An upper bound for tunnel number of a knot using free genus

Jung Hoon Lee

Korea Institute for Advanced Study

K: knot in S^3

F: Seifert surface of K

= compact connected orientable surface with $\partial F = K$ F is **free** if $\overline{S^3 - N(F)}$ is a handlebody.

g(K): genus of K

= minimal genus among all Seifert surfaces of K

 $g_f(K)$: free genus of K

= minimal genus among all free Seifert surfaces of K $g(K) \leq g_f(K)$

t(K): tunnel number of K t(K)=n if there are n disjoint properly embedded arcs t_1,\cdots,t_n in S^3-K such that $\overline{S^3-N(K\cup \bigcup_{i=1}^n t_i)}$ is a genus n+1 handlebody, and n is a minimum among all such numbers.

Proposition $t(K) \leq 2g_f(K)$

Suppose $g_f(K) = n$. K bounds a once punctured genus n free Seifert surface F.

Take 2n disjoint properly embedded arcs t_1, \dots, t_{2n} on F such that F cut along $\bigcup_{i=1}^{2n} t_i$ is a disk.

Let D denote the disk $\overline{F - N(K \cup \bigcup_{i=1}^{2n} t_i; F)}$.

Take a product neighborhood $N(F) = F \times I$ of F such that $F = F \times \{0\} \subset F \times I$.

 $\overline{S^3-N(F)}$ is a handlebody since F is a free Seifert surface and $D\times I$ can be regarded as a 1-handle attached to it.

So $\overline{S^3} - N(F) \cup (D \times I)$ is also a handlebody, which is exterior of $K \cup \bigcup_{i=1}^{2n} t_i$.

$$\therefore t(K) \leq 2g_f(K) = 2n.$$

When $t(K) < 2g_f(K)$?

When
$$g_f(K) = 1$$
, $(1 = g(K) \le g_f(K))$

Goda-Teragaito conjecture

Theorem (Scharlemann) Suppose $K \subset S^3$ has tunnel number one and genus one. Then either

- 1. K is a satellite knot or
- 2. K is a 2-bridge knot.

Attaching (annulus)×I to handlebody along (annulus)× ∂I

 γ_1,γ_2 : disjoint essential loops on the boundary of a handlebody H

D : an essential disk of H such that $|D\cap\gamma_1|=|\partial D\cap\gamma_1|=1$ and $D\cap\gamma_2=\emptyset$.

A: an annulus.

Lemma If we attach $A \times I$ to H along $A \times \partial I$ so that $A \times \{0\}$ is attached to $N(\gamma_1; \partial H)$ and $A \times \{1\}$ to $N(\gamma_2; \partial H)$,

then the resulting manifold is a handlebody of same genus with ${\cal H}.$

Notations

F: genus n free Seifert surface for a knot K with $g_f(K)=n$ $t_1,\cdots,t_{2n-1} \text{ : disjoint properly embedded arcs in } F$ such that F cut along $\bigcup_{i=1}^{2n-1} t_i$ is an annulus A γ : essential loop of A.

Theorem

Suppose there exists an essential disk D in $\overline{S^3-(F\times I)}$ such that $|D\cap(\gamma\times\{0\})|=1$ and $D\cap(\gamma\times\{1\})=\emptyset$, where $F=F\times\{0\}\subset F\times I$. Then $t(K)\leq 2g_f(K)-1$.

Sketch of proof

Remove the collar of ∂A from A.

Obtain $A' = \overline{A - N(\partial A; A)}$, which is in the interior of F.

The neighborhood of F, $N(F) = F \times I$, can be understood as the union of $N(K \cup \bigcup_{i=1}^{2n-1} t_i)$ and $A' \times I$.

Since F is a genus n free Seifert surface, $S^3 - (F \times I)$ is a genus 2n handlebody.

 $A' \times I$ is attached to it along $A' \times \{0\}$ and $A' \times \{1\}$.

By Lemma, $\overline{S^3 - (F \times I)} \cup (A' \times I)$ is a genus 2n handlebody, which is the exterior of $K \cup \bigcup_{i=1}^{2n-1} t_i$.

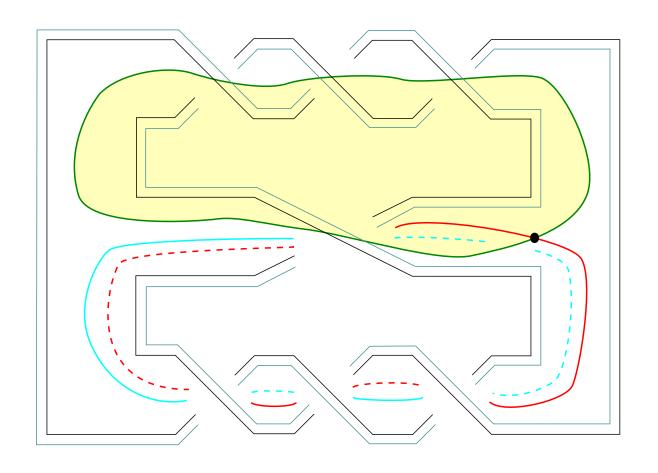
$$t(K) \le 2n - 1 = 2g_f(K) - 1.$$

Examples

Corollary Pretzel knot $P(a_1, a_2, \dots, a_{2n+1})$ $(a_i = \text{odd})$ for all i and $a_i = 1$ for some i) has tunnel number less than or equal to 2n - 1.

The canonical Seifert surface by Seifert algorithm is free.

We can easily find the essential disk D satisfying the condition of **Theorem**.



An example : P(3, 1, 3)

Proposition Let A be an incompressible annulus properly embedded in a handlebody H. Then A cuts H into handlebodies(or a handlebody).

Standard innermost disk and outermost arc argument.

Heegaard splitting of a 3-manifold M is a decomposition $M = H_1 \cup_S H_2$.

 $(H_1, H_2 \text{ are handlebodies and } S = \partial H_1 = \partial H_2)$

From one Heegaard splitting to another

Theorem Let $M = H_1 \cup H_2$ be a Hegaard splitting.

Let A be an incompressible annulus properly embedded in H_2 and $\partial A = a_1 \cup a_2$.

Suppose that there exists an essential disk D of H_1 such that $|D \cap a_1| = 1$ and $D \cap a_2 = \emptyset$.

Let H_1' be obtained from H_1 by attaching $A \times I \subset H_2$ along $a_1 \times I$ and $a_2 \times I$.

Let H'_2 be obtained from H_2 by cutting along A.

Then $M = H_1' \cup H_2'$ is a Heegaard splitting of same genus with $H_1 \cup H_2$.