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Classification problems in 4-manifolds

Fundamental Questions in Topology and Geometry
Existence: Are there any manifolds with the given
properties?
Uniqueness: If there are more than one, then how do we
distinguish them?

Freedman(1980) & Donaldson(1982)

Two smooth simply connected closed 4-manifolds are
homeomorphic iff they have the same σ , e and type.
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Smooth classification of 4-manifolds

For a manifold Mn,
n≤ 3, topological classification is the same as smooth
classification.
n≥ 5, every n-manifold has only finitely many distinct
smooth n-manifolds which are homeomorphic to it.
n = 4, we have lots of exotic smooth 4-manifolds with the
help of Seiberg-Witten invariants. Moreover, all known
exotic 4-manifolds has infinitely many different smooth
structures.
Examples: mCP2]nCP2 with m = 1 & n = 2,3,4,5,6,7,8,9 or
m = 3 & n = 4,5,6,7,8, · · · (ABBKP(2007), Park-Yun(2007))

Conjecture (Wild conjecture)
Every 4-manifold has either zero or infinitely many distinct
smooth 4-manifolds which are homeomorphic to it.
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Fintushel-Stern knot surgered 4-manifold

Definition (Fintushel-Stern knot surgered 4-manifold)

X: a closed smooth 4-manifold, K ⊂ S3: a knot
∃T2 ↪→ X with [T]2 = 0
Fintushel-Stern knot surgered 4-manifold is defined by

XK = X]T=Tm(S1×MK) = (X \ (T×D2))∪φ S1× (S3 \N(K))

where [pt×∂D2] is identified with the longitude of K.
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Definition (Fintushel-Stern knot surgered 4-manifold)

X: a closed smooth 4-manifold, K ⊂ S3: a knot
∃T2 ↪→ X with [T]2 = 0
Fintushel-Stern knot surgered 4-manifold is defined by

XK = X]T=Tm(S1×MK) = (X \ (T×D2))∪φ S1× (S3 \N(K))

where [pt×∂D2] is identified with the longitude of K.

Theorem (Fintushel-Stern, Invent. Math(1998))
1 if b+(X) > 1 , then S W XK = S W X ·∆K(t)
2 if b+(X) = 1, then the [T]⊥-restricted Seiberg-Witten

invariants of XK are S W ±
XK ,T = S W ±

X,T ·∆K(t)

Note: There are infinitely many inequivalent knots with the
same Alexander polynomial.
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Motivation

Conjecture (Fintushel-Stern, ICM 1998)

The manifolds E(2)K1 and E(2)K2 are diffeomorphic if and only if
K1 and K2 are equivalent knots (up to mirror).

If K ⊂ S3 is a fibered knot, then E(n)K has a symplectic
structure.
Moreover Fintushel-Stern 2004 showed that E(n)K has a
Lefschetz fibration with generic fiber Σ2g(K)+n−1.

Therefore we are interested in

explicit monodromy factorization of E(n)K

Is it unique? I mean, are there nonisomorphic monodromy
factorizations on E(n)K corresponding to fixed generic fiber
Σ2g(K)+n−1?
some applications?
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Lefschetz fibration

Definition

X4: compact connected oriented smooth 4-manifold
B:compact connected oriented surface
π : X→ B, π−1(∂B) = ∂X, is a Lefschetz fibration if

∃C = {p1,p2, · · · ,pn} ⊂ int(X): set of critical points of π s.t.
C 6= ∅ & π|C is injective
about each pi and bi := π(pi) , there are local complex
coordinate charts agreeing with the orientations of X and B
such that π(z1,z2) = z2

1 + z2
2.

Remark

For a given Lefschetz fibration over S2 with generic fiber F, we
can find an ordered sequence tcn · tcn−1 · · · · · tc2 · tc1 of
right-handed Dehn twists, so called monodromy factorization
such that 1 = tcn ◦ tcn−1 ◦ · · · ◦ tc2 ◦ tc1 ∈MF.
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Equivalence relations on Lefschetz Fibration

1 Hurwitz equivalence of monodromy factorizations is
generated by

Hurwitz moves:
tcn · ... · tci+1 · tci · ... · tc1 ∼ tcn · ... · tci+1(tci) · tci+1 · ... · tc1
inverse Hurwitz moves:
tcn · ... · tci+1 · tci · ... · tc1 ∼ tcn · ... · tci · t−1

ci
(tci+1) · ... · tc1

qi−1

qi

qi+1

qi−1

qi

qi+1

Ki-Heon Yun (Jointed with Jongil Park) Fibered knot and Fintushel-Stern knot surgered 4-manifold



Equivalence relations on Lefschetz Fibration

1 Hurwitz equivalence of monodromy factorizations is
generated by

Hurwitz moves:
tcn · ... · tci+1 · tci · ... · tc1 ∼ tcn · ... · tci+1(tci) · tci+1 · ... · tc1
inverse Hurwitz moves:
tcn · ... · tci+1 · tci · ... · tc1 ∼ tcn · ... · tci · t−1

ci
(tci+1) · ... · tc1

2 Simultaneous conjugation equivalence of two monodromy
factorization is given by

tcn · tcn−1 · ... · tc2 · tc1 ≡ f (tcn) · f (tcn−1) · ... · f (tc2) · f (tc1)

for some f ∈Mg. We will consider f (wk · ... ·w2 ·w1) as
f (wk) · ... · f (w2) · f (w1)
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Equivalence relations on Lefschetz Fibration

Theorem (Y.Matsumoto)

Let fi : Xi→ S2, i = 1,2, be two Lefschetz fibrations of genus
g≥ 2. Then the two Lefschetz fibrations are isomorphic if and
only if their monodromy factorizations are related by a finite
sequence of Hurwitz equivalences and simultaneous
conjugation equivalences.

Remark
Lefschetz fibrations f : M→ B, f ′ : M′→ B′ are isomorphic if ∃
orientation preserving diffeomorphisms H : M→M′, h : B→ B′

such that

M H−−−−→ M′

f
y yf ′

B h−−−−→ B′

commutes.
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Lefschetz fibration structures of E(n)K

If we consider π2 : E(n)→ CP1, then generic fiber is T2 and
we have 12n nodal type singular fibers with monodromy
factorization (ab)6n

If we consider π1 : E(n)→ CP1, then generic fiber is Σn−1
and we have 8(2n−1) nodal type singular fibers with
monodromy factorization ι4

n−1 where ιn−1 is the hyperelliptic
involution of Σn−1.
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Lefschetz fibration structures of E(n)K

Fintushel-Stern’s idea:

Therefore we define

Definition
Let M(n,g) be the desingularization of the double cover of
Σg×S2 branched over 2n({pt.}×S2)∪2(Σg×{pt.}).

Then E(n)K can be considered as a twisted fiber sum of two
M(n,g)’s.
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Lefschetz fibration structures of E(n)K

Therefore we define

Definition
Let M(n,g) be the desingularization of the double cover of
Σg×S2 branched over 2n({pt.}×S2)∪2(Σg×{pt.}).

Then E(n)K can be considered as a twisted fiber sum of two
M(n,g)’s.

Theorem (Fintushel-Stern, 2004)

E(n)K can be considered as a twisted fiber sum
M(n,g)]ΦK M(n,g) by using the diffeomorphism

ΦK = ϕK⊕ id⊕ id : Σg]Σn−1]Σg→ Σg]Σn−1]Σg

where ϕK is a geometric monodromy of fibred knot K.
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Lefschetz fibration structures of E(n)K

Theorem (Yun, TAIA(2006))

η2
n−1,g is a monodromy factorization of M(n,g) where

ηn−1,g ∼= tA2n−2 · tA2n−3 · ... · tA2 · t
2
A1
· tA2 · ... · tA2n−2 · tB0 · tB1 · ... · tB2g · tA2n−1
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Lefschetz fibration structures of E(n)K

Theorem (Yun, TAMS (in press))

Let K ⊂ S3 be a fibered knot of genus g. Then E(n)K has a
monodromy factorization of the form

ΦK(ηn−1,g) ·ΦK(ηn−1,g) ·ηn−1,g ·ηn−1,g

where ηn−1,g as before and

ΦK = ϕK⊕ id⊕ id : Σg]Σn−1]Σg→ Σg]Σn−1]Σg

by using a (geometric) monodromy ϕK of the fibered knot K
such that

S3 \ν(K) = (I×Σ
1
g)/((1,x)∼ (0,ϕK(x)))
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Two bridge knot

Definition
A 2-bridge knot b(α,β ) is the knot of the form

C(n1,−n2,n3,−n4, · · · ,(−1)k−1nk)

where
β

α
=

1
n1 + 1

n2+ 1

... 1
nk−1+ 1

nk

= [n1,n2, · · · ,nk].
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Applications

Theorem (Yun, TAMS)
Let Ki, Kj be two 2-bridge knots of the form

C(2εi,1,2εi,2, · · · ,2εi,2g−1,2εi,2g)

where g≥ 1 and εi,k = +1 or εi,k =−1 for each k = 1,2, · · · ,2g.
Let K0 be the 2-bridge knot of the form C(−2,−2, · · · ,−2,−2︸ ︷︷ ︸

2g

).

Then for each n≥ 1, E(n)Ki]Σ2g+n−1E(n)K0 ≈ E(n)Kj]Σ2g+n−1E(n)K0 .
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Applications

Why is this interesting?

In 2004, Fintushel-Stern defined a family of 4-manifolds

Y(n;K1,K2) = E(n)K1]Σ2g+n−1E(n)K2

for two fibered knots K1 and K2 of genus g. They also proved
that

S W Y(n;K1,K2) = tK +(−1)nt−1
K .

Therefore our theorem say that knot type does not determine
the smooth type of Y(n;Ki,K0).

Ki-Heon Yun (Jointed with Jongil Park) Fibered knot and Fintushel-Stern knot surgered 4-manifold



Applications

Theorem (Yun, TAMS)

Let K1, K2 be any two genus g≥ 2 fibred knots in S3 and let K0
be the 2-bridge knot C(−2,−2, · · · ,−2,−2︸ ︷︷ ︸

2g

). Then

E(n)K1]tb2
E(n)K0 ≈ E(n)K2]tb2

E(n)K0

for each fixed integer n≥ 1.

Theorem (Park-Yun, 2007(Submitted))

Let Kε1,ε2,··· ,ε4g = C(2ε1,2ε2, · · · ,2ε4g) for some g≥ 1 and εi =±1,
then the knot surgery 4-manifold E(2n)Kε1 ,ε2 ,··· ,ε4g

has at least two
nonisomorphic Lefschetz fibration structures for each n.
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Tool 1: Monodromy group

Definition

f : X→ S2 a LF with generic fiber F & W = wn · ... ·w2 ·w1 be a
monodromy factorization.
Monodromy group GF(W)⊆MCGF is the subgroup of MCGF

generated by w1,w2, · · · ,wn.

Lemma (Auroux)
Wi = wi,ni · ... ·wi,2 ·wi,1, i = 1,2, be a sequence of right handed
Dehn twists along a simple closed curves in Σg such that
λWi = id. Suppose f ∈ G(W2), then f (W1) ·W2 ∼W1 ·W2.

Lemma
W, W ′: MF of a genus g LF.
W ∼W ′ ⇒ G(W) = G(W ′).
W ′ = φ(W)⇒ G(W ′) = φ ◦G(W)◦φ−1.
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Tool 2: Mapping class group

Theorem (Humphris)
Suppose that g≥ 2 and let ai, bi, ci be simple closed curves on
Σg. Then MCGg or MCG1

g is generated by tc1 , ta1 , tc2 , ta2 , · · · , tcg , tag

and tb2 .

Corollary
Let g ∈ Z≥3.

1 MCGg or MCG1
g is generated by

{ta1 , tc2 , ta2 , · · · , tcg , tag}∪{tbi , tbi+1} for any 1≤ i < g
2 MCGg or MCG1

g is not generated by
{tc1 , ta1 , tc2 , ta2 , · · · , tcg , tag}∪{tb2j+1 | 1≤ j≤ [g−1

2 ]}.
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Tool 3: Monodromy map of a fibered knot

Let Kε1,ε2,··· ,ε2g = C(2ε1,2ε2, · · · ,2ε2g) for positive integer g≥ 2
and εi =±1.

ϕKε1 ,ε2 ,··· ,ε2g
= tε2g

ag ◦ tε2g−1
cg ◦ · · · tε2

a1
◦ tε1

c1

φ(ϕKε1 ,ε2 ,··· ,ε2g
) = tε2g

a1 ◦ tε2g−1
c2 ◦ · · · tε2

ag
◦ tε1

bg

are monodromy of Kε1,ε2,··· ,ε2g where

φ =
{

td0 ◦ td1 ◦ · · · ◦ tdg ◦ te0 ,g is even,
td0 ◦ td1 ◦ · · · ◦ tdg ◦ t2

e1
◦ t2

e2
,g is odd.
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Sketch of proof: E(n)Ki]Σ2g+n−1E(n)K0

Let Ki = C(2εi,1,2εi,2, · · · ,2εi,2g−1,2εi,2g), then
E(n)Ki]Σn+2g−1E(n)K0 has a monodromy factorization of the
form

ΦK0(η
2
n−1,g) ·η2

n−1,g ·ΦKi(η
2
n−1,g) ·η2

n−1,g.

We may consider ΦK0 = t−1
ag
◦ t−1

cg
◦ · · · ◦ t−1

a1
◦ t−1

c1
and

ΦKi = tεi,2g
ag ◦ tεi,2g−1

cg ◦ · · · ◦ tεi,2
a1 ◦ tεi,1

c1 .

ΦKi ∈ GF(ΦK0(η
2
n−1,g) ·η2

n−1,g) because

tai = (t−1
B2i
◦ΦK0)(tB2i)

tci = (t−1
B2i−1
◦ΦK0)(tB2i−1)

Therefore E(n)Ki]Σ2g+n−1E(n)K0 and E(n)Kj]Σ2g+n−1E(n)K0 have
isomorphic monodromy factorization and it implies
diffeomorphism.
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a1 ◦ tεi,1

c1 .

ΦKi ∈ GF(ΦK0(η
2
n−1,g) ·η2

n−1,g) because

tai = (t−1
B2i
◦ΦK0)(tB2i)

tci = (t−1
B2i−1
◦ΦK0)(tB2i−1)

Therefore E(n)Ki]Σ2g+n−1E(n)K0 and E(n)Kj]Σ2g+n−1E(n)K0 have
isomorphic monodromy factorization and it implies
diffeomorphism.
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Sketch of proof: E(n)Ki]Σ2g+n−1E(n)K0

Let Ki = C(2εi,1,2εi,2, · · · ,2εi,2g−1,2εi,2g), then
E(n)Ki]Σn+2g−1E(n)K0 has a monodromy factorization of the
form

ΦK0(η
2
n−1,g) ·η2

n−1,g ·ΦKi(η
2
n−1,g) ·η2

n−1,g.

We may consider ΦK0 = t−1
ag
◦ t−1

cg
◦ · · · ◦ t−1

a1
◦ t−1

c1
and

ΦKi = tεi,2g
ag ◦ tεi,2g−1

cg ◦ · · · ◦ tεi,2
a1 ◦ tεi,1

c1 .

ΦKi ∈ GF(ΦK0(η
2
n−1,g) ·η2

n−1,g) because

tai = (t−1
B2i
◦ΦK0)(tB2i)

tci = (t−1
B2i−1
◦ΦK0)(tB2i−1)

Therefore E(n)Ki]Σ2g+n−1E(n)K0 and E(n)Kj]Σ2g+n−1E(n)K0 have
isomorphic monodromy factorization and it implies
diffeomorphism.
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Sketch of proof: E(n)K]tb2
E(n)K0

tai , tci ∈ G(ΦK0(η
2
n−1,g) ·η2

n−1,g), i = 1,2, · · · ,g implies
tai , tci ∈ G(tb2(ΦK0(η

2
n−1,g) ·η2

n−1,g)) for all i = 1,2, · · · ,g except
ta2

Because (t−1
B4
◦ΦK0)(tB4) = ta2 and tB3(tb2(tB3)) = tb2 ,

tb2(ΦK0(η
2
n−1,g) ·η2

n−1,g) ·η2
n−1,g

∼ tb2(ΦK0(η
2
n−1,g)) · tb2(ηn−1,g) ·η2

n−1,g · tb2(ηn−1,g)
∼ ... · tb2(ΦK0(tB4)) · ... · tb2(tB4) · ... · tB3 · ... · tb2(tB3) · ...
∼ ... · tb2(tB4) · tb2((t

−1
B4
◦ΦK0)(tB4)) · ... · tB3(tb2(tB3)) · tB3 · ...

∼ ... · tb2(ta2) · ... · tb2 · ...
∼ ... · tb2 · ta2 · ...

Therefore

ΦK ∈ 〈ai,ci,b2|1≤ i≤ g〉= MCG1
g⊆G(tb2(ΦK0(η

2
n−1,g)·η2

n−1,g)·η2
n−1,g)
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The end. Thank you !
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