Graph braid groups and right angled Artin groups

Ki Hyoung Ko (Joint with Jee Hyoun Kim and Hyo Won Park) KAIST

Copyright note: Some of illustrations are excerpted from "Finding topology in a factory: configuration spaces" by Abrams and Ghrist and "On the cohomology rings of the tree braid groups" by Farley and Sabalka.

n Robots on \mathbf{R}^{2} and n -Braids

A motion of n robots is a one-parameter family of n tuples of points in R^{2} that are pair-wise distinct, that is, a path (or loop) in $\left(R^{2}\right)^{n}-\Delta$

Configuration space of 2 robots

$\mathrm{C}_{2}\left(\bigcirc^{-}\right)$and $\mathrm{C}_{2}(-)$

Discrete Configuration Space

- $\mathrm{C}_{\mathrm{n}}(\mathrm{G})=\mathrm{G}^{\mathrm{n}}-\Delta$
= all n-tuples of pair-wise distinct points of G
- Regard G as a 1-dimensional complex $D_{n}(G)=G^{n}-$ all cells touching Δ
= all n-fold products of pair-wise disjoint 0 - or 1-cells of G
- $D_{n}(G)$ is a nice space. In fact, it is a cube complex of non-positive curvature in the sense of Gromov.

$$
\mathrm{C}_{2}(\lambda) \text { vs. } \mathrm{D}_{2}(\lambda)
$$

$D_{2}\left(\mathrm{O}^{-}\right)$and $\mathrm{D}_{2}\left(\mathrm{C}^{-}\right)$

$$
C_{n}(G) \simeq D_{n}(G)
$$

[Abrams, 00] For any $n>1$ and any graph G with at least n vertices, $C_{n}(G)$ deformation retracts to $D_{n}(G)$ if and only if

1. Each path between distinct vertices of valence not equal to two passes through at least $\mathrm{n}-1$ edges;
2. Each loop from a vertex to itself which cannot be shrunk to a point in G passes through at least $\mathrm{n}+1$ edges.

$\mathrm{C}_{2}\left(\mathrm{~K}_{5}\right) \simeq \mathrm{D}_{2}\left(\mathrm{~K}_{5}\right) \quad \mathrm{C}_{2}\left(\mathrm{~K}_{3,3}\right) \simeq \mathrm{D}_{2}\left(\mathrm{~K}_{3,3}\right)$

$D_{2}\left(K_{5}\right)=$ closed surface of genus 6

$$
\begin{aligned}
& \chi\left(D_{2}\left(K_{5}\right)\right)=20-60+30=-10 \\
& g=1-(-10 / 2)=6
\end{aligned}
$$

Similarly, $D_{2}\left(K_{3,3}\right)$ is a closed surface of genus 37 .

Pure braid groups and braid groups

- [R. Ghrist, 99] Given a graph $G\left(\approx S^{1}\right)$ having v vertices of valence > 2 , the space $\mathrm{C}_{\mathrm{n}}(\mathrm{G})$ deformation retracts to a subcomplex of dimension at most v. Furthermore, $\mathrm{C}_{\mathrm{n}}(\mathrm{G})$ and $\mathrm{UC}_{\mathrm{n}}(\mathrm{G}) \equiv \mathrm{C}_{\mathrm{n}}(\mathrm{G}) / \Sigma_{\mathrm{n}}$ are $\mathrm{K}(\pi, 1)$ spaces.
- Define the pure braid group and the braid group over G by

$$
\begin{aligned}
\mathrm{PB}_{\mathrm{n}}(\mathrm{G}) & \equiv \pi_{1}\left(\mathrm{C}_{\mathrm{n}}(\mathrm{G})\right), \\
\mathrm{B}_{\mathrm{n}}(\mathrm{G}) & \equiv \pi_{1}\left(\mathrm{UC}_{\mathrm{n}}(\mathrm{G})\right) .
\end{aligned}
$$

- Then they are torsion free.

Properties of graph braid groups

- [A. Abrams, 00] $D_{n}(G)$ and $U D_{n}(G) \equiv D_{n}(G) / \Sigma_{n}$ are cube complexes of non-positive curvature, that is, locally $\operatorname{CAT}(0)$ and have many useful consequences.
- $D_{n}(G)$ and $U D_{n}(G)$ are $K(\pi, 1)$ spaces.
- $P B_{n}(G)$ and $B_{n}(G)$ are torson free and have solvable word and conjugacy problems.

Right-angled Artin group

- A group is called a right-angled Artin group (RAAG) if it has a finite presentation whose defining relations are all commutators of generators.
- [R. Charney and M. Davis, 94] Given a simple graph $\Gamma, \mathrm{A}_{\Gamma}$ denotes the RAAG generated by $\mathrm{V}(\Gamma)$ and related by a commutator of two ends of each edge. Then $\mathrm{K}\left(\mathrm{A}_{\Gamma}, 1\right)$ is obtained from $\Pi_{\mathrm{v} \in \mathrm{V}(\Gamma)}\left(\mathrm{S}^{1}\right)_{\mathrm{V}}$ by deleting all k-cells corresponding to $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}$ if they do not form a complete subgraph in Γ and so the cohomology $\mathrm{H}^{*}\left(\mathrm{~A}_{\Gamma} ; \mathrm{Z}_{2}\right)$ forms an exterior face algebra of a flag complex.

Is any graph braid group a RAAG?

- R. Ghrist conjectured that every graph (pure) braid group is a RAAG.
- Ghrist and Abrams realized that K_{5} and $\mathrm{K}_{3,3}$ are counterexamples and revised the conjecture so that it holds only for planar graphs.
- In 2006, D. Farley and L. Sabalka found a counterexample for the revised conjecture.
- This talk will propose a necessary and sufficient condition for a graph to have a RAAG as its braid group for braid index ≥ 5.

Embedding results

- [J. Crisp and B. Wiest, 04] The natural cubical $\operatorname{map} \Phi: U D_{n}(G) \rightarrow K\left(A_{\Gamma}, 1\right)$ is a local isometry and therefore is π_{1}-injective, where $V(\Gamma)=E(G)$ and there is an edge in Γ for each pair of disjoint edges in G. Consequently, every graph braid group is a subgroup of a RAAG.
- [J. Crisp and B. Wiest, 04] A surface group $\pi_{1}(S)$ is embedded in a RAAG iff $S \neq \mathrm{P}^{2}, \mathrm{P}^{2} \# \mathrm{P}^{2}$, $\mathrm{P}^{2} \# \mathrm{P}^{2} \# \mathrm{P}^{2}$
- [L. Sabalka, 05] Every RAAG is realized by a graph 2-braid group.

Discrete Morse theory

- [D. Farley and L. Sabalka, 04] Using discrete Morse theory [Forman, 98], UD ${ }_{\mathrm{n}}(\mathrm{G})$ can be systematically collapsed to yield a minimal cube complex $M_{n}(G)$, called the Morse complex, that is simple enough to compute π_{1}. In fact, they showed how to compute tree braid groups and found a counterexample for Ghrist's modified conjecture.

Morse complex of T_{0}

The Morse complex $\mathrm{M}_{4}\left(\mathrm{~T}_{0}\right)$ obtained by collapsing $\mathrm{UD}_{4}\left(\mathrm{~T}_{0}\right)$ along the given gradient vector field has one 0 -cell + twenty four 1-cells + six 2-cells

Ring structure of $\mathrm{H}^{*}\left(\mathrm{M}_{4}\left(\mathrm{~T}_{0}\right) ; \mathbf{Z}_{2}\right)$

$\mathrm{H}^{*}\left(\mathrm{M}_{4}\left(\mathrm{~T}_{0}\right) ; \mathrm{Z}_{2}\right)$ is an exterior face algebra of a simplicial complex that is not flag.
If $B_{n}\left(T_{0}\right)$ were a RAAG, $H^{*}\left(A_{\Gamma} ; Z_{2}\right)$ is an exterior face algebra of a flag complex $K\left(A_{\Gamma}, 1\right)$ and so $\Phi^{*}: H^{*}\left(\mathrm{~K}\left(\mathrm{~A}_{\Gamma}, 1\right) ; \mathbf{Z}_{2}\right) \rightarrow \mathrm{H}^{*}\left(\mathrm{~B}_{\mathrm{n}}\left(\mathrm{T}_{0}\right) ; \mathbf{Z}_{2}\right)$ has a nontrivial kernel generated by homogeneous degree 1 elements where $\Phi: U D_{n}\left(T_{0}\right) \rightarrow K\left(A_{\Gamma}, 1\right)$ is the natural cubical map considered earlier.

Results in [D. Farley and L. Sabalka, 06]

- Lemma. The kernel of Φ_{*} can not be generated by homogeneous degree 1 and degree 2 elements and consequently $B_{n}\left(T_{0}\right)$ is not a RAAG.
- Theorem. For a tree T, the braid group $B_{n} T$ is a RAAG if and only if T is linear (i.e. T contains no T_{0}) or $\mathrm{n} \leq 3$.
- We generalize this results to arbitrary graphs for $\mathrm{n} \geq 5$.

Morse complex of S_{0}

The Morse complex $\mathrm{M}_{5}\left(\mathrm{~S}_{0}\right)$ has one 0 -cell + fifteen 1 -cells + ten 2-cells

$\mathrm{B}_{5} \mathrm{~S}_{0}$ is not a RAAG

- Let $B_{n} G=F / R$ for a free group F and its normal subgroup R. If G is a commutator-relator group, that is, $R \subset[F, F]$, then the inclusion induces

$$
\Psi: \mathrm{H}_{2}\left(\mathrm{~B}_{\mathrm{n}} \mathrm{G}\right)=\mathrm{R} /[\mathrm{F}, \mathrm{R}] \rightarrow[\mathrm{F}, \mathrm{~F}] /[\mathrm{F},[\mathrm{~F}, \mathrm{~F}]]
$$

which is, in fact, the dual of cup product.

- If $B_{n} G$ is a RAAG, this homomorphism Ψ is injective.
- Rank(Im $\Psi)=3$ obtained from a presentation of $\mathrm{B}_{5} \mathrm{~S}_{0} \cdot \operatorname{Rank}\left(\mathrm{H}_{2}\left(\mathrm{~B}_{5} \mathrm{~S}_{0}\right)\right)=4$ obtained from the Morse complex $M_{5}\left(S_{0}\right)$. Thus $B_{5} S_{0}$ is not a RAAG.

A complete description for $\mathrm{n} \geq 5$

- A graph G contains another graph H if a subdivsion of H is a subgraph of a subdivision of G.
- Main Theorem. For a graph G and $n \geq 5$, the n braid group $B_{n} G$ is a RAAG if and only if G contains neither T_{0} nor S_{0}.

T_{0}

S_{0}

One half of Main Theorem

- Theorem. If a graph G contains neither T_{0} nor S_{0} then the n-braid group $B_{n} G$ is a RAAG for $n \geq 5$.
- Proof. A graph G containing neither T_{0} nor S_{0} must be a "linear star-bouquet". Then compute a presentation of $B_{n} G$ directly from a Morse complex $M_{n}(G)$ to show it is a RAAG.

Breakup of the converse

- Theorem A. If a graph G contain T_{0} but does not contain S_{0} then $B_{n} G$ is not a RAAG for $n \geq 5$.
- Theorem B. If a planar graph G contains S_{0} then $B_{n} G$ is not a RAAG for $n \geq 5$.
- Theorem C. If a graph G is non-planar then $B_{n} G$ is not a RAAG.
- We remark that classes of graphs in Theorem A and Theorem B are further divided into smaller classes due to some technical difficulties.

Exterior face algebra of a flag complex

- Proposition. Let K_{1} and K_{2} be finite simplicial complexes. If $\varphi: \Lambda\left(\mathrm{K}_{1}\right) \rightarrow \Lambda\left(\mathrm{K}_{2}\right)$ is a degreepreserving epimorphism, K_{1} is a flag complex, and $\operatorname{Ker}(\varphi)$ is generated by homogeneous elements of degree 1 and 2, then K_{2} is also a flag complex where $\Lambda(\mathrm{K})$ denotes the exterior face algebra of K over Z_{2}.
- We use the contraposition of this proposition.

Graphs without S_{0}

- Suppose $\mathrm{B}_{\mathrm{n}} \mathrm{H}$ is not a RAAG and G contains H but not S_{0}. Then one can show that the inclusion $\mathrm{i}: \mathrm{H} \rightarrow \mathrm{G}$ induces a degree-preserving epimorphism

$$
\mathrm{i}^{*}: \mathrm{H}^{*}\left(\mathrm{UD}_{\mathrm{n}} \mathrm{G} ; \mathrm{Z}_{2}\right) \rightarrow \mathrm{H}^{*}\left(\mathrm{UD} \mathrm{n}_{\mathrm{n}} \mathrm{H} ; \mathrm{Z}_{2}\right)
$$

and $\operatorname{Ker}\left(\mathrm{i}^{*}\right)$ is generated by homogeneous elements of degree 1 and 2.

- Since $H^{*}\left(U D_{n} H ; Z_{2}\right)=H^{*}\left(B_{n} H ; Z_{2}\right)$ is an exterior face algebra of a non-flag complex, so is $H^{*}\left(U D_{n} G ; Z_{2}\right)$ and therefore $B_{n} G$ is not a RAAG.

Preview of Hyo Won Park's talk

- Theorem B. If a planar graph G contains S_{0} then $B_{n} G$ is not a RAAG for $n \geq 5$.
- Proof. Prove and use the monomorphism

$$
\Psi: \mathrm{H}_{2}\left(\mathrm{~B}_{\mathrm{n}} \mathrm{G}\right)=\mathrm{R} /[\mathrm{F}, \mathrm{R}] \rightarrow[\mathrm{F}, \mathrm{~F}] /[\mathrm{F},[\mathrm{~F}, \mathrm{~F}]]
$$

in another way.

- Theorem C. If a graph G is non-planar then $B_{n} G$ is not a right-angled Artin group.
- Proof. For a non-planar graph $G, H_{1}\left(B_{n} G\right)$ can be shown to have a torsion but the homology groups of a RAAG is torsion free.

Remark for $\mathrm{n} \leq 4$

- An n-nucleus is a minimal graph G such that $B_{n} G$ is not a RAAG.
- We have just observed that there are two n nuclei T_{0} and S_{0} for $n \geq 5$.
- There are four 4 -nuclei, six 3 -nuclei, and more than sixty 2 -nuclei. We conjecture that for any n, $B_{n} G$ is a right-angled Artin group if and only if G contains no n-nuclei.

4-Nuclei and 3-nuclei

2-Nuclei

Non-planar (2)	Type 1 (5)	Type 2 7 (7)	Type 3 (17)	Type 4(30)

THANK YOU

