Fibered knot and Fintushel-Stern knot surgered 4-manifold

Ki-Heon Yun (Jointed with Jongil Park)

Seoul National University

January 21, 2008

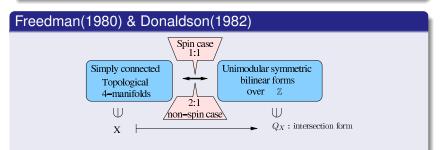
Ki-Heon Yun (Jointed with Jongil Park) Fibered knot and Fintushel-Stern knot surgered 4-manifold

・ 同 ト ・ ヨ ト ・ ヨ ト

Classification problems in 4-manifolds

Fundamental Questions in Topology and Geometry

- **Existence:** Are there any manifolds with the given properties?
- **Uniqueness:** If there are more than one, then how do we distinguish them?



Two smooth simply connected closed 4-manifolds are homeomorphic iff they have the same σ , *e* and type.

Ki-Heon Yun (Jointed with Jongil Park) Fibered knot and Fintushel-Stern knot surgered 4-manifold

Smooth classification of 4-manifolds

For a manifold M^n ,

- *n* ≤ 3, topological classification is the same as smooth classification.
- *n* ≥ 5, every *n*-manifold has only finitely many distinct smooth *n*-manifolds which are homeomorphic to it.
- n = 4, we have lots of exotic smooth 4-manifolds with the help of Seiberg-Witten invariants. Moreover, all known exotic 4-manifolds has infinitely many different smooth structures.

Examples: $m\mathbb{CP}^2 \ddagger n\overline{\mathbb{CP}}^2$ with m = 1 & n = 2, 3, 4, 5, 6, 7, 8, 9 or m = 3 & $n = 4, 5, 6, 7, 8, \cdots$ (ABBKP(2007), Park-Yun(2007))

Conjecture (Wild conjecture)

Every 4-manifold has either zero or infinitely many distinct smooth 4-manifolds which are homeomorphic to it.

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

Fintushel-Stern knot surgered 4-manifold

Definition (Fintushel-Stern knot surgered 4-manifold)

X: a closed smooth 4-manifold, $K \subset S^3$: a knot $\exists T^2 \hookrightarrow X$ with $[T]^2 = 0$ Fintushel-Stern knot surgered 4-manifold is defined by

$$X_K = X \sharp_{T=T_m}(S^1 \times M_K) = (X \setminus (T \times D^2)) \cup_{\phi} S^1 \times (S^3 \setminus N(K))$$

where $[pt \times \partial D^2]$ is identified with the longitude of *K*.

$$\begin{array}{c|c} X & & \\ &$$

★週 → ★ 注 → ★ 注 → … 注

Fintushel-Stern knot surgered 4-manifold

Definition (Fintushel-Stern knot surgered 4-manifold)

X: a closed smooth 4-manifold, $K \subset S^3$: a knot $\exists T^2 \hookrightarrow X$ with $[T]^2 = 0$ Fintushel-Stern knot surgered 4-manifold is defined by

$$X_K = X \sharp_{T=T_m}(S^1 \times M_K) = (X \setminus (T \times D^2)) \cup_{\phi} S^1 \times (S^3 \setminus N(K))$$

where $[pt \times \partial D^2]$ is identified with the longitude of *K*.

Theorem (Fintushel-Stern, Invent. Math(1998))

1) if
$$b^+(X) > 1$$
, then $\mathscr{SW}_{X_K} = \mathscr{SW}_X \cdot \Delta_K(t)$

2 if $b^+(X) = 1$, then the $[T]^{\perp}$ -restricted Seiberg-Witten invariants of X_K are $\mathscr{SW}_{X_K,T}^{\pm} = \mathscr{SW}_{X,T}^{\pm} \cdot \Delta_K(t)$

Note: There are infinitely many inequivalent knots with the same Alexander polynomial.

Ki-Heon Yun (Jointed with Jongil Park) Fibered knot and Fintushel-Stern knot surgered 4-manifold

The manifolds $E(2)_{K_1}$ and $E(2)_{K_2}$ are diffeomorphic if and only if K_1 and K_2 are equivalent knots (up to mirror).

- If K ⊂ S³ is a fibered knot, then E(n)_K has a symplectic structure.
- Moreover **Fintushel-Stern 2004** showed that $E(n)_K$ has a Lefschetz fibration with generic fiber $\sum_{2g(K)+n-1}$.

Therefore we are interested in

- explicit monodromy factorization of $E(n)_K$
- Is it unique? I mean, are there nonisomorphic monodromy factorizations on *E*(*n*)_K corresponding to fixed generic fiber Σ_{2g(K)+n-1}?
- some applications?

イロト イポト イヨト イヨト 三日

The manifolds $E(2)_{K_1}$ and $E(2)_{K_2}$ are diffeomorphic if and only if K_1 and K_2 are equivalent knots (up to mirror).

- If K ⊂ S³ is a fibered knot, then E(n)_K has a symplectic structure.
- Moreover Fintushel-Stern 2004 showed that *E*(*n*)_K has a Lefschetz fibration with generic fiber Σ_{2g(K)+n-1}.

Therefore we are interested in

- explicit monodromy factorization of $E(n)_K$
- Is it unique? I mean, are there nonisomorphic monodromy factorizations on *E*(*n*)_K corresponding to fixed generic fiber Σ_{2g(K)+n-1}?
- some applications?

<ロ> (四) (四) (三) (三) (三)

The manifolds $E(2)_{K_1}$ and $E(2)_{K_2}$ are diffeomorphic if and only if K_1 and K_2 are equivalent knots (up to mirror).

- If K ⊂ S³ is a fibered knot, then E(n)_K has a symplectic structure.
- Moreover **Fintushel-Stern 2004** showed that $E(n)_K$ has a Lefschetz fibration with generic fiber $\sum_{2g(K)+n-1}$.

Therefore we are interested in

- explicit monodromy factorization of $E(n)_K$
- Is it unique? I mean, are there nonisomorphic monodromy factorizations on $E(n)_K$ corresponding to fixed generic fiber $\sum_{2g(K)+n-1}$?
- some applications?

イロト イポト イヨト イヨト

The manifolds $E(2)_{K_1}$ and $E(2)_{K_2}$ are diffeomorphic if and only if K_1 and K_2 are equivalent knots (up to mirror).

- If K ⊂ S³ is a fibered knot, then E(n)_K has a symplectic structure.
- Moreover Fintushel-Stern 2004 showed that *E*(*n*)_K has a Lefschetz fibration with generic fiber Σ_{2g(K)+n-1}.

Therefore we are interested in

- explicit monodromy factorization of $E(n)_K$
- Is it unique? I mean, are there nonisomorphic monodromy factorizations on *E*(*n*)_K corresponding to fixed generic fiber Σ_{2g(K)+n-1}?
- some applications?

イロト イポト イヨト イヨト

The manifolds $E(2)_{K_1}$ and $E(2)_{K_2}$ are diffeomorphic if and only if K_1 and K_2 are equivalent knots (up to mirror).

- If K ⊂ S³ is a fibered knot, then E(n)_K has a symplectic structure.
- Moreover Fintushel-Stern 2004 showed that *E*(*n*)_K has a Lefschetz fibration with generic fiber Σ_{2g(K)+n-1}.

Therefore we are interested in

- explicit monodromy factorization of $E(n)_K$
- Is it unique? I mean, are there nonisomorphic monodromy factorizations on $E(n)_K$ corresponding to fixed generic fiber $\sum_{2g(K)+n-1}$?
- some applications?

• • • • • • • • • • • •

Lefschetz fibration

Definition

*X*⁴: compact connected oriented smooth 4-manifold *B*:compact connected oriented surface

 $\pi: X \to B$, $\pi^{-1}(\partial B) = \partial X$, is a Lefschetz fibration if

- $\exists C = \{p_1, p_2, \cdots, p_n\} \subset int(X)$: set of critical points of π s.t. $C \neq \emptyset \& \pi|_C$ is injective
- about each p_i and b_i := π(p_i), there are local complex coordinate charts agreeing with the orientations of X and B such that π(z₁, z₂) = z₁² + z₂².

Remark

For a given Lefschetz fibration over S^2 with generic fiber F, we can find an ordered sequence $t_{c_n} \cdot t_{c_{n-1}} \cdots t_{c_2} \cdot t_{c_1}$ of right-handed Dehn twists, so called monodromy factorization such that $1 = t_{c_n} \circ t_{c_{n-1}} \circ \cdots \circ t_{c_2} \circ t_{c_1} \in \mathcal{M}_F$.

Lefschetz fibration

Definition

*X*⁴: compact connected oriented smooth 4-manifold *B*:compact connected oriented surface

 $\pi: X \to B$, $\pi^{-1}(\partial B) = \partial X$, is a Lefschetz fibration if

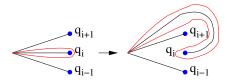
- $\exists C = \{p_1, p_2, \cdots, p_n\} \subset int(X)$: set of critical points of π s.t. $C \neq \emptyset$ & $\pi|_C$ is injective
- about each p_i and b_i := π(p_i), there are local complex coordinate charts agreeing with the orientations of X and B such that π(z₁, z₂) = z₁² + z₂².

Remark

For a given Lefschetz fibration over S^2 with generic fiber F, we can find an ordered sequence $t_{c_n} \cdot t_{c_{n-1}} \cdots t_{c_2} \cdot t_{c_1}$ of right-handed Dehn twists, so called monodromy factorization such that $1 = t_{c_n} \circ t_{c_{n-1}} \circ \cdots \circ t_{c_2} \circ t_{c_1} \in \mathscr{M}_F$.

Equivalence relations on Lefschetz Fibration

- Hurwitz equivalence of monodromy factorizations is generated by
 - Hurwitz moves:
 - $t_{c_n} \cdot \dots \cdot t_{c_{i+1}} \cdot t_{c_i} \cdot \dots \cdot t_{c_1} \sim t_{c_n} \cdot \dots \cdot t_{c_{i+1}}(t_{c_i}) \cdot t_{c_{i+1}} \cdot \dots \cdot t_{c_1}$ • inverse Hurwitz moves:
 - $t_{c_n} \cdot \ldots \cdot t_{c_{i+1}} \cdot t_{c_i} \cdot \ldots \cdot t_{c_1} \sim t_{c_n} \cdot \ldots \cdot t_{c_i} \cdot t_{c_i}^{-1}(t_{c_{i+1}}) \cdot \ldots \cdot t_{c_1}$



ヘロト 人間 ト ヘヨト ヘヨト

Equivalence relations on Lefschetz Fibration

- Hurwitz equivalence of monodromy factorizations is generated by
 - Hurwitz moves:

 $t_{c_n} \cdot \dots \cdot t_{c_{i+1}} \cdot t_{c_i} \cdot \dots \cdot t_{c_1} \sim t_{c_n} \cdot \dots \cdot t_{c_{i+1}} (t_{c_i}) \cdot t_{c_{i+1}} \cdot \dots \cdot t_{c_1}$ • inverse Hurwitz moves:

$$t_{c_n} \cdot \ldots \cdot t_{c_{i+1}} \cdot t_{c_i} \cdot \ldots \cdot t_{c_1} \sim t_{c_n} \cdot \ldots \cdot t_{c_i} \cdot t_{c_i}^{-1}(t_{c_{i+1}}) \cdot \ldots \cdot t_{c_1}$$

Simultaneous conjugation equivalence of two monodromy factorization is given by

$$t_{c_n} \cdot t_{c_{n-1}} \cdot \ldots \cdot t_{c_2} \cdot t_{c_1} \equiv f(t_{c_n}) \cdot f(t_{c_{n-1}}) \cdot \ldots \cdot f(t_{c_2}) \cdot f(t_{c_1})$$

for some $f \in \mathcal{M}_g$. We will consider $f(w_k \cdot \ldots \cdot w_2 \cdot w_1)$ as $f(w_k) \cdot \ldots \cdot f(w_2) \cdot f(w_1)$

ヘロン 人間 とくほ とくほ とう

Theorem (Y.Matsumoto)

Let $f_i: X_i \to S^2$, i = 1, 2, be two Lefschetz fibrations of genus $g \ge 2$. Then the two Lefschetz fibrations are isomorphic if and only if their monodromy factorizations are related by a finite sequence of Hurwitz equivalences and simultaneous conjugation equivalences.

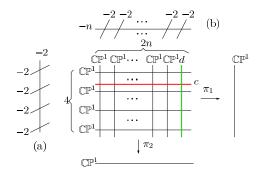
Remark

Lefschetz fibrations $f: M \to B, f': M' \to B'$ are isomorphic if \exists orientation preserving diffeomorphisms $H: M \to M', h: B \to B'$

$$M \xrightarrow{H} M'$$
such that $f \downarrow \qquad \qquad \downarrow f'$ commutes.
$$B \xrightarrow{h} B'$$

Fibered knot and Fintushel-Stern knot surgered 4-manifold

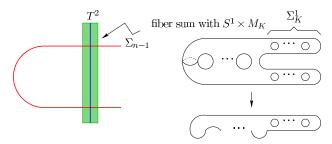
Lefschetz fibration structures of $E(n)_K$



- If we consider $\pi_2 : E(n) \to \mathbb{CP}^1$, then generic fiber is T^2 and we have 12n nodal type singular fibers with monodromy factorization $(ab)^{6n}$
- If we consider $\pi_1 : E(n) \to \mathbb{CP}^1$, then generic fiber is Σ_{n-1} and we have 8(2n-1) nodal type singular fibers with monodromy factorization ι_{n-1}^4 where ι_{n-1} is the hyperelliptic involution of Σ_{n-1} .

Lefschetz fibration structures of $E(n)_K$

Fintushel-Stern's idea:



Therefore we define

Definition

Let M(n,g) be the desingularization of the double cover of $\Sigma_g \times S^2$ branched over $2n(\{pt.\} \times S^2) \cup 2(\Sigma_g \times \{pt.\})$.

Then $E(n)_K$ can be considered as a twisted fiber sum of two M(n,g)'s.

Ki-Heon Yun (Jointed with Jongil Park) Fibered knot and Fintushel-Stern knot surgered 4-manifold

Therefore we define

Definition

Let M(n,g) be the desingularization of the double cover of $\Sigma_g \times S^2$ branched over $2n(\{pt.\} \times S^2) \cup 2(\Sigma_g \times \{pt.\})$.

Then $E(n)_K$ can be considered as a twisted fiber sum of two M(n,g)'s.

Theorem (Fintushel-Stern, 2004)

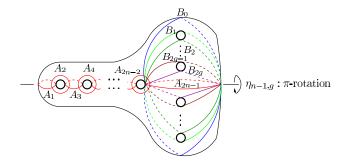
 $E(n)_K$ can be considered as a twisted fiber sum M(n,g) $\sharp_{\Phi_K}M(n,g)$ by using the diffeomorphism

$$\Phi_K = \varphi_K \oplus id \oplus id : \Sigma_g \sharp \Sigma_{n-1} \sharp \Sigma_g \to \Sigma_g \sharp \Sigma_{n-1} \sharp \Sigma_g$$

where φ_K is a geometric monodromy of fibred knot *K*.

ヘロト ヘアト ヘビト ヘビト

Lefschetz fibration structures of $E(n)_K$



Theorem (Yun, TAIA(2006))

 $\eta^2_{n-1,g}$ is a monodromy factorization of M(n,g) where

$$\eta_{n-1,g} \cong t_{A_{2n-2}} \cdot t_{A_{2n-3}} \cdot \ldots \cdot t_{A_2} \cdot t_{A_1}^2 \cdot t_{A_2} \cdot \ldots \cdot t_{A_{2n-2}} \cdot t_{B_0} \cdot t_{B_1} \cdot \ldots \cdot t_{B_{2g}} \cdot t_{A_{2n-1}}$$

Theorem (Yun, TAMS (in press))

Let $K \subset S^3$ be a fibered knot of genus g. Then $E(n)_K$ has a monodromy factorization of the form

$$\Phi_K(\eta_{n-1,g}) \cdot \Phi_K(\eta_{n-1,g}) \cdot \eta_{n-1,g} \cdot \eta_{n-1,g}$$

where $\eta_{n-1,g}$ as before and

$$\Phi_K = \varphi_K \oplus id \oplus id : \Sigma_g \sharp \Sigma_{n-1} \sharp \Sigma_g \to \Sigma_g \sharp \Sigma_{n-1} \sharp \Sigma_g$$

by using a (geometric) monodromy φ_K of the fibered knot K such that

$$S^3 \setminus \mathbf{v}(K) = (I \times \Sigma_g^1) / ((1, x) \sim (0, \varphi_K(x)))$$

・ロト ・同ト ・ヨト ・ヨト

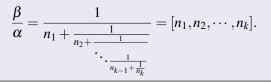
Two bridge knot

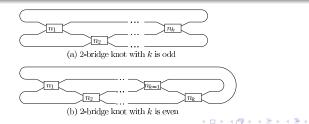
Definition

A 2-bridge knot $b(\alpha,\beta)$ is the knot of the form

$$C(n_1, -n_2, n_3, -n_4, \cdots, (-1)^{k-1}n_k)$$

where





э

Theorem (Yun, TAMS)

Let K_i, K_j be two 2-bridge knots of the form

 $C(2\varepsilon_{i,1}, 2\varepsilon_{i,2}, \cdots, 2\varepsilon_{i,2g-1}, 2\varepsilon_{i,2g})$

where $g \ge 1$ and $\varepsilon_{i,k} = +1$ or $\varepsilon_{i,k} = -1$ for each $k = 1, 2, \dots, 2g$. Let K_0 be the 2-bridge knot of the form $C(\underbrace{-2, -2, \dots, -2, -2}_{2g})$. Then for each $n \ge 1$, $E(n)_{K_i} \sharp_{\Sigma_{2g+n-1}} E(n)_{K_0} \approx E(n)_{K_j} \sharp_{\Sigma_{2g+n-1}} E(n)_{K_0}$.

イロト イポト イヨト イヨト

Why is this interesting?

In 2004, Fintushel-Stern defined a family of 4-manifolds

$$Y(n; K_1, K_2) = E(n)_{K_1} \sharp_{\Sigma_{2g+n-1}} E(n)_{K_2}$$

for two fibered knots K_1 and K_2 of genus g. They also proved that

$$\mathscr{SW}_{Y(n;K_1,K_2)} = t_K + (-1)^n t_K^{-1}.$$

Therefore our theorem say that knot type does not determine the smooth type of $Y(n; K_i, K_0)$.

ヘロト 人間 ト ヘヨト ヘヨト

Theorem (Yun, TAMS)

Let K_1 , K_2 be any two genus $g \ge 2$ fibred knots in S^3 and let K_0 be the 2-bridge knot $C(\underbrace{-2, -2, \cdots, -2, -2}_{2g})$. Then

$$E(n)_{K_1} \sharp_{t_{b_2}} E(n)_{K_0} \approx E(n)_{K_2} \sharp_{t_{b_2}} E(n)_{K_0}$$

for each fixed integer $n \ge 1$.

Theorem (Park-Yun, 2007(Submitted))

Let $K_{\varepsilon_1,\varepsilon_2,\dots,\varepsilon_{4g}} = C(2\varepsilon_1, 2\varepsilon_2, \dots, 2\varepsilon_{4g})$ for some $g \ge 1$ and $\varepsilon_i = \pm 1$, then the knot surgery 4-manifold $E(2n)_{K_{\varepsilon_1,\varepsilon_2,\dots,\varepsilon_{4g}}}$ has at least two nonisomorphic Lefschetz fibration structures for each n.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Tool 1: Monodromy group

Definition

 $f: X \to S^2$ a LF with generic fiber F & $W = w_n \cdot \ldots \cdot w_2 \cdot w_1$ be a monodromy factorization. Monodromy group $G_F(W) \subseteq MCG_F$ is the subgroup of MCG_F generated by w_1, w_2, \cdots, w_n .

Lemma (Auroux)

 $W_i = w_{i,n_i} \cdot \ldots \cdot w_{i,2} \cdot w_{i,1}$, i = 1, 2, be a sequence of right handed Dehn twists along a simple closed curves in Σ_g such that $\lambda_{W_i} = id$. Suppose $f \in G(W_2)$, then $f(W_1) \cdot W_2 \sim W_1 \cdot W_2$.

_emma

$$\begin{split} W, \, W' &: MF \text{ of } a \text{ genus } g \text{ LF.} \\ W &\sim W' \Rightarrow G(W) = G(W'). \\ W' &= \phi(W) \Rightarrow G(W') = \phi \circ G(W) \circ \phi^{-1}. \end{split}$$

Ki-Heon Yun (Jointed with Jongil Park) Fibered knot and Fintushel-Stern knot surgered 4-manifold

Tool 1: Monodromy group

Definition

 $f: X \to S^2$ a LF with generic fiber F & $W = w_n \cdot \ldots \cdot w_2 \cdot w_1$ be a monodromy factorization. Monodromy group $G_F(W) \subseteq MCG_F$ is the subgroup of MCG_F generated by w_1, w_2, \cdots, w_n .

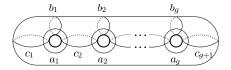
Lemma (Auroux)

 $W_i = w_{i,n_i} \cdot \ldots \cdot w_{i,2} \cdot w_{i,1}$, i = 1, 2, be a sequence of right handed Dehn twists along a simple closed curves in Σ_g such that $\lambda_{W_i} = id$. Suppose $f \in G(W_2)$, then $f(W_1) \cdot W_2 \sim W_1 \cdot W_2$.

Lemma

W, W': MF of a genus g LF. $W \sim W' \Rightarrow G(W) = G(W').$ $W' = \phi(W) \Rightarrow G(W') = \phi \circ G(W) \circ \phi^{-1}.$

Tool 2: Mapping class group



Theorem (Humphris)

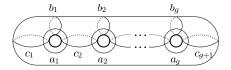
Suppose that $g \ge 2$ and let a_i , b_i , c_i be simple closed curves on Σ_g . Then MCG_g or MCG_g^1 is generated by $t_{c_1}, t_{a_1}, t_{c_2}, t_{a_2}, \cdots, t_{c_g}, t_{a_g}$ and t_{b_2} .

Corollary

Let $g \in \mathbb{Z}_{\geq 3}$.

MCG_g or MCG¹_g is generated by
 {t_{a1}, t_{c2}, t_{a2}, ..., t_{cg}, t_{ag}} ∪ {t_{bi}, t_{bi+1}} for any 1 ≤ i < g
 MCG_g or MCG¹_g is not generated by
 {t_{c1}, t_{a1}, t_{c2}, t_{a2}, ..., t_{cg}, t_{ag}} ∪ {t_{b2i+1} | 1 ≤ j ≤ [^{g-1}/₂]}.

Tool 2: Mapping class group



Theorem (Humphris)

Suppose that $g \ge 2$ and let a_i , b_i , c_i be simple closed curves on Σ_g . Then MCG_g or MCG_g^1 is generated by $t_{c_1}, t_{a_1}, t_{c_2}, t_{a_2}, \cdots, t_{c_g}, t_{a_g}$ and t_{b_2} .

Corollary

Let $g \in \mathbb{Z}_{\geq 3}$.

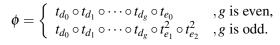
Tool 3: Monodromy map of a fibered knot

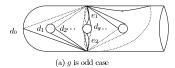
Let $K_{\varepsilon_1,\varepsilon_2,\cdots,\varepsilon_{2g}} = C(2\varepsilon_1, 2\varepsilon_2, \cdots, 2\varepsilon_{2g})$ for positive integer $g \ge 2$ and $\varepsilon_i = \pm 1$.

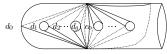
•
$$\varphi_{K_{\varepsilon_1,\varepsilon_2,\cdots,\varepsilon_{2g}}} = t_{a_g}^{\varepsilon_{2g}} \circ t_{c_g}^{\varepsilon_{2g-1}} \circ \cdots t_{a_1}^{\varepsilon_2} \circ t_{c_1}^{\varepsilon_1}$$

•
$$\phi(\varphi_{K_{\varepsilon_1,\varepsilon_2,\cdots,\varepsilon_{2g}}}) = t_{a_1}^{\varepsilon_{2g}} \circ t_{c_2}^{\varepsilon_{2g-1}} \circ \cdots t_{a_g}^{\varepsilon_2} \circ t_{b_g}^{\varepsilon_1}$$

are monodromy of $K_{\varepsilon_1,\varepsilon_2,\cdots,\varepsilon_{2g}}$ where







(b) g is even case

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Sketch of proof: $E(n)_{K_i} \sharp_{\Sigma_{2g+n-1}} E(n)_{K_0}$

 Let K_i = C(2ε_{i,1}, 2ε_{i,2}, · · · , 2ε_{i,2g-1}, 2ε_{i,2g}), then E(n)_{Ki} ♯_{Σn+2g-1}E(n)_{K0} has a monodromy factorization of the form

$$\Phi_{K_0}(\eta_{n-1,g}^2)\cdot\eta_{n-1,g}^2\cdot\Phi_{K_i}(\eta_{n-1,g}^2)\cdot\eta_{n-1,g}^2.$$

• We may consider
$$\Phi_{K_0} = t_{a_1}^{-1} \circ t_{c_g}^{-1} \circ \dots \circ t_{a_1}^{-1} \circ t_{c_1}^{-1}$$
 and
 $\Phi_{K_i} = t_{a_g}^{\varepsilon_{i,2g}} \circ t_{c_g}^{\varepsilon_{i,2g-1}} \circ \dots \circ t_{a_1}^{\varepsilon_{i,2}} \circ t_{c_1}^{\varepsilon_{i,1}}$.
• $\Phi_{K_i} \in G_F(\Phi_{K_0}(\eta_{n-1,g}^2) \cdot \eta_{n-1,g}^2)$ because
• $t_{a_i} = (t_{B_{2i}}^{-1} \circ \Phi_{K_0})(t_{B_{2i}})$
• $t_{c_i} = (t_{B_{2i-1}}^{-1} \circ \Phi_{K_0})(t_{B_{2i-1}})$

Therefore $E(n)_{K_i} \sharp_{\Sigma_{2g+n-1}} E(n)_{K_0}$ and $E(n)_{K_j} \sharp_{\Sigma_{2g+n-1}} E(n)_{K_0}$ have isomorphic monodromy factorization and it implies diffeomorphism.

ヘロン 人間 とくほ とくほ とう

Sketch of proof: $E(n)_{K_i} \sharp_{\Sigma_{2g+n-1}} E(n)_{K_0}$

 Let K_i = C(2ε_{i,1}, 2ε_{i,2}, · · · , 2ε_{i,2g-1}, 2ε_{i,2g}), then E(n)_{Ki} ♯_{Σn+2g-1}E(n)_{K0} has a monodromy factorization of the form

$$\Phi_{K_0}(\eta_{n-1,g}^2)\cdot\eta_{n-1,g}^2\cdot\Phi_{K_i}(\eta_{n-1,g}^2)\cdot\eta_{n-1,g}^2.$$

• We may consider $\Phi_{K_0} = t_{a_g}^{-1} \circ t_{c_g}^{-1} \circ \dots \circ t_{a_1}^{-1} \circ t_{c_1}^{-1}$ and $\Phi_{K_i} = t_{a_g}^{\mathcal{E}_{i,2g}} \circ t_{c_g}^{\mathcal{E}_{i,2g-1}} \circ \dots \circ t_{a_1}^{\mathcal{E}_{i,2}} \circ t_{c_1}^{\mathcal{E}_{i,1}}$. • $\Phi_{K_i} \in G_F(\Phi_{K_0}(\eta_{n-1,g}^2) \cdot \eta_{n-1,g}^2)$ because • $t_{a_i} = (t_{B_{2i}}^{-1} \circ \Phi_{K_0})(t_{B_{2i}})$ • $t_{c_i} = (t_{B_{2i-1}}^{-1} \circ \Phi_{K_0})(t_{B_{2i-1}})$

Therefore $E(n)_{K_i} \sharp_{\Sigma_{2g+n-1}} E(n)_{K_0}$ and $E(n)_{K_j} \sharp_{\Sigma_{2g+n-1}} E(n)_{K_0}$ have isomorphic monodromy factorization and it implies diffeomorphism.

ヘロト ヘ戸ト ヘヨト ヘヨト

Sketch of proof: $E(n)_{K_i} \sharp_{\sum_{2g+n-1}} E(n)_{K_0}$

 Let K_i = C(2ε_{i,1}, 2ε_{i,2}, · · · , 2ε_{i,2g-1}, 2ε_{i,2g}), then E(n)_{Ki} ♯_{Σn+2g-1}E(n)_{K0} has a monodromy factorization of the form

$$\Phi_{K_0}(\eta_{n-1,g}^2)\cdot\eta_{n-1,g}^2\cdot\Phi_{K_i}(\eta_{n-1,g}^2)\cdot\eta_{n-1,g}^2.$$

• We may consider
$$\Phi_{K_0} = t_{a_g}^{-1} \circ t_{c_g}^{-1} \circ \dots \circ t_{a_1}^{-1} \circ t_{c_1}^{-1}$$
 and
 $\Phi_{K_i} = t_{a_g}^{\mathcal{E}_{i,2g}} \circ t_{c_g}^{\mathcal{E}_{i,2g-1}} \circ \dots \circ t_{a_1}^{\mathcal{E}_{i,2}} \circ t_{c_1}^{\mathcal{E}_{i,1}}$.
• $\Phi_{K_i} \in G_F(\Phi_{K_0}(\eta_{n-1,g}^2) \cdot \eta_{n-1,g}^2)$ because
• $t_{a_i} = (t_{B_{2i}}^{-1} \circ \Phi_{K_0})(t_{B_{2i}})$
• $t_{c_i} = (t_{B_{2i-1}}^{-1} \circ \Phi_{K_0})(t_{B_{2i-1}})$

Therefore $E(n)_{K_i} \sharp_{\Sigma_{2g+n-1}} E(n)_{K_0}$ and $E(n)_{K_j} \sharp_{\Sigma_{2g+n-1}} E(n)_{K_0}$ have isomorphic monodromy factorization and it implies diffeomorphism.

ヘロン 人間 とくほ とくほ とう

Sketch of proof: $E(n)_{K_i} \sharp_{\sum_{2g+n-1}} E(n)_{K_0}$

 Let K_i = C(2ε_{i,1}, 2ε_{i,2}, · · · , 2ε_{i,2g-1}, 2ε_{i,2g}), then E(n)_{Ki} ♯_{Σn+2g-1}E(n)_{K0} has a monodromy factorization of the form

$$\Phi_{K_0}(\eta_{n-1,g}^2)\cdot\eta_{n-1,g}^2\cdot\Phi_{K_i}(\eta_{n-1,g}^2)\cdot\eta_{n-1,g}^2.$$

• We may consider
$$\Phi_{K_0} = t_{a_g}^{-1} \circ t_{c_g}^{-1} \circ \dots \circ t_{a_1}^{-1} \circ t_{c_1}^{-1}$$
 and
 $\Phi_{K_i} = t_{a_g}^{\mathcal{E}_{i,2g}} \circ t_{c_g}^{\mathcal{E}_{i,2g-1}} \circ \dots \circ t_{a_1}^{\mathcal{E}_{i,2}} \circ t_{c_1}^{\mathcal{E}_{i,1}}$.
• $\Phi_{K_i} \in G_F(\Phi_{K_0}(\eta_{n-1,g}^2) \cdot \eta_{n-1,g}^2)$ because
• $t_{a_i} = (t_{B_{2i}}^{-1} \circ \Phi_{K_0})(t_{B_{2i}})$
• $t_{c_i} = (t_{B_{2i-1}}^{-1} \circ \Phi_{K_0})(t_{B_{2i-1}})$

Therefore $E(n)_{K_i} \sharp_{\Sigma_{2g+n-1}} E(n)_{K_0}$ and $E(n)_{K_j} \sharp_{\Sigma_{2g+n-1}} E(n)_{K_0}$ have isomorphic monodromy factorization and it implies diffeomorphism.

ヘロン 人間 とくほ とくほ とう

Sketch of proof: $E(n)_{K_i} \sharp_{\Sigma_{2g+n-1}} E(n)_{K_0}$

• Let $K_i = C(2\varepsilon_{i,1}, 2\varepsilon_{i,2}, \cdots, 2\varepsilon_{i,2g-1}, 2\varepsilon_{i,2g})$, then $E(n)_{K_i} \sharp_{\Sigma_{n+2g-1}} E(n)_{K_0}$ has a monodromy factorization of the form

$$\Phi_{K_0}(\eta_{n-1,g}^2)\cdot\eta_{n-1,g}^2\cdot\Phi_{K_i}(\eta_{n-1,g}^2)\cdot\eta_{n-1,g}^2.$$

• We may consider
$$\Phi_{K_0} = t_{a_g}^{-1} \circ t_{c_g}^{-1} \circ \cdots \circ t_{a_1}^{-1} \circ t_{c_1}^{-1}$$
 and
 $\Phi_{K_i} = t_{a_g}^{\mathcal{E}_{i,2g}} \circ t_{c_g}^{\mathcal{E}_{i,2g-1}} \circ \cdots \circ t_{a_1}^{\mathcal{E}_{i,2}} \circ t_{c_1}^{\mathcal{E}_{i,1}}$.
• $\Phi_{K_i} \in G_F(\Phi_{K_0}(\eta_{n-1,g}^2) \cdot \eta_{n-1,g}^2)$ because
• $t_{a_i} = (t_{B_{2i}}^{-1} \circ \Phi_{K_0})(t_{B_{2i}})$
• $t_{c_i} = (t_{B_{2i-1}}^{-1} \circ \Phi_{K_0})(t_{B_{2i-1}})$

Therefore $E(n)_{K_i} \sharp_{\Sigma_{2g+n-1}} E(n)_{K_0}$ and $E(n)_{K_j} \sharp_{\Sigma_{2g+n-1}} E(n)_{K_0}$ have isomorphic monodromy factorization and it implies diffeomorphism.

ヘロト ヘアト ヘビト ヘビト

Sketch of proof: $E(n)_K \sharp_{t_{b_2}} E(n)_{K_0}$

• $t_{a_i}, t_{c_i} \in G(\Phi_{K_0}(\eta_{n-1,g}^2) \cdot \eta_{n-1,g}^2), i = 1, 2, \cdots, g \text{ implies}$ $t_{a_i}, t_{c_i} \in G(t_{b_2}(\Phi_{K_0}(\eta_{n-1,g}^2) \cdot \eta_{n-1,g}^2)) \text{ for all } i = 1, 2, \cdots, g \text{ except}$ t_{a_2}

• Because
$$(t_{B_4}^{-1} \circ \Phi_{K_0})(t_{B_4}) = t_{a_2}$$
 and $t_{B_3}(t_{b_2}(t_{B_3})) = t_{b_2}$,

$$t_{b_2}(\Phi_{K_0}(\eta_{n-1,g}^2) \cdot \eta_{n-1,g}^2) \cdot \eta_{n-1,g}^2$$

$$\sim t_{b_2}(\Phi_{K_0}(\eta_{n-1,g}^2)) \cdot t_{b_2}(\eta_{n-1,g}) \cdot \eta_{n-1,g}^2 \cdot t_{b_2}(\eta_{n-1,g})$$

$$\sim \dots \cdot t_{b_2}(\Phi_{K_0}(t_{B_4})) \cdot \dots \cdot t_{b_2}(t_{B_4}) \cdot \dots \cdot t_{B_3} \cdot \dots \cdot t_{b_2}(t_{B_3}) \cdot \dots$$

$$\sim \dots \cdot t_{b_2}(t_{B_4}) \cdot t_{b_2}((t_{B_4}^{-1} \circ \Phi_{K_0})(t_{B_4})) \cdot \dots \cdot t_{B_3}(t_{b_2}(t_{B_3})) \cdot t_{B_3} \cdot \dots$$

$$\sim \dots \cdot t_{b_2}(t_{a_2}) \cdot \dots \cdot t_{b_2} \cdot \dots$$

$$\sim \dots \cdot t_{b_2} \cdot t_{a_2} \cdot \dots$$

Therefore

$$\Phi_K \in \langle a_i, c_i, b_2 | 1 \le i \le g \rangle = MCG_g^1 \subseteq G(t_{b_2}(\Phi_{K_0}(\eta_{n-1,g}^2) \cdot \eta_{n-1,g}^2) \cdot \eta_{n-1,g}^2)$$

< 回 > < 回 > < 回 > … 回

The end. Thank you !

Ki-Heon Yun (Jointed with Jongil Park) Fibered knot and Fintushel-Stern knot surgered 4-manifold

▶ < Ξ</p>

э.

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A