Graph braid groups and right angled Artin groups

Ki Hyoung Ko (Joint with Jee Hyoun Kim and Hyo Won Park) KAIST

Copyright note: Some of illustrations are excerpted from "Finding topology in a factory: configuration spaces" by Abrams and Ghrist and " On the cohomology rings of the tree braid groups" by Farley and Sabalka.

n Robots on R² and n-Braids

A motion of n robots is a one-parameter family of ntuples of points in \mathbb{R}^2 that are pair-wise distinct, that is, a path (or loop) in $(\mathbb{R}^2)^n$ - Δ

Configuration space of 2 robots

Discrete Configuration Space

- $C_n(G) = G^n \Delta$
 - = all n-tuples of pair-wise distinct points of G
- Regard G as a 1-dimensional complex
 D_n(G) = Gⁿ all cells touching ∆
 = all n-fold products of pair-wise
 disjoint 0- or 1-cells of G
- D_n(G) is a nice space. In fact, it is a cube complex of non-positive curvature in the sense of Gromov.

$C_n(G) \simeq D_n(G)$

- [Abrams, 00] For any n > 1 and any graph G with at least n vertices, C_n(G) deformation retracts to D_n(G) if and only if
- Each path between distinct vertices of valence not equal to two passes through at least n – 1 edges;
- Each loop from a vertex to itself which cannot be shrunk to a point in G passes through at least n + 1 edges.

$D_2(K_5)$ = closed surface of genus 6

Similarly, $D_2(K_{3,3})$ is a closed surface of genus 37.

Pure braid groups and braid groups

- **[R. Ghrist, 99]** Given a graph G (\approx S¹) having v vertices of valence > 2, the space C_n(G) deformation retracts to a subcomplex of dimension at most v. Furthermore, C_n(G) and UC_n(G) = C_n(G)/ Σ_n are K(π , 1) spaces.
- Define the pure braid group and the braid group over G by

 $\begin{aligned} \mathsf{PB}_n\left(G\right) &\equiv \pi_1(\mathsf{C}_n(G)),\\ \mathsf{B}_n\left(G\right) &\equiv \pi_1(\mathsf{UC}_n(G)). \end{aligned}$

• Then they are torsion free.

Properties of graph braid groups

- **[A. Abrams, 00]** $D_n(G)$ and $UD_n(G) \equiv D_n(G)/\Sigma_n$ are cube complexes of non-positive curvature, that is, locally CAT(0) and have many useful consequences.
- $D_n(G)$ and $UD_n(G)$ are $K(\pi, 1)$ spaces.
- PB_n(G) and B_n(G) are torson free and have solvable word and conjugacy problems.

Right-angled Artin group

- A group is called a right-angled Artin group (RAAG) if it has a finite presentation whose defining relations are all commutators of generators.
- [R. Charney and M. Davis, 94] Given a simple graph Γ, A_Γ denotes the RAAG generated by V(Γ) and related by a commutator of two ends of each edge. Then K(A_Γ, 1) is obtained from Π_{v∈V(Γ)}(S¹)_v by deleting all k-cells corresponding to v₁, v₂,...,v_k if they do not form a complete subgraph in Γ and so the cohomology H*(A_Γ;Z₂) forms an exterior face algebra of a flag complex.

Is any graph braid group a RAAG?

- R. Ghrist conjectured that every graph (pure) braid group is a RAAG.
- Ghrist and Abrams realized that K₅ and K_{3,3} are counterexamples and revised the conjecture so that it holds only for planar graphs.
- In 2006, D. Farley and L. Sabalka found a counterexample for the revised conjecture.
- This talk will propose a necessary and sufficient condition for a graph to have a RAAG as its braid group for braid index ≥ 5.

Embedding results

- **[J. Crisp and B. Wiest, 04]** The natural cubical map Φ : $UD_n(G) \rightarrow K(A_{\Gamma}, 1)$ is a local isometry and therefore is π_1 -injective, where $V(\Gamma) = E(G)$ and there is an edge in Γ for each pair of disjoint edges in G. Consequently, every graph braid group is a subgroup of a RAAG.
- [J. Crisp and B. Wiest, 04] A surface group $\pi_1(S)$ is embedded in a RAAG iff $S \neq P^2$, $P^2#P^2$, $P^2#P^2#P^2$
- [L. Sabalka, 05] Every RAAG is realized by a graph 2-braid group.

Discrete Morse theory

 [D. Farley and L. Sabalka, 04] Using discrete Morse theory [Forman, 98], UD_n(G) can be systematically collapsed to yield a minimal cube complex M_n(G), called the Morse complex, that is simple enough to compute π₁. In fact, they showed how to compute tree braid groups and found a counterexample for Ghrist's modified conjecture.

Morse complex of T₀

The Morse complex $M_4(T_0)$ obtained by collapsing $UD_4(T_0)$ along the given gradient vector field has one 0-cell + twenty four 1-cells + six 2-cells

Ring structure of $H^*(M_4(T_0); \mathbb{Z}_2)$

 $H^*(M_4(T_0); \mathbf{Z}_2)$ is an exterior face algebra of a simplicial complex that is not flag.

If $B_n(T_0)$ were a RAAG, $H^*(A_{\Gamma}; \mathbb{Z}_2)$ is an exterior face algebra of a flag complex $K(A_{\Gamma}, 1)$ and so $\Phi^* : H^*(K(A_{\Gamma}, 1); \mathbb{Z}_2) \to H^*(B_n(T_0); \mathbb{Z}_2)$ has a nontrivial kernel generated by homogeneous degree 1 elements where $\Phi : UD_n(T_0) \to K(A_{\Gamma}, 1)$ is the natural cubical map considered earlier.

Results in [D. Farley and L. Sabalka, 06]

- Lemma. The kernel of Φ_* can not be generated by homogeneous degree 1 and degree 2 elements and consequently $B_n(T_0)$ is not a RAAG.
- **Theorem.** For a tree T, the braid group B_nT is a RAAG if and only if T is linear (i.e. T contains no T_0) or $n \le 3$.
- We generalize this results to arbitrary graphs for n ≥ 5.

Morse complex of S₀

The Morse complex $M_5(S_0)$ has one 0-cell + fifteen 1-cells + ten 2-cells

B_5S_0 is not a RAAG

- Let B_nG = F/R for a free group F and its normal subgroup R. If G is a commutator-relator group, that is, R ⊂ [F,F], then the inclusion induces Ψ : H₂(B_nG) = R/[F,R] → [F,F]/[F,[F,F]] which is, in fact, the dual of cup product.
- If B_nG is a RAAG, this homomorphism Ψ is injective.
- Rank(Im Ψ) = 3 obtained from a presentation of B₅S₀. Rank(H₂(B₅S₀)) = 4 obtained from the Morse complex M₅(S₀). Thus B₅S₀ is not a RAAG.

A complete description for $n \ge 5$

- A graph G contains another graph H if a subdivision of H is a subgraph of a subdivision of G.
- Main Theorem. For a graph G and $n \ge 5$, the nbraid group B_nG is a RAAG if and only if G contains neither T_0 nor S_0 .

4th East Asian School of Knots and Related Topics

One half of Main Theorem

- **Theorem.** If a graph G contains neither T_0 nor S_0 then the n-braid group B_nG is a RAAG for $n \ge 5$.
- Proof. A graph G containing neither T₀ nor S₀ must be a "linear star-bouquet". Then compute a presentation of B_nG directly from a Morse complex M_n(G) to show it is a RAAG.

Breakup of the converse

- **Theorem A.** If a graph G contain T_0 but does not contain S_0 then B_nG is not a RAAG for $n \ge 5$.
- **Theorem B.** If a planar graph G contains S_0 then B_n G is not a RAAG for $n \ge 5$.
- **Theorem C.** If a graph G is non-planar then B_nG is not a RAAG.
- We remark that classes of graphs in Theorem A and Theorem B are further divided into smaller classes due to some technical difficulties.

Exterior face algebra of a flag complex

- **Proposition.** Let K_1 and K_2 be finite simplicial complexes. If $\varphi : \Lambda(K_1) \to \Lambda(K_2)$ is a degree-preserving epimorphism, K_1 is a flag complex, and Ker(φ) is generated by homogeneous elements of degree 1 and 2, then K_2 is also a flag complex where $\Lambda(K)$ denotes the exterior face algebra of K over Z_2 .
- We use the contraposition of this proposition.

Graphs without S₀

 Suppose B_nH is not a RAAG and G contains H but not S₀. Then one can show that the inclusion i : H → G induces a degree-preserving epimorphism

i^{*} : H^{*}(UD_nG; Z_2) → H^{*}(UD_nH; Z_2) and Ker(i^{*}) is generated by homogeneous elements of degree 1 and 2.

Since H*(UD_nH; Z₂) = H*(B_nH; Z₂) is an exterior face algebra of a non-flag complex, so is H*(UD_nG; Z₂) and therefore B_nG is not a RAAG.

Preview of Hyo Won Park's talk

- **Theorem B.** If a planar graph G contains S_0 then B_n G is not a RAAG for $n \ge 5$.
- **Proof.** Prove and use the monomorphism $\Psi: H_2(B_nG) = R/[F,R] \rightarrow [F,F]/[F,[F,F]]$ in another way.
- **Theorem C.** If a graph G is non-planar then B_nG is not a right-angled Artin group.
- Proof. For a non-planar graph G, H₁(B_nG) can be shown to have a torsion but the homology groups of a RAAG is torsion free.

Remark for $n \le 4$

- An n-nucleus is a minimal graph G such that B_nG is not a RAAG.
- We have just observed that there are two n-nuclei T_0 and S_0 for $n \ge 5$.
- There are four 4-nuclei, six 3-nuclei, and more than sixty 2-nuclei. We conjecture that for any n, B_nG is a right-angled Artin group if and only if G contains no n-nuclei.

4-Nuclei and 3-nuclei

2-Nuclei

THANK YOU

4th East Asian School of Knots and Related Topics