Lens spaces and toroidal Dehn fillings

January 23, 2008

Sangyop Lee
\(\Delta(\text{LENS, TOR}) \leq ? \)

\(M \): a hyperbolic 3-manifold with \(\partial M \) a torus

\(M(\alpha) \): a lens space

\(M(\beta) \): a toroidal manifold

\(\Delta(\alpha, \beta) \leq ? \)
Known Results

Theorem (Gordon). Let M be a hyperbolic 3-manifold with ∂M a torus. If α, β are slopes on ∂M such that $M(\alpha)$ is a lens space and $M(\beta)$ contains an incompressible torus, then $\Delta(\alpha, \beta) \leq 5$.
($\Delta(\text{LENS}, \text{TOR}) \leq 5$)

Theorem (Teragaito). Let $M, M(\alpha), M(\beta)$ be as above. Suppose that $M(\alpha)$ contains a Klein bottle. Then $\Delta(\alpha, \beta) \leq 4$.
($\Delta(L(4n, 2n \pm 1), \text{TOR}) \leq 4$)
Theorem (Lee). Let $M, M(\alpha), M(\beta)$ be as in Gordon’s Theorem. Then $\Delta(\alpha, \beta) \leq 4$.

Maximal observed distance: $\Delta(\text{LENS}, \text{TOR}) \leq 3$.
(−2, 3, 7)-pretzel knot and exceptional surgery slopes

Exceptional slopes: 16, 17, 18, 37/2, 19, 20, 1/0
- S^3: 1/0
- Lens space: 18, 19 $\rightarrow K(18) \cong L(18, 5)$, $K(19) \cong L(19, 7)$
- Small Seifert fiber space: 17
- Toroidal manifold: 16, 37/2, 20
A sketch of the proof of the theorem

Assume for contradiction that $\Delta(\alpha, \beta) = 5$.

$M(\alpha) = M \cup V_\alpha$: Lens space
$M(\beta) = M \cup V_\beta$: Toroidal manifold

$\hat{P} \subset M(\alpha)$: a Heegaard surface
$\hat{T} \subset M(\beta)$: an incompressible torus
We may assume
\(\hat{P} \cap V_\alpha = u_1 \cup \ldots \cup u_p \) : meridian disks of \(V_\alpha \)
\(\hat{T} \cap V_\beta = v_1 \cup \ldots \cup v_t \) : meridian disks of \(V_\beta \)
(These meridian disks are numbered successively along \(V_\alpha \) or \(V_\beta \).)

\(\hat{T} \) is chosen so that \(t \) is minimal.
Let $P = \hat{P} \cap M$ and $T = \hat{T} \cap M$.
Gordon showed that \hat{P} can be chosen so that the following conditions are satisfied.

- $P \pitchfork T$ and each component of ∂P meets each component of ∂T in $\Delta(\alpha, \beta) = 5$ points;
- no circle component of $P \cap T$ bounds a disk in P (and in T);
- no arc component of $P \cap T$ is ∂-parallel in P or T.
The arc components of $P \cap T$ define two labelled graphs G_P and G_T.

G_P

G_T
Orient ∂P so that all components of ∂P are homologous in $\partial V_\alpha = T \subset \partial M$.
Give a sign to each edge of G_P.

Similarly for G_T.

Parity Rule

An edge is positive in one graph if and only if it is negative in the other.
Scharlemann cycles

Length 2

Length 3
Lemma. (1) Any family of parallel positive edges in G_P contains at most $\frac{t}{2} + 1$ edges.

(2) Any family of parallel negative edges in G_P contains at most t edges.

Lemma. Each vertex of G_P has at most $\frac{5t}{2}$ negative edge endpoints.
Reduced graphs

Let G be G_P or G_T.
Let \bar{G} denote the reduced graph of G, i.e., \bar{G} is obtained from G by amalgamating each family of parallel edges into a single edge.
Lemma. Some vertex of \overline{G}_P has valence at most 6.

Proof. Suppose that all vertices of \overline{G}_P have valence at least 7. Let V, E, F be the number of vertices, edges, and disk faces of \overline{G}_P, respectively. Then

$$V - E + F \geq V - E + \sum_{f: \text{face}} \chi(f) = \chi(\hat{P}) = 0,$$

$$2E \geq 3F,$$

and

$$2E \geq 7V.$$

Hence $2E \geq 3F \geq 3(E - V)$, which gives

$$3V \geq E.$$

This is a contradiction. \qed
We can choose a vertex u_x of \overline{G}_P which has valence at most 6. Let k be the number of positive edges of \overline{G}_P incident to u_x. Then we have

$$5t \leq k\left(\frac{t}{2} + 1\right) + (6 - k)t.$$

Solving this, we obtain

$$k \leq \frac{t}{t - \left(\frac{t}{2} + 1\right)} = 2 + \frac{4}{t - 2}.$$

If $t \geq 5$, then $k \leq 3$ and there are at least $5t - 3 \cdot \left(\frac{t}{2} + 1\right)$ negative edges of G_P incident to u_x. Hence we have

$$5t - 3 \cdot \left(\frac{t}{2} + 1\right) \leq \frac{5t}{2},$$

which gives $t \leq 3$. This is a contradiction.
So, $t = 1, 2, 3, \text{ or } 4.$
x-faces

x-edge: an edge of G having label x at its one endpoint

$G^+(x)$: the subgraph of G consisting of all positive x-edges

x-face: a disk face of $G^+(x)$

\[\text{Theorem (Hayashi and Motegi). Any } x\text{-face contains a Scharlemann cycle of } G. \]
Lemma. Each vertex of G_P has at most $\frac{5t}{2}$ negative edge endpoints.

Proof. There are at most four labels of Scharlemann cycles in G_T.

Case (I) Assume that G_T has at most three labels of Scharlemann cycles.

Case (II) Assume that G_T has four labels of Scharlemann cycles.

\begin{align*}
\text{Scharlemann cycles} = \begin{cases} (y, y + 1)-\text{Scharlemann cycles}, & \text{or} \\ (z, z + 1)-\text{Scharlemann cycles}, & \end{cases}
\end{align*}

where $\{y, y + 1\} \cap \{z, z + 1\} = \emptyset$.
Both kinds of Scharlemann cycles cannot have length 2.

\[\Delta(L(4n, 2n \pm 1), \text{TOR}) \leq 4 \]
We may assume that \((y, y + 1)\)-Scharlemann cycles have length at least 3. Then in \(G_T\),

\[
\begin{cases}
\# \text{ of } (y, y + 1)\text{-Scharlemann cycles} \leq \frac{t}{2} \\
\# \text{ of } (z, z + 1)\text{-Scharlemann cycles} \leq t.
\end{cases}
\]

Therefore the total number of Scharlemann cycles in \(G_T\) \(\leq \frac{3t}{2}\).
Now assume: some vertex u_x of G_P has more than $\frac{5t}{2}$ negative edge endpoints.

\[-\neg\neg\neg \Rightarrow G_T^+(x) \text{ has more than } \frac{5t}{2} \text{ edges.}\]

\[-\neg\neg\neg \Rightarrow G_T^+(x) \text{ has more than } \frac{3t}{2} \text{ disk faces.}\]

\[-\neg\neg\neg \Rightarrow \text{There are more than } \frac{3t}{2} \text{ } x\text{-faces in } G_T.\]

\[-\neg\neg\neg \Rightarrow \text{There are more than } \frac{3t}{2} \text{ Scharlemann cycles in } G_T.\]

\[-\neg\neg\neg \Rightarrow \text{A contradiction.} \quad \Box\]