, $\pi = \pi_1(W)$ and $H_2(W; \mathbb{Z}[\pi/\pi^{(n)}])$ is $H_2(\tilde{W}^{(n)})$ for $\pi/\pi^{(n)}$ cover $\tilde{W}^{(n)}$ of W. W is called an *n*-solution for K.

K is (n.5)-solvable if W admits (n + 1) self-annihilating submodule with (n)-dual.

Theorem 1 (COT 1999) Slice knots are *m*-solvable and $\mathcal{F}_{(m)} < \mathcal{F}_{(m.5)} < \mathcal{C}$ for all $m \in \frac{1}{2}\mathbb{Z}$.

K is 0-solvable \iff K has vanishing Arf invariants.

K is 0.5-solvable \iff K is algebraically slice.

All known metabelian concordance invariants for 1.5-solvable knots vanish.

Abelian concordance invariants:

Levine's Seifert form invariants.

Matabelian concordance invariants:

Casson-Gordon invariants, Casson-Gordon-Gilmer invariants Kirk-Livingston's twisted Alexander invariants Letsche's invariants, etc.

von Neumann ρ -invariants

Let M be a closed 3-manifold and Γ a group.

Given a homomorphism $\phi : \pi_1(M) \to \Gamma$, whenever $(M, \phi) = \partial(W, \varphi)$ for some compact oriented 4-manifold W and $\varphi : \pi_1(W) \to \Gamma$,

$$\rho(M,\phi) = \sigma_{\Gamma}^{(2)}(W,\phi) - \sigma_0(W) \in \mathbb{R}$$

where $\sigma_{\Gamma}^{(2)}$ is the von Neumann signature of the intersection form on $H_2(W;\mathbb{Z}\Gamma)$ and σ_0 is the ordinary signature. (Cheeger-Gromov 85) For an *n*-solvable knot *K*, take $M = M_K$ and *W* an *n*-solution to get ρ an invariant of *K*.

Using ρ -invariants, COT proved:

Theorem 2 (COT 1999 (n = 2), Cochran–Teichner 2004) $\mathcal{F}_{(n)}/\mathcal{F}_{(n.5)}$ has elements of infinite order.

Metabelian von Neumann ρ -invariants

Let
$$\Lambda = \mathbb{Q}[t^{\pm 1}]$$
 and $\Gamma = \mathbb{Q}(t)/\Lambda \rtimes \mathbb{Z}$.

Let $B\ell : H_1(M_K; \Lambda) \otimes H_1(M_K; \Lambda) \to \mathbb{Q}(t)/\Lambda$ be the Blanchfield pairing of K.

A submodule P of $H_1(M_K; \Lambda)$ is said to be *self-annihilating* if $P = P^{\perp}$ with respect to $B\ell$.

Given $x \in H_1(M_K; \Lambda)$, define $\phi_x : \pi_1(M_K) \to \Gamma$ by

$$\phi_x(a) = (B\ell(x, a\mu^{-\epsilon(a)}), \epsilon(a)) \text{ for } a \in \pi_1(M_K),$$

where μ is a meridian of K and $\epsilon : \pi_1(M_K) \to \mathbb{Z}$ is the abelianization.

Theorem 3 (COT 1999) If K is 1.5-solvable, there exists a self-annihilating submodule P of $H_1(M_K; \Lambda)$ such that $\rho(K, \phi_x) = 0$ for all $x \in P$.

Polynomial splittings

 $\Delta_K(t) = \det(A - tA^t) = \text{Alexander polynomial of } K.$

Theorem 4 (Levine 1969) Suppose that K_1 and K_2 have coprime Alexander polynomials. If $K_1 \# K_2$ is algebraically slice, so are both K_1 and K_2 .

Theorem 5 (S. Kim 2001) Suppose that K_1 and K_2 have coprime Alexander polynomials in integer coefficients. If $K_1 \# K_2$ have vanishing Casson-Gordon-Gilmer invariants, so do both K_1 and K_2 .

COT used von Neumann ρ -invariants to detect *n*-solvable knots not being *n*.5-solvable.

Q. Do splitting properties hold for ρ -invariants?

We find a positive answer for ρ -invariants associated with certain metabelian representations.

Splitting of metabelian ρ -invariants

We say K has vanishing ρ -invariants if there is a self-annihilating submodule P of $H_1(M_K; \Lambda)$ such that $\rho(K, \phi_x) = 0$ for all $x \in P$.

Theorem 6 (Main Theorem) Suppose K_1 and K_2 have coprime Alexander polynomials. If $K_1 \# K_2$ has vanishing ρ -invariants, so do both K_1 and K_2 .

Application:

Theorem 7 (T. Kim 2002) There are infinitely many knots having nonvanishing ρ -invariants but vanishing Casson-Gordon invariants with coprime Alexander polynomials.

Corollary 8 The knots in the previous theorem are all linearly independent in $\mathcal{F}_{(1)}/\mathcal{F}_{(1.5)}$.

This gives a new method of determining linear independence of knots in \mathcal{C} .

Sketch of proof

Let P be a self-annihilating submodule in $H_1(M_{K_1 \# K_2}; \Lambda)$ for which ρ vanish. Note $H_1(M_{K_1 \# K_2}; \Lambda) = H_1(M_{K_1}; \Lambda) \oplus H_1(M_{K_2}; \Lambda)$.

The projection of P into $H_1(M_{K_i}; \Lambda)$, P_i , is a self-annihilating submodule for which ρ vanish.

That is, we can show

- 1. $P = P_1 \oplus P_2$, which follows from action of Alexander polynomial on $H_1(M_K; \Lambda)$ and coprimeness of Alexander polynomials.
- 2. Each P_i is self-annihilating, which follows from nonsigularities of Blanchfield pairings.
- 3. For $x \in P_i$, $\rho(K_1, \phi_x) = 0$, which follows from the splitting property of ρ under connected sum.

We are working on the following question:

Q. Do similar splitting properties hold in all $\mathcal{F}_{(m)}$ for m > 1?

We have to use "coprimeness" of higher–order Alexander polynomials corresponding to $\mathcal{F}_{(n)}$.

Thank you very much.