Lens spaces and toroidal Dehn fillings

January 23, 2008

Sangyop Lee

$\Delta(\text{LENS}, \text{TOR}) \leq ?$

M : a hyperbolic 3-manifold with ∂M a torus

 $M(\alpha)$: a lens space

 $M(\beta)$: a toroidal manifold

 $\Delta(\alpha,\beta) \leq ?$

Known Results

Theorem (Gordon). Let M be a hyperbolic 3-manifold with ∂M a torus. If α, β are slopes on ∂M such that $M(\alpha)$ is a lens space and $M(\beta)$ contains an incompressible torus, then $\Delta(\alpha, \beta) \leq 5$. ($\Delta(LENS, TOR) \leq 5$)

Theorem (Teragaito). Let $M, M(\alpha), M(\beta)$ be as above. Suppose that $M(\alpha)$ contains a Klein bottle. Then $\Delta(\alpha, \beta) \leq 4$. ($\Delta(L(4n, 2n \pm 1), TOR) \leq 4$) **Theorem (Lee).** Let $M, M(\alpha), M(\beta)$ be as in Gordon's Theorem. Then $\Delta(\alpha, \beta) \leq 4$.

Maximal observed distance: $\Delta(LENS, TOR) \leq 3$.

(-2, 3, 7)-pretzel knot and exceptional surgery slopes

Exceptional slopes : 16, 17, 18, 37/2, 19, 20, 1/0

 $-S^3:1/0$

- Lens space : 18, 19 --> $K(18) \cong L(18, 5), \quad K(19) \cong L(19, 7)$
- Small Seifert fiber space : 17

- Toroidal manifold : 16,37/2,20

A sketch of the proof of the theorem

Assume for contradiction that $\Delta(\alpha, \beta) = 5$.

 $M(\alpha) = M \cup V_{\alpha}$: Lens space $M(\beta) = M \cup V_{\beta}$: Toroidal manifold

 $\widehat{P} \subset M(\alpha)$: a Heegaard surface $\widehat{T} \subset M(\beta)$: an incompressible torus

We may assume

 $\widehat{P} \cap V_{\alpha} = u_1 \cup \ldots \cup u_p$: meridian disks of V_{α}

 $\widehat{T} \cap V_{\beta} = v_1 \cup \ldots \cup v_t$: meridian disks of V_{β}

(These meridian disks are numbered successively along V_{α} or V_{β} .)

 \widehat{T} is chosen so that t is minimal.

Let $P = \hat{P} \cap M$ and $T = \hat{T} \cap M$.

Gordon showed that \hat{P} can be chosen so that the following conditions are satisfied.

- $P \pitchfork T$ and each component of ∂P meets each component of ∂T in $\Delta(\alpha, \beta) = 5$ points;
- no circle component of $P \cap T$ bounds a disk in P (and in T);
- no arc component of $P \cap T$ is ∂ -parallel in P or T.

The arc components of $P \cap T$ define two labelled graphs G_P and G_T .

 G_{P}

 G_{T}

8

Orient ∂P so that all components of ∂P are homologous in $\partial V_{\alpha} = T \subset \partial M$.

9

Give a sign to each edge of G_P .

Similarly for G_T .

Parity Rule

An edge is positive in one graph if and only if it is negative in the other.

Scharlemann cycles

Lemma. (1) Any family of parallel **positive** edges in G_P contains at most $\frac{t}{2} + 1$ edges. (2) Any family of parallel **negative** edges in G_P contains at most t edges.

Lemma. Each vertex of G_P has at most $\frac{5t}{2}$ negative edge endpoints.

Reduced graphs

Let G be G_P or G_T .

Let \overline{G} denote the reduced graph of G, i.e., \overline{G} is obtained from G by amalgamating each family of parallel edges into a single edge.

Lemma. Some vertex of \overline{G}_P has valence at most 6.

Proof. Suppose that all vertices of \overline{G}_P have valence at least 7. Let V, E, F be the number of vertices, edges, and disk faces of \overline{G}_P , respectively. Then

$$V - E + F \ge V - E + \sum_{f:face} \chi(f) = \chi(\widehat{P}) = 0,$$

 $2E \ge 3F$, and
 $2E \ge 7V.$

Hence $2E \ge 3F \ge 3(E - V)$, which gives

$$3V \geq E.$$

This is a contradiction.

We can choose a vertex u_x of \overline{G}_P which has valence at most 6. Let k be the number of positive edges of \overline{G}_P incident to u_x . Then we have

$$5t \le k(\frac{t}{2}+1) + (6-k)t.$$

Solving this, we obtain

$$k \le \frac{t}{t - (\frac{t}{2} + 1)} = 2 + \frac{4}{t - 2}.$$

If $t \ge 5$, then $k \le 3$ and there are at least $5t - 3 \cdot (\frac{t}{2} + 1)$ negative edges of G_P incident to u_x . Hence we have

$$5t - 3 \cdot (\frac{t}{2} + 1) \le \frac{5t}{2},$$

which gives $t \leq 3$. This is a contradiction.

So, t = 1, 2, 3, or 4.

.

.

16

x-faces

x-edge : an edge of G having label x at its one endpoint $G^+(x)$: the subgraph of G consisting of all positive x-edges x-face : a disk face of $G^+(x)$

Theorem (Hayashi and Motegi). Any x-face contains a Scharlemann cycle of G. **Lemma.** Each vertex of G_P has at most $\frac{5t}{2}$ negative edge endpoints. *Proof.* There are at most four labels of Scharlemann cycles in G_T . Case(I) Assume that G_T has at most three labels of Scharlemann cycles.

Case (II) Assume that G_T has four labels of Scharlemann cycles.

Scharlemann cycles = $\begin{cases} (y, y + 1)\text{-Scharlemann cycles,} & \text{or} \\ (z, z + 1)\text{-Scharlemann cycles,} \end{cases}$ where $\{y, y + 1\} \cap \{z, z + 1\} = \emptyset$.

Both kinds of Scharlemann cycles cannot have length 2.

 $(:: \Delta(L(4n, 2n \pm 1), \mathsf{TOR}) \leq 4)$

We may assume that (y, y + 1)-Scharlemann cycles have length at least 3. Then in G_T ,

Therefore the total number of Scharlemann cycles in $G_T \leq \frac{3t}{2}$.

Now assume : some vertex u_x of G_P has more than $\frac{5t}{2}$ negative edge endpoints.

$$--->G_T^+(x)$$
 has more than $\frac{5t}{2}$ edges.

$$--->G_T^+(x)$$
 has more than $\frac{3t}{2}$ disk faces.

$$--->$$
 There are more than $\frac{3t}{2}$ x-faces in G_T .

- ---> There are more than $\frac{3t}{2}$ Scharlemann cycles in G_T .
- ---> A contradiction.