Fibered knot and Fintushel-Stern knot surgered 4-manifold

Ki-Heon Yun (Jointed with Jongil Park)

Seoul National University
January 21, 2008

Classification problems in 4-manifolds

Fundamental Questions in Topology and Geometry

- Existence: Are there any manifolds with the given properties?
- Uniqueness: If there are more than one, then how do we distinguish them?

Freedman(1980) \& Donaldson(1982)

Two smooth simply connected closed 4-manifolds are homeomorphic iff they have the same σ, e and type.

Smooth classification of 4-manifolds

For a manifold M^{n},

- $n \leq 3$, topological classification is the same as smooth classification.
- $n \geq 5$, every n-manifold has only finitely many distinct smooth n-manifolds which are homeomorphic to it.
- $n=4$, we have lots of exotic smooth 4-manifolds with the help of Seiberg-Witten invariants. Moreover, all known exotic 4-manifolds has infinitely many different smooth structures.
Examples: $m \mathbb{C P}^{2} \sharp n \overline{\mathbb{C P}}^{2}$ with $m=1$ \& $n=2,3,4,5,6,7,8,9$ or $m=3 \& n=4,5,6,7,8, \cdots(\operatorname{ABBKP}(2007)$, Park-Yun(2007))

Conjecture (Wild conjecture)

Every 4-manifold has either zero or infinitely many distinct smooth 4-manifolds which are homeomorphic to it.

Fintushel-Stern knot surgered 4-manifold

Definition (Fintushel-Stern knot surgered 4-manifold)

X : a closed smooth 4-manifold, $K \subset S^{3}$: a knot
$\exists T^{2} \hookrightarrow X$ with $[T]^{2}=0$
Fintushel-Stern knot surgered 4-manifold is defined by

$$
X_{K}=X \not \sharp_{T=T_{m}}\left(S^{1} \times M_{K}\right)=\left(X \backslash\left(T \times D^{2}\right)\right) \cup_{\phi} S^{1} \times\left(S^{3} \backslash N(K)\right)
$$

where $\left[p t \times \partial D^{2}\right]$ is identified with the longitude of K.

Fintushel-Stern knot surgered 4-manifold

Definition (Fintushel-Stern knot surgered 4-manifold)

X : a closed smooth 4-manifold, $K \subset S^{3}$: a knot
$\exists T^{2} \hookrightarrow X$ with $[T]^{2}=0$
Fintushel-Stern knot surgered 4-manifold is defined by

$$
X_{K}=X \not \sharp_{T=T_{m}}\left(S^{1} \times M_{K}\right)=\left(X \backslash\left(T \times D^{2}\right)\right) \cup_{\phi} S^{1} \times\left(S^{3} \backslash N(K)\right)
$$

where $\left[p t \times \partial D^{2}\right]$ is identified with the longitude of K.

Theorem (Fintushel-Stern, Invent. Math(1998))
(1) if $b^{+}(X)>1$, then $\mathscr{S} \mathscr{W}_{X_{K}}=\mathscr{S} \mathscr{W}_{X} \cdot \Delta_{K}(t)$
(2) if $b^{+}(X)=1$, then the $[T]^{\perp}$-restricted Seiberg-Witten invariants of X_{K} are $\mathscr{S}^{W_{X}, T}{ }_{X_{K}}^{ \pm}=\mathscr{S}_{X, T}^{ \pm} \cdot \Delta_{K}(t)$

Note: There are infinitely many inequivalent knots with the same Alexander polynomial.

Motivation

Conjecture (Fintushel-Stern, ICM 1998)

The manifolds $E(2)_{K_{1}}$ and $E(2)_{K_{2}}$ are diffeomorphic if and only if K_{1} and K_{2} are equivalent knots (up to mirror).

- If $K \subset S^{3}$ is a fibered knot, then $E(n)_{K}$ has a symplectic structure.
- Moreover Fintushel-Stern 2004 showed that $E(n)_{K}$ has a Lefschetz fibration with generic fiber $\Sigma_{2 g(K)+n-1}$

Therefore we are interested in

Motivation

Conjecture (Fintushel-Stern, ICM 1998)

The manifolds $E(2)_{K_{1}}$ and $E(2)_{K_{2}}$ are diffeomorphic if and only if K_{1} and K_{2} are equivalent knots (up to mirror).

- If $K \subset S^{3}$ is a fibered knot, then $E(n)_{K}$ has a symplectic structure.
- Moreover Fintushel-Stern 2004 showed that $E(n)_{K}$ has a Lefschetz fibration with generic fiber $\Sigma_{2 g(K)+n-1}$.
Therefore we are interested in

Motivation

Conjecture (Fintushel-Stern, ICM 1998)

The manifolds $E(2)_{K_{1}}$ and $E(2)_{K_{2}}$ are diffeomorphic if and only if K_{1} and K_{2} are equivalent knots (up to mirror).

- If $K \subset S^{3}$ is a fibered knot, then $E(n)_{K}$ has a symplectic structure.
- Moreover Fintushel-Stern 2004 showed that $E(n)_{K}$ has a Lefschetz fibration with generic fiber $\Sigma_{2 g(K)+n-1}$.
Therefore we are interested in
- explicit monodromy factorization of $E(n)_{K}$
- Is it unique? I mean, are there nonisomorphic monodromy factorizations on $E(n)_{K}$ corresponding to fixed generic fiber $\Sigma_{2 g(K)+n-1}$?
- some applications?

Motivation

Conjecture (Fintushel-Stern, ICM 1998)

The manifolds $E(2)_{K_{1}}$ and $E(2)_{K_{2}}$ are diffeomorphic if and only if K_{1} and K_{2} are equivalent knots (up to mirror).

- If $K \subset S^{3}$ is a fibered knot, then $E(n)_{K}$ has a symplectic structure.
- Moreover Fintushel-Stern 2004 showed that $E(n)_{K}$ has a Lefschetz fibration with generic fiber $\Sigma_{2 g(K)+n-1}$.
Therefore we are interested in
- explicit monodromy factorization of $E(n)_{K}$
- Is it unique? I mean, are there nonisomorphic monodromy factorizations on $E(n)_{K}$ corresponding to fixed generic fiber $\Sigma_{2 g(K)+n-1}$?
- some applications?

Motivation

Conjecture (Fintushel-Stern, ICM 1998)

The manifolds $E(2)_{K_{1}}$ and $E(2)_{K_{2}}$ are diffeomorphic if and only if K_{1} and K_{2} are equivalent knots (up to mirror).

- If $K \subset S^{3}$ is a fibered knot, then $E(n)_{K}$ has a symplectic structure.
- Moreover Fintushel-Stern 2004 showed that $E(n)_{K}$ has a Lefschetz fibration with generic fiber $\Sigma_{2 g(K)+n-1}$.
Therefore we are interested in
- explicit monodromy factorization of $E(n)_{K}$
- Is it unique? I mean, are there nonisomorphic monodromy factorizations on $E(n)_{K}$ corresponding to fixed generic fiber $\Sigma_{2 g(K)+n-1}$?
- some applications?

Lefschetz fibration

Definition

X^{4} : compact connected oriented smooth 4-manifold B :compact connected oriented surface $\pi: X \rightarrow B, \pi^{-1}(\partial B)=\partial X$, is a Lefschetz fibration if

- $\exists C=\left\{p_{1}, p_{2}, \cdots, p_{n}\right\} \subset \operatorname{int}(X):$ set of critical points of π s.t. $C \neq\left.\varnothing \& \pi\right|_{C}$ is injective
- about each p_{i} and $b_{i}:=\pi\left(p_{i}\right)$, there are local complex coordinate charts agreeing with the orientations of X and B such that $\pi\left(z_{1}, z_{2}\right)=z_{1}^{2}+z_{2}^{2}$.

[^0]
Lefschetz fibration

Definition

X^{4} : compact connected oriented smooth 4-manifold B :compact connected oriented surface $\pi: X \rightarrow B, \pi^{-1}(\partial B)=\partial X$, is a Lefschetz fibration if

- $\exists C=\left\{p_{1}, p_{2}, \cdots, p_{n}\right\} \subset \operatorname{int}(X):$ set of critical points of π s.t. $C \neq\left.\varnothing \& \pi\right|_{C}$ is injective
- about each p_{i} and $b_{i}:=\pi\left(p_{i}\right)$, there are local complex coordinate charts agreeing with the orientations of X and B such that $\pi\left(z_{1}, z_{2}\right)=z_{1}^{2}+z_{2}^{2}$.

Remark

For a given Lefschetz fibration over S^{2} with generic fiber F, we can find an ordered sequence $t_{c_{n}} \cdot t_{c_{n-1}} \cdots \cdots t_{c_{2}} \cdot t_{c_{1}}$ of right-handed Dehn twists, so called monodromy factorization such that $1=t_{c_{n}} \circ t_{c_{n-1}} \circ \cdots \circ t_{c_{2}} \circ t_{c_{1}} \in \mathscr{M}_{F}$.

Equivalence relations on Lefschetz Fibration

(1) Hurwitz equivalence of monodromy factorizations is generated by

- Hurwitz moves:

$$
t_{c_{n}} \cdot \ldots \cdot t_{c_{i+1}} \cdot t_{c_{i}} \cdot \ldots \cdot t_{c_{1}} \sim t_{c_{n}} \cdot \ldots \cdot t_{c_{i+1}}\left(t_{c_{i}}\right) \cdot t_{c_{i+1}} \cdot \ldots \cdot t_{c_{1}}
$$

- inverse Hurwitz moves:

$$
t_{c_{n}} \cdot \ldots \cdot t_{c_{i+1}} \cdot t_{c_{i}} \cdot \ldots \cdot t_{c_{1}} \sim t_{c_{n}} \cdot \ldots \cdot t_{c_{i}} \cdot t_{c_{i}}^{-1}\left(t_{c_{i+1}}\right) \cdot \ldots \cdot t_{c_{1}}
$$

Equivalence relations on Lefschetz Fibration

(1) Hurwitz equivalence of monodromy factorizations is generated by

- Hurwitz moves:

$$
t_{c_{n}} \cdot \ldots \cdot t_{c_{i+1}} \cdot t_{c_{i}} \cdot \ldots \cdot t_{c_{1}} \sim t_{c_{n}} \cdot \ldots \cdot t_{c_{i+1}}\left(t_{c_{i}}\right) \cdot t_{c_{i+1}} \cdot \ldots \cdot t_{c_{1}}
$$

- inverse Hurwitz moves:

$$
t_{c_{n}} \cdot \ldots \cdot t_{c_{i+1}} \cdot t_{c_{i}} \cdot \ldots \cdot t_{c_{1}} \sim t_{c_{n}} \cdot \ldots \cdot t_{c_{i}} \cdot t_{c_{i}}^{-1}\left(t_{c_{i+1}}\right) \cdot \ldots \cdot t_{c_{1}}
$$

(2) Simultaneous conjugation equivalence of two monodromy factorization is given by

$$
t_{c_{n}} \cdot t_{c_{n-1}} \cdot \ldots \cdot t_{c_{2}} \cdot t_{c_{1}} \equiv f\left(t_{c_{n}}\right) \cdot f\left(t_{c_{n-1}}\right) \cdot \ldots \cdot f\left(t_{c_{2}}\right) \cdot f\left(t_{c_{1}}\right)
$$

for some $f \in \mathscr{M}_{g}$. We will consider $f\left(w_{k} \cdot \ldots \cdot w_{2} \cdot w_{1}\right)$ as $f\left(w_{k}\right) \cdot \ldots \cdot f\left(w_{2}\right) \cdot f\left(w_{1}\right)$

Equivalence relations on Lefschetz Fibration

Theorem (Y.Matsumoto)

Let $f_{i}: X_{i} \rightarrow S^{2}, i=1,2$, be two Lefschetz fibrations of genus $g \geq 2$. Then the two Lefschetz fibrations are isomorphic if and only if their monodromy factorizations are related by a finite sequence of Hurwitz equivalences and simultaneous conjugation equivalences.

Remark

Lefschetz fibrations $f: M \rightarrow B, f^{\prime}: M^{\prime} \rightarrow B^{\prime}$ are isomorphic if \exists orientation preserving diffeomorphisms $H: M \rightarrow M^{\prime}, h: B \rightarrow B^{\prime}$

$$
\begin{array}{cccc}
& M \xrightarrow{H} M^{\prime} \\
\text { such that } & f \downarrow & & \downarrow^{\prime} \quad \text { commutes. } \\
& \\
& \\
& \\
& \\
& B^{\prime}
\end{array}
$$

Lefschetz fibration structures of $E(n)_{K}$

\qquad

- If we consider $\pi_{2}: E(n) \rightarrow \mathbb{C P}^{1}$, then generic fiber is T^{2} and we have $12 n$ nodal type singular fibers with monodromy factorization $(a b)^{6 n}$
- If we consider $\pi_{1}: E(n) \rightarrow \mathbb{C P}^{1}$, then generic fiber is Σ_{n-1} and we have $8(2 n-1)$ nodal type singular fibers with monodromy factorization t_{n-1}^{4} where t_{n-1} is the hyperelliptic involution of Σ_{n-1}.

Lefschetz fibration structures of $E(n)_{K}$

Fintushel-Stern's idea:

Therefore we define

Definition

Let $M(n, g)$ be the desingularization of the double cover of $\Sigma_{g} \times S^{2}$ branched over $2 n\left(\{p t.\} \times S^{2}\right) \cup 2\left(\Sigma_{g} \times\{p t\}.\right)$.

Then $E(n)_{K}$ can be considered as a twisted fiber sum of two $M(n, g)$'s.

Lefschetz fibration structures of $E(n)_{K}$

Therefore we define

Definition

Let $M(n, g)$ be the desingularization of the double cover of $\Sigma_{g} \times S^{2}$ branched over $2 n\left(\{p t.\} \times S^{2}\right) \cup 2\left(\Sigma_{g} \times\{p t\}.\right)$.

Then $E(n)_{K}$ can be considered as a twisted fiber sum of two $M(n, g)$'s.

Theorem (Fintushel-Stern, 2004)

$E(n)_{K}$ can be considered as a twisted fiber sum
$M(n, g) \sharp_{\Phi_{K}} M(n, g)$ by using the diffeomorphism

$$
\Phi_{K}=\varphi_{K} \oplus i d \oplus i d: \Sigma_{g} \sharp \Sigma_{n-1} \sharp \Sigma_{g} \rightarrow \Sigma_{g} \sharp \Sigma_{n-1} \sharp \Sigma_{g}
$$

where φ_{K} is a geometric monodromy of fibred knot K.

Lefschetz fibration structures of $E(n)_{K}$

Theorem (Yun, TAIA(2006))

$\eta_{n-1, g}^{2}$ is a monodromy factorization of $M(n, g)$ where

$$
\eta_{n-1, g} \cong t_{A_{2 n-2}} \cdot t_{A_{2 n-3}} \cdot \ldots \cdot t_{A_{2}} \cdot t_{A_{1}}^{2} \cdot t_{A_{2}} \cdot \ldots \cdot t_{A_{2 n-2}} \cdot t_{B_{0}} \cdot t_{B_{1}} \cdot \ldots \cdot t_{B_{2 g}} \cdot t_{A_{2 n-1}}
$$

Lefschetz fibration structures of $E(n)_{K}$

Theorem (Yun, TAMS (in press))

Let $K \subset S^{3}$ be a fibered knot of genus g. Then $E(n)_{K}$ has a monodromy factorization of the form

$$
\Phi_{K}\left(\eta_{n-1, g}\right) \cdot \Phi_{K}\left(\eta_{n-1, g}\right) \cdot \eta_{n-1, g} \cdot \eta_{n-1, g}
$$

where $\eta_{n-1, g}$ as before and

$$
\Phi_{K}=\varphi_{K} \oplus i d \oplus i d: \Sigma_{g} \sharp \Sigma_{n-1} \sharp \Sigma_{g} \rightarrow \Sigma_{g} \sharp \Sigma_{n-1} \sharp \Sigma_{g}
$$

by using a (geometric) monodromy φ_{K} of the fibered knot K such that

$$
S^{3} \backslash v(K)=\left(I \times \Sigma_{g}^{1}\right) /\left((1, x) \sim\left(0, \varphi_{K}(x)\right)\right)
$$

Two bridge knot

Definition

A 2-bridge knot $b(\alpha, \beta)$ is the knot of the form

$$
C\left(n_{1},-n_{2}, n_{3},-n_{4}, \cdots,(-1)^{k-1} n_{k}\right)
$$

where

$$
\frac{\beta}{\alpha}=\frac{1}{n_{1}+\frac{1}{n_{2}+\frac{1}{\ddots \cdot \frac{1}{n_{k-1}+\frac{1}{n_{k}}}}}}=\left[n_{1}, n_{2}, \cdots, n_{k}\right] .
$$

(a) 2-bridge knot with k is odd

(b) 2-bridge knot with k is even

Applications

Theorem (Yun, TAMS)

Let K_{i}, K_{j} be two 2-bridge knots of the form

$$
C\left(2 \varepsilon_{i, 1}, 2 \varepsilon_{i, 2}, \cdots, 2 \varepsilon_{i, 2 g-1}, 2 \varepsilon_{i, 2 g}\right)
$$

where $g \geq 1$ and $\varepsilon_{i, k}=+1$ or $\varepsilon_{i, k}=-1$ for each $k=1,2, \cdots, 2 g$.
Let K_{0} be the 2-bridge knot of the form $C(\underbrace{-2,-2, \cdots,-2,-2}_{2 g})$.
Then for each $n \geq 1, E(n)_{K_{i}} \sharp_{\Sigma_{2 g+n-1}} E(n)_{K_{0}} \approx E(n)_{K_{j} \sharp \Sigma_{2 g+n-1}} E(n)_{K_{0}}$.

Applications

Why is this interesting?

In 2004, Fintushel-Stern defined a family of 4-manifolds

$$
Y\left(n ; K_{1}, K_{2}\right)=E(n)_{K_{1}} \not \Sigma_{\Sigma_{2+n-1}} E(n)_{K_{2}}
$$

for two fibered knots K_{1} and K_{2} of genus g. They also proved that

$$
\mathscr{S} \mathscr{W}_{Y\left(n ; K_{1}, K_{2}\right)}=t_{K}+(-1)^{n} t_{K}^{-1}
$$

Therefore our theorem say that knot type does not determine the smooth type of $Y\left(n ; K_{i}, K_{0}\right)$.

Applications

Theorem (Yun, TAMS)

Let K_{1}, K_{2} be any two genus $g \geq 2$ fibred knots in S^{3} and let K_{0} be the 2-bridge knot $C(\underbrace{-2,-2, \cdots,-2,-2}_{2 g})$. Then

$$
E(n)_{K_{1}} \not H_{t_{2}} E(n)_{K_{0}} \approx E(n)_{K_{2}} \not \sharp_{t_{b_{2}}} E(n)_{K_{0}}
$$

for each fixed integer $n \geq 1$.

Theorem (Park-Yun, 2007(Submitted))

Let $K_{\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{4 g}}=C\left(2 \varepsilon_{1}, 2 \varepsilon_{2}, \cdots, 2 \varepsilon_{4 g}\right)$ for some $g \geq 1$ and $\varepsilon_{i}= \pm 1$, then the knot surgery 4-manifold $E(2 n)_{\kappa_{\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{4 g}}}$ has at least two nonisomorphic Lefschetz fibration structures for each n.

Tool 1: Monodromy group

Definition

$f: X \rightarrow S^{2}$ a $L F$ with generic fiber $F \& W=w_{n} \cdot \ldots \cdot w_{2} \cdot w_{1}$ be a monodromy factorization.
Monodromy group $G_{F}(W) \subseteq M C G_{F}$ is the subgroup of $M C G_{F}$ generated by $w_{1}, w_{2}, \cdots, w_{n}$.

Lemma (Auroux)

$w_{i}=w_{i, n_{i}} \cdot \ldots w_{i, 2} \cdot w_{i, 1}, i=1,2$, be a sequence of right handed
Dehn twists along a simple closed curves in Σ_{g} such that $\lambda_{W_{i}}=i d$. Suppose $f \in G\left(W_{2}\right)$, then $f\left(W_{1}\right) \cdot W_{2} \sim W_{1} \cdot W_{2}$

Lemma

\square
\square
\square
\square

Tool 1: Monodromy group

Definition

$f: X \rightarrow S^{2}$ a $L F$ with generic fiber F \& $W=w_{n} \cdot \ldots \cdot w_{2} \cdot w_{1}$ be a monodromy factorization.
Monodromy group $G_{F}(W) \subseteq M C G_{F}$ is the subgroup of $M C G_{F}$ generated by $w_{1}, w_{2}, \cdots, w_{n}$.

Lemma (Auroux)

$W_{i}=w_{i, n_{i}} \cdot \ldots \cdot w_{i, 2} \cdot w_{i, 1}, i=1,2$, be a sequence of right handed Dehn twists along a simple closed curves in Σ_{g} such that $\lambda_{W_{i}}=i d$. Suppose $f \in G\left(W_{2}\right)$, then $f\left(W_{1}\right) \cdot W_{2} \sim W_{1} \cdot W_{2}$.

Lemma

$$
\begin{aligned}
& W, W^{\prime}: \text { MF of a genus } g \text { LF. } \\
& W \sim W^{\prime} \Rightarrow G(W)=G\left(W^{\prime}\right) . \\
& W^{\prime}=\phi(W) \Rightarrow G\left(W^{\prime}\right)=\phi \circ G(W) \circ \phi^{-1} .
\end{aligned}
$$

Tool 2: Mapping class group

Theorem (Humphris)

Suppose that $g \geq 2$ and let a_{i}, b_{i}, c_{i} be simple closed curves on Σ_{g}. Then $M C G_{g}$ or $M C G_{g}^{1}$ is generated by $t_{c_{1}}, t_{a_{1}}, t_{c_{2}}, t_{a_{2}}, \cdots, t_{c_{g}}, t_{a_{g}}$ and $t_{b_{2}}$.

Tool 2: Mapping class group

Theorem (Humphris)

Suppose that $g \geq 2$ and let a_{i}, b_{i}, c_{i} be simple closed curves on Σ_{g}. Then $M C G_{g}$ or $M C G_{g}^{1}$ is generated by $t_{c_{1}}, t_{a_{1}}, t_{c_{2}}, t_{a_{2}}, \cdots, t_{c_{g}}, t_{a_{g}}$ and $t_{b_{2}}$.

Corollary

Let $g \in \mathbb{Z}_{\geq 3}$.
(1) $M C G_{g}$ or $M C G_{g}^{1}$ is generated by

$$
\left\{t_{a_{1}}, t_{c_{2}}, t_{a_{2}}, \cdots, t_{c_{g}}, t_{a_{g}}\right\} \cup\left\{t_{b_{i}}, t_{b_{i+1}}\right\} \text { for any } 1 \leq i<g
$$

(2) $M C G_{g}$ or $M C G_{g}^{1}$ is not generated by

$$
\left\{t_{c_{1}}, t_{a_{1}}, t_{c_{2}}, t_{a_{2}}, \cdots, t_{c_{g}}, t_{a_{g}}\right\} \cup\left\{t_{b_{2 j+1}} \left\lvert\, 1 \leq j \leq\left[\frac{g-1}{2}\right]\right.\right\} .
$$

Tool 3: Monodromy map of a fibered knot

Let $K_{\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{2 g}}=C\left(2 \varepsilon_{1}, 2 \varepsilon_{2}, \cdots, 2 \varepsilon_{2 g}\right)$ for positive integer $g \geq 2$ and $\varepsilon_{i}= \pm 1$.

- $\varphi_{{\kappa_{1}, \varepsilon_{2}, \cdots, \varepsilon_{2 g}}}=t_{a_{g}}^{\varepsilon_{2 g}} \circ t_{c_{g}}^{\varepsilon_{2 g-1}} \circ \cdots t_{a_{1}}^{\varepsilon_{2}} \circ t_{c_{1}}^{\varepsilon_{1}}$
- $\phi\left(\varphi_{K_{\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{2 g}}}\right)=t_{a_{1}}^{\varepsilon_{2 g}} \circ t_{c_{2}}^{\varepsilon_{2 g-1}} \circ \cdots t_{a_{g}}^{\varepsilon_{2}} \circ t_{b_{g}}^{\varepsilon_{1}}$
are monodromy of $K_{\mathcal{E}_{1}, \varepsilon_{2}, \cdots, \varepsilon_{2 g}}$ where

$$
\phi= \begin{cases}t_{d_{0}} \circ t_{d_{1}} \circ \cdots \circ t_{d_{g}} \circ t_{e_{0}} & , g \text { is even, } \\ t_{d_{0}} \circ t_{d_{1}} \circ \cdots \circ t_{d_{g}} \circ t_{e_{1}}^{2} \circ t_{e_{2}}^{2} & , g \text { is odd. }\end{cases}
$$

(a) g is odd case

(b) g is even case

Sketch of proof: $E(n)_{K_{i} H^{\sharp}} \Sigma_{2 \mathrm{~g}+n-1} E(n)_{K_{0}}$

- Let $K_{i}=C\left(2 \varepsilon_{i, 1}, 2 \varepsilon_{i, 2}, \cdots, 2 \varepsilon_{i, 2 g-1}, 2 \varepsilon_{i, 2 g}\right)$, then $E(n)_{K_{i}} \not \Sigma_{n+2 g-1} E(n)_{K_{0}}$ has a monodromy factorization of the form

$$
\Phi_{K_{0}}\left(\eta_{n-1, g}^{2}\right) \cdot \eta_{n-1, g}^{2} \cdot \Phi_{K_{i}}\left(\eta_{n-1, g}^{2}\right) \cdot \eta_{n-1, g}^{2} .
$$

- $\Phi_{K_{i}} \in G_{F}\left(\Phi_{K_{0}}\left(\eta_{n-1, g}^{2}\right) \cdot \eta_{n-1, g}^{2}\right)$ because

Therefore $E(n)_{K_{i}} \sharp_{\Sigma_{2 g+n-1}} E(n)_{K_{0}}$ and $E(n)_{K_{i} \not \Sigma_{\Sigma_{2++n-1}}} E(n)_{K_{0}}$ have isomorphic monodromy factorization and it implies diffeomorphism.

Sketch of proof: $E(n)_{K_{i} H^{\sharp}}^{\Sigma_{2 g+n-1}}, E(n)_{K_{0}}$

- Let $K_{i}=C\left(2 \varepsilon_{i, 1}, 2 \varepsilon_{i, 2}, \cdots, 2 \varepsilon_{i, 2 g-1}, 2 \varepsilon_{i, 2 g}\right)$, then $E(n)_{K_{i}} \not \Sigma_{\Sigma_{n+2 g-1}} E(n)_{K_{0}}$ has a monodromy factorization of the form

$$
\Phi_{K_{0}}\left(\eta_{n-1, g}^{2}\right) \cdot \eta_{n-1, g}^{2} \cdot \Phi_{K_{i}}\left(\eta_{n-1, g}^{2}\right) \cdot \eta_{n-1, g}^{2} .
$$

- We may consider $\Phi_{K_{0}}=t_{a_{g}}^{-1} \circ t_{c_{g}}^{-1} \circ \cdots \circ t_{a_{1}}^{-1} \circ t_{c_{1}}^{-1}$ and $\Phi_{K_{i}}=t_{a_{g}}^{\varepsilon_{i, 2 g}} \circ t_{c_{g}}^{\varepsilon_{i, 2 g-1}} \circ \cdots \circ t_{a_{1}}^{\varepsilon_{i, 2}} \circ t_{c_{1}}^{\varepsilon_{i, 1}}$.

- $\Phi_{K_{i}} \in G_{F}\left(\Phi_{K_{0}}\left(\eta_{n-1 . g}^{2}\right) \cdot \eta_{n-1 . g}^{2}\right)$ because

Therefore $E(n)_{K_{i}} \not \Sigma_{\Sigma_{2 q+n-1}} E(n)_{K_{0}}$ and $E(n)_{K_{i} \sharp \Sigma_{2 q+n-1}} E(n)_{K_{0}}$ have isomorphic monodromy factorization and it implies diffeomorphism.

Sketch of proof: $E(n)_{K_{i} H^{\sharp}}^{\Sigma_{2 q+n-1}}, E(n)_{K_{0}}$

- Let $K_{i}=C\left(2 \varepsilon_{i, 1}, 2 \varepsilon_{i, 2}, \cdots, 2 \varepsilon_{i, 2 g-1}, 2 \varepsilon_{i, 2 g}\right)$, then $E(n)_{K_{i}} \sharp \Sigma_{n+2 g-1} E(n)_{K_{0}}$ has a monodromy factorization of the form

$$
\Phi_{K_{0}}\left(\eta_{n-1, g}^{2}\right) \cdot \eta_{n-1, g}^{2} \cdot \Phi_{K_{i}}\left(\eta_{n-1, g}^{2}\right) \cdot \eta_{n-1, g}^{2} .
$$

- We may consider $\Phi_{K_{0}}=t_{a_{g}}^{-1} \circ t_{c_{g}}^{-1} \circ \cdots \circ t_{a_{1}}^{-1} \circ t_{c_{1}}^{-1}$ and $\Phi_{K_{i}}=t_{a_{g}}^{\varepsilon_{i, 2 g}} \circ t_{c_{g}}^{\varepsilon_{i, 2 g-1}} \circ \cdots \circ t_{a_{1}}^{\varepsilon_{i, 2}} \circ t_{c_{1}}^{\varepsilon_{i, 1}}$.
- $\Phi_{K_{i}} \in G_{F}\left(\Phi_{K_{0}}\left(\eta_{n-1, g}^{2}\right) \cdot \eta_{n-1, g}^{2}\right)$ because
- $t_{a_{i}}=\left(t_{B_{2 i}}^{-1} \circ \Phi_{K_{0}}\right)\left(t_{B_{2 i}}\right)$
- $t_{c_{i}}=\left(t_{B_{2 i-1}}^{-1} \circ \Phi_{K_{0}}\right)\left(t_{B_{2 i-1}}\right)$

Therefore $E(n)_{K_{i} \sharp \Sigma_{\Sigma_{0+n-1}}} E(n)_{K_{0}}$ and $E(n)_{K_{i} \# \Sigma_{20+n-1}} E(n)_{K_{0}}$ have isomorphic monodromy factorization and it implies diffeomorphism.

Sketch of proof: $E(n)_{K_{i} H^{\sharp}}^{\Sigma_{2 q+n-1}}, E(n)_{K_{0}}$

- Let $K_{i}=C\left(2 \varepsilon_{i, 1}, 2 \varepsilon_{i, 2}, \cdots, 2 \varepsilon_{i, 2 g-1}, 2 \varepsilon_{i, 2 g}\right)$, then $E(n)_{K_{i}} \sharp \Sigma_{n+2 g-1} E(n)_{K_{0}}$ has a monodromy factorization of the form

$$
\Phi_{K_{0}}\left(\eta_{n-1, g}^{2}\right) \cdot \eta_{n-1, g}^{2} \cdot \Phi_{K_{i}}\left(\eta_{n-1, g}^{2}\right) \cdot \eta_{n-1, g}^{2} .
$$

- We may consider $\Phi_{K_{0}}=t_{a_{g}}^{-1} \circ t_{c_{g}}^{-1} \circ \cdots \circ t_{a_{1}}^{-1} \circ t_{c_{1}}^{-1}$ and $\Phi_{K_{i}}=t_{a_{g}}^{\varepsilon_{i, 2 g}} \circ t_{c_{g}}^{\varepsilon_{i, 2 g-1}} \circ \cdots \circ t_{a_{1}}^{\varepsilon_{i, 2}} \circ t_{c_{1}}^{\varepsilon_{i, 1}}$.
- $\Phi_{K_{i}} \in G_{F}\left(\Phi_{K_{0}}\left(\eta_{n-1, g}^{2}\right) \cdot \eta_{n-1, g}^{2}\right)$ because
- $t_{a_{i}}=\left(t_{B_{2 i}}^{-1} \circ \Phi_{K_{0}}\right)\left(t_{B_{2 i}}\right)$
- $t_{c_{i}}=\left(t_{B_{2 i-1}}^{-1} \circ \Phi_{K_{0}}\right)\left(t_{B_{2 i-1}}\right)$

Therefore $E(n)_{K_{i} \sharp \Sigma_{\Sigma_{0+n-1}}} E(n)_{K_{0}}$ and $E(n)_{K_{i} \# \Sigma_{20+n-1}} E(n)_{K_{0}}$ have isomorphic monodromy factorization and it implies diffeomorphism.

Sketch of proof: $E(n)_{K_{i}} \sharp_{\Sigma_{2 g+n-1}} E(n)_{K_{0}}$

- Let $K_{i}=C\left(2 \varepsilon_{i, 1}, 2 \varepsilon_{i, 2}, \cdots, 2 \varepsilon_{i, 2 g-1}, 2 \varepsilon_{i, 2 g}\right)$, then $E(n)_{K_{i}}{ }^{\sharp} \Sigma_{n+2 g-1} E(n)_{K_{0}}$ has a monodromy factorization of the form

$$
\Phi_{K_{0}}\left(\eta_{n-1, g}^{2}\right) \cdot \eta_{n-1, g}^{2} \cdot \Phi_{K_{i}}\left(\eta_{n-1, g}^{2}\right) \cdot \eta_{n-1, g}^{2}
$$

- We may consider $\Phi_{K_{0}}=t_{a_{g}}^{-1} \circ t_{c_{g}}^{-1} \circ \cdots \circ t_{a_{1}}^{-1} \circ t_{c_{1}}^{-1}$ and

$$
\Phi_{K_{i}}=t_{a_{g}}^{\varepsilon_{i, 2 g}} \circ t_{c_{g}, g_{i}}^{\varepsilon_{i, 2-1}} \circ \cdots \circ t_{a_{1}}^{\varepsilon_{i, 2}} \circ t_{c_{1}}^{\varepsilon_{i, 1}} .
$$

- $\Phi_{K_{i}} \in G_{F}\left(\Phi_{K_{0}}\left(\eta_{n-1, g}^{2}\right) \cdot \eta_{n-1, g}^{2}\right)$ because
- $t_{a_{i}}=\left(t_{B_{2 i}}^{-1} \circ \Phi_{K_{0}}\right)\left(t_{B_{2 i}}\right)$
- $t_{c_{i}}=\left(t_{B_{2 i-1}}^{-1} \circ \Phi_{K_{0}}\right)\left(t_{B_{2 i-1}}\right)$

Therefore $E(n)_{K_{i}} \sharp_{\Sigma_{2 g+n-1}} E(n)_{K_{0}}$ and $E(n)_{K_{j} \not{ }^{\sharp} \Sigma_{2 g+n-1}} E(n)_{K_{0}}$ have isomorphic monodromy factorization and it implies diffeomorphism.

- $t_{a_{i}}, t_{c_{i}} \in G\left(\Phi_{K_{0}}\left(\eta_{n-1, g}^{2}\right) \cdot \eta_{n-1, g}^{2}\right), i=1,2, \cdots, g$ implies $t_{a_{i}}, t_{c_{i}} \in G\left(t_{b_{2}}\left(\Phi_{K_{0}}\left(\eta_{n-1, g}^{2}\right) \cdot \eta_{n-1, g}^{2}\right)\right.$ for all $i=1,2, \cdots, g$ except $t_{a_{2}}$
- Because $\left(t_{B_{4}}^{-1} \circ \Phi_{K_{0}}\right)\left(t_{B_{4}}\right)=t_{a_{2}}$ and $t_{B_{3}}\left(t_{b_{2}}\left(t_{B_{3}}\right)\right)=t_{b_{2}}$,

$$
\begin{aligned}
t_{b_{2}} & \left(\Phi_{K_{0}}\left(\eta_{n-1, g}^{2}\right) \cdot \eta_{n-1, g}^{2}\right) \cdot \eta_{n-1, g}^{2} \\
& \sim t_{b_{2}}\left(\Phi_{K_{0}}\left(\eta_{n-1, g}^{2}\right)\right) \cdot t_{b_{2}}\left(\eta_{n-1, g}\right) \cdot \eta_{n-1, g}^{2} \cdot t_{b_{2}}\left(\eta_{n-1, g}\right) \\
& \sim \quad \ldots \cdot t_{b_{2}}\left(\Phi_{K_{0}}\left(t_{B_{4}}\right)\right) \cdot \ldots \cdot t_{b_{2}}\left(t_{B_{4}}\right) \cdot \ldots \cdot t_{B_{3}} \cdot \ldots \cdot t_{b_{2}}\left(t_{B_{3}}\right) \cdot \ldots \\
& \sim \quad \ldots \cdot t_{b_{2}}\left(t_{B_{4}}\right) \cdot t_{b_{2}}\left(\left(t_{B_{4}}^{-1} \circ \Phi_{K_{0}}\right)\left(t_{B_{4}}\right)\right) \cdot \ldots \cdot t_{B_{3}}\left(t_{b_{2}}\left(t_{B_{3}}\right)\right) \cdot t_{B_{3}} \cdot \ldots \\
& \sim \quad \ldots \cdot t_{b_{2}}\left(t_{a_{2}}\right) \cdot \ldots \cdot t_{b_{2}} \cdot \ldots \\
& \sim \quad \ldots \cdot t_{b_{2}} \cdot t_{a_{2}} \cdot \ldots
\end{aligned}
$$

Therefore

$$
\Phi_{K} \in\left\langle a_{i}, c_{i}, b_{2} \mid 1 \leq i \leq g\right\rangle=M C G_{g}^{1} \subseteq G\left(t_{b_{2}}\left(\Phi_{K_{0}}\left(\eta_{n-1, g}^{2}\right) \cdot \eta_{n-1, g}^{2}\right) \cdot \eta_{n-1, g}^{2}\right)
$$

The end. Thank you !

[^0]: Remark
 For a given Lefschetz fibration over S^{2} with generic fiber F, we can find an ordered sequence t_{c} right-handed Dehn twists, so called monodromy factorization such that $1=t_{c}$

