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∆(LENS,TOR) ≤?

M : a hyperbolic 3-manifold with ∂M a torus

M(α) : a lens space

M(β) : a toroidal manifold

∆(α, β) ≤?
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Known Results

Theorem (Gordon). Let M be a hyperbolic 3-manifold with ∂M a

torus. If α, β are slopes on ∂M such that M(α) is a lens space and

M(β) contains an incompressible torus, then ∆(α, β) ≤ 5.

(∆(LENS, TOR) ≤ 5)

Theorem (Teragaito). Let M, M(α), M(β) be as above. Suppose

that M(α) contains a Klein bottle. Then ∆(α, β) ≤ 4.

(∆(L(4n,2n ± 1), TOR) ≤ 4)

2



Theorem (Lee). Let M, M(α), M(β) be as in Gordon’s Theorem.

Then ∆(α, β) ≤ 4.

Maximal observed distance: ∆(LENS,TOR) ≤ 3.
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(−2,3,7)-pretzel knot and exceptional surgery slopes

Exceptional slopes : 16,17,18,37/2,19,20,1/0

- S3 : 1/0

- Lens space : 18,19 99K K(18) ∼= L(18,5), K(19) ∼= L(19,7)

- Small Seifert fiber space : 17

- Toroidal manifold : 16,37/2,20
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A sketch of the proof of the theorem

Assume for contradiction that ∆(α, β) = 5.

M(α) = M ∪ Vα : Lens space

M(β) = M ∪ Vβ : Toroidal manifold

P̂ ⊂ M(α) : a Heegaard surface

T̂ ⊂ M(β) : an incompressible torus
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We may assume

P̂ ∩ Vα = u1 ∪ . . . ∪ up : meridian disks of Vα

T̂ ∩ Vβ = v1 ∪ . . . ∪ vt : meridian disks of Vβ

(These meridian disks are numbered successively along Vα or Vβ.)

T̂ is chosen so that t is minimal.

6



Let P = P̂ ∩ M and T = T̂ ∩ M .

Gordon showed that P̂ can be chosen so that the following conditions

are satisfied.

• P ⋔ T and each component of ∂P meets each component of ∂T in

∆(α, β) = 5 points;

• no circle component of P ∩ T bounds a disk in P (and in T );

• no arc component of P ∩ T is ∂-parallel in P or T .
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The arc components of P ∩ T define two labelled graphs GP and GT .
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Orient ∂P so that all components of ∂P are homologous in ∂Vα =

T ⊂ ∂M .
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Give a sign to each edge of GP .

Similarly for GT .

Parity Rule

An edge is positive in one graph if and only if it is negative in the

other.
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Scharlemann cycles
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Lemma. (1) Any family of parallel positive edges in GP contains at

most t
2 + 1 edges.

(2) Any family of parallel negative edges in GP contains at most t

edges.

Lemma. Each vertex of GP has at most 5t
2 negative edge endpoints.
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Reduced graphs

Let G be GP or GT .

Let G denote the reduced graph of G, i.e., G is obtained from G by

amalgamating each family of parallel edges into a single edge.
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Lemma. Some vertex of GP has valence at most 6.

Proof. Suppose that all vertices of GP have valence at least 7.

Let V, E, F be the number of vertices, edges, and disk faces of GP ,

respectively. Then

V − E + F ≥ V − E +
∑

f :face χ(f) = χ(P̂ ) = 0,

2E ≥ 3F, and
2E ≥ 7V.

Hence 2E ≥ 3F ≥ 3(E − V ), which gives

3V ≥ E.

This is a contradiction. �
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We can choose a vertex ux of GP which has valence at most 6. Let k

be the number of positive edges of GP incident to ux. Then we have

5t ≤ k(
t

2
+ 1) + (6 − k)t.

Solving this, we obtain

k ≤
t

t − ( t
2 + 1)

= 2 +
4

t − 2
.

If t ≥ 5, then k ≤ 3 and there are at least 5t − 3 · ( t
2 + 1) negative

edges of GP incident to ux. Hence we have

5t − 3 · (
t

2
+ 1) ≤

5t

2
,

which gives t ≤ 3. This is a contradiction.
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So, t = 1,2,3, or 4.

.....

.....
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x-faces

x-edge : an edge of G having label x at its one endpoint

G+(x) : the subgraph of G consisting of all positive x-edges

x-face : a disk face of G+(x)

Theorem (Hayashi and Motegi). Any x-face contains a Scharle-

mann cycle of G.
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Lemma. Each vertex of GP has at most 5t
2 negative edge endpoints.

Proof. There are at most four labels of Scharlemann cycles in GT .

Case(I) Assume that GT has at most three labels of Scharlemann

cycles. ..........

Case (II) Assume that GT has four labels of Scharlemann cycles.

Scharlemann cycles =

{
(y, y + 1)-Scharlemann cycles, or

(z, z + 1)-Scharlemann cycles,

where {y, y + 1} ∩ {z, z + 1} = ∅.
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Both kinds of Scharlemann cycles cannot have length 2.

(∵ ∆(L(4n,2n ± 1),TOR) ≤ 4)
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We may assume that (y, y + 1)-Scharlemann cycles have length at
least 3. Then in GT ,






# of (y, y + 1)-Scharlemann cycles ≤
t

2
and

# of (z, z + 1)-Scharlemann cycles ≤ t.

Therefore the total number of Scharlemann cycles in GT ≤ 3t
2 .
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Now assume : some vertex ux of GP has more than 5t
2 negative edge

endpoints.

−−− > G+
T (x) has more than 5t

2 edges.

−−− > G+
T (x) has more than 3t

2 disk faces.

−−− > There are more than 3t
2 x-faces in GT .

−−− > There are more than 3t
2 Scharlemann cycles in GT .

−−− > A contradiction. �
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