Lens spaces and toroidal Dehn fillings

January 23, 2008

Sangyop Lee

$\Delta($ LENS, TOR $) \leq ?$

M : a hyperbolic 3-manifold with ∂M a torus
$M(\alpha)$: a lens space
$M(\beta)$: a toroidal manifold
$\Delta(\alpha, \beta) \leq ?$

Known Results

Theorem (Gordon). Let M be a hyperbolic 3-manifold with ∂M a torus. If α, β are slopes on ∂M such that $M(\alpha)$ is a lens space and $M(\beta)$ contains an incompressible torus, then $\Delta(\alpha, \beta) \leq 5$. $(\Delta($ LENS,$T O R) \leq 5)$

Theorem (Teragaito). Let $M, M(\alpha), M(\beta)$ be as above. Suppose that $M(\alpha)$ contains a Klein bottle. Then $\Delta(\alpha, \beta) \leq 4$. $(\Delta(L(4 n, 2 n \pm 1), T O R) \leq 4)$

Theorem (Lee). Let $M, M(\alpha), M(\beta)$ be as in Gordon's Theorem. Then $\Delta(\alpha, \beta) \leq 4$.

Maximal observed distance: $\Delta($ LENS, TOR $) \leq 3$.

(-2, 3, 7)-pretzel knot and exceptional surgery slopes

Exceptional slopes: 16, 17, 18, 37/2, 19, 20, 1/0

- $S^{3}: 1 / 0$
- Lens space : $18,19 \rightarrow K(18) \cong L(18,5), \quad K(19) \cong L(19,7)$
- Small Seifert fiber space : 17
- Toroidal manifold: 16,37/2,20

A sketch of the proof of the theorem

Assume for contradiction that $\Delta(\alpha, \beta)=5$.
$M(\alpha)=M \cup V_{\alpha}:$ Lens space
$M(\beta)=M \cup V_{\beta}:$ Toroidal manifold
$\widehat{P} \subset M(\alpha)$: a Heegaard surface
$\widehat{T} \subset M(\beta):$ an incompressible torus

We may assume
$\widehat{P} \cap V_{\alpha}=u_{1} \cup \ldots \cup u_{p}:$ meridian disks of V_{α}
$\widehat{T} \cap V_{\beta}=v_{1} \cup \ldots \cup v_{t}$: meridian disks of V_{β}
(These meridian disks are numbered successively along V_{α} or V_{β}.)

\widehat{T} is chosen so that t is minimal.

Let $P=\widehat{P} \cap M$ and $T=\widehat{T} \cap M$.
Gordon showed that \hat{P} can be chosen so that the following conditions are satisfied.

- $P \pitchfork T$ and each component of ∂P meets each component of ∂T in $\Delta(\alpha, \beta)=5$ points;
- no circle component of $P \cap T$ bounds a disk in P (and in T);
- no arc component of $P \cap T$ is ∂-parallel in P or T.

The arc components of $P \cap T$ define two labelled graphs G_{P} and G_{T}.

Orient ∂P so that all components of ∂P are homologous in $\partial V_{\alpha}=$ $T \subset \partial M$.

Give a sign to each edge of G_{P}.

Similarly for G_{T}.

Parity Rule

An edge is positive in one graph if and only if it is negative in the other.

Scharlemann cycles

Length 2

Length 3

Lemma. (1) Any family of parallel positive edges in G_{P} contains at most $\frac{t}{2}+1$ edges.
(2) Any family of parallel negative edges in G_{P} contains at most t edges.

Lemma. Each vertex of G_{P} has at most $\frac{5 t}{2}$ negative edge endpoints.

Reduced graphs

Let G be G_{P} or G_{T}.
Let \bar{G} denote the reduced graph of G, i.e., \bar{G} is obtained from G by amalgamating each family of parallel edges into a single edge.

Lemma. Some vertex of \bar{G}_{P} has valence at most 6 .

Proof. Suppose that all vertices of \bar{G}_{P} have valence at least 7 . Let V, E, F be the number of vertices, edges, and disk faces of \bar{G}_{P}, respectively. Then

$$
\begin{aligned}
& V-E+F \geq V-E+\sum_{f: \text { face }} \chi(f)=\chi(\widehat{P})=0, \\
& 2 E \geq 3 F, \text { and } \\
& 2 E \geq 7 V .
\end{aligned}
$$

Hence $2 E \geq 3 F \geq 3(E-V)$, which gives

$$
3 V \geq E .
$$

This is a contradiction.

We can choose a vertex u_{x} of \bar{G}_{P} which has valence at most 6 . Let k be the number of positive edges of \bar{G}_{P} incident to u_{x}. Then we have

$$
5 t \leq k\left(\frac{t}{2}+1\right)+(6-k) t
$$

Solving this, we obtain

$$
k \leq \frac{t}{t-\left(\frac{t}{2}+1\right)}=2+\frac{4}{t-2}
$$

If $t \geq 5$, then $k \leq 3$ and there are at least $5 t-3 \cdot\left(\frac{t}{2}+1\right)$ negative edges of G_{P} incident to u_{x}. Hence we have

$$
5 t-3 \cdot\left(\frac{t}{2}+1\right) \leq \frac{5 t}{2}
$$

which gives $t \leq 3$. This is a contradiction.

So, $t=1,2,3$, or 4

x-faces

x-edge : an edge of G having label x at its one endpoint $G^{+}(x)$: the subgraph of G consisting of all positive x-edges x-face : a disk face of $G^{+}(x)$

Theorem (Hayashi and Motegi). Any x-face contains a Scharlemann cycle of G.

Lemma. Each vertex of G_{P} has at most $\frac{5 t}{2}$ negative edge endpoints.

Proof. There are at most four labels of Scharlemann cycles in G_{T}.

Case(I) Assume that G_{T} has at most three labels of Scharlemann cycles.

Case (II) Assume that G_{T} has four labels of Scharlemann cycles.
Scharlemann cycles $= \begin{cases}(y, y+1) \text {-Scharlemann cycles, } & \text { or } \\ (z, z+1) \text {-Scharlemann cycles }, & \end{cases}$
where $\{y, y+1\} \cap\{z, z+1\}=\emptyset$.

Both kinds of Scharlemann cycles cannot have length 2.

$(\because \Delta(L(4 n, 2 n \pm 1)$, TOR $) \leq 4)$

We may assume that $(y, y+1)$-Scharlemann cycles have length at least 3. Then in G_{T},

$$
\left\{\begin{array}{l}
\# \text { of }(y, y+1) \text {-Scharlemann cycles } \leq \frac{t}{2} \quad \text { and } \\
\# \text { of }(z, z+1) \text {-Scharlemann cycles } \leq t .
\end{array}\right.
$$

Therefore the total number of Scharlemann cycles in $G_{T} \leq \frac{3 t}{2}$.

Now assume : some vertex u_{x} of G_{P} has more than $\frac{5 t}{2}$ negative edge endpoints.
$--->G_{T}^{+}(x)$ has more than $\frac{5 t}{2}$ edges.
$--->G_{T}^{+}(x)$ has more than $\frac{3 t}{2}$ disk faces.
$--->$ There are more than $\frac{3 t}{2} x$-faces in G_{T}.
$--->$ There are more than $\frac{3 t}{2}$ Scharlemann cycles in G_{T}.
$--->A$ contradiction.

