An upper bound for tunnel number of a knot using free genus

Jung Hoon Lee
Korea Institute for Advanced Study

$K:$ knot in S^{3}
F : Seifert surface of K
$=$ compact connected orientable surface with $\partial F=K$
F is free if $\overline{S^{3}-N(F)}$ is a handlebody.
$g(K)$: genus of K
$=$ minimal genus among all Seifert surfaces of K
$g_{f}(K)$: free genus of K
$=$ minimal genus among all free Seifert surfaces of K
$g(K) \leq g_{f}(K)$
$t(K)$: tunnel number of K
$t(K)=n$ if there are n disjoint properly embedded $\operatorname{arcs} t_{1}, \cdots, t_{n}$ in $S^{3}-K$ such that $\overline{S^{3}-N\left(K \cup \cup_{i=1}^{n} t_{i}\right)}$ is a genus $n+1$ handlebody, and n is a minimum among all such numbers.

Proposition $\quad t(K) \leq 2 g_{f}(K)$

Suppose $g_{f}(K)=n . \quad K$ bounds a once punctured genus n free Seifert surface F.

Take $2 n$ disjoint properly embedded $\operatorname{arcs} t_{1}, \cdots, t_{2 n}$ on F such that F cut along $\cup_{i=1}^{2 n} t_{i}$ is a disk.
Let D denote the disk $\overline{F-N\left(K \cup \cup_{i=1}^{2 n} t_{i} ; F\right)}$.

Take a product neighborhood $N(F)=F \times I$ of F such that $F=F \times\{0\} \subset F \times I$.
$\overline{S^{3}-N(F)}$ is a handlebody since F is a free Seifert surface and $D \times I$ can be regarded as a 1-handle attached to it.
So $\overline{S^{3}-N(F)} \cup(D \times I)$ is also a handlebody, which is exterior of $K \cup \cup_{i=1}^{2 n} t_{i}$.
$\therefore \quad t(K) \leq 2 g_{f}(K)=2 n$.

When $t(K)<2 g_{f}(K)$?

When $g_{f}(K)=1,\left(1=g(K) \leq g_{f}(K)\right)$

Goda-Teragaito conjecture

Theorem (Scharlemann) Suppose $K \subset S^{3}$ has tunnel number one and genus one. Then either

1. K is a satellite knot or
2. K is a 2-bridge knot.

Attaching (annulus) $\times I$ to handlebody along (annulus) $\times \partial I$

γ_{1}, γ_{2} : disjoint essential loops on the boundary of a handlebody H
D : an essential disk of H such that $\left|D \cap \gamma_{1}\right|=\mid \partial D \cap$
$\gamma_{1} \mid=1$ and $D \cap \gamma_{2}=\emptyset$.
A : an annulus.

Lemma If we attach $A \times I$ to H along $A \times \partial I$ so that $A \times\{0\}$ is attached to $N\left(\gamma_{1} ; \partial H\right)$ and $A \times\{1\}$ to $N\left(\gamma_{2} ; \partial H\right)$,
then the resulting manifold is a handlebody of same genus with H.

Notations

F : genus n free Seifert surface for a knot K with $g_{f}(K)=n$
$t_{1}, \cdots, t_{2 n-1}$: disjoint properly embedded arcs in F such that F cut along $\cup_{i=1}^{2 n-1} t_{i}$ is an annulus A γ : essential loop of A.

Theorem

Suppose there exists an essential disk D in $\overline{S^{3}-(F \times I)}$ such that $|D \cap(\gamma \times\{0\})|=1$ and $D \cap(\gamma \times\{1\})=\emptyset$, where $F=F \times\{0\} \subset F \times I$.
Then $t(K) \leq 2 g_{f}(K)-1$.

Sketch of proof

Remove the collar of ∂A from A.
Obtain $A^{\prime}=\overline{A-N(\partial A ; A)}$, which is in the interior of F.

The neighborhood of $F, N(F)=F \times I$, can be understood as the union of $N\left(K \cup \cup_{i=1}^{2 n-1} t_{i}\right)$ and $A^{\prime} \times I$.

Since F is a genus n free Seifert surface, $\overline{S^{3}-(F \times I)}$ is a genus $2 n$ handlebody.
$A^{\prime} \times I$ is attached to it along $A^{\prime} \times\{0\}$ and $A^{\prime} \times\{1\}$.
By Lemma, $\overline{S^{3}-(F \times I)} \cup\left(A^{\prime} \times I\right)$ is a genus $2 n$ handlebody, which is the exterior of $K \cup \cup_{i=1}^{2 n-1} t_{i}$.
$\therefore \quad t(K) \leq 2 n-1=2 g_{f}(K)-1$.

Examples

Corollary Pretzel knot $P\left(a_{1}, a_{2}, \cdots, a_{2 n+1}\right)$ ($a_{i}=$ odd for all i and $a_{i}=1$ for some i) has tunnel number less than or equal to $2 n-1$.

The canonical Seifert surface by Seifert algorithm is free.

We can easily find the essential disk D satisfying the condition of Theorem.

An example : $P(3,1,3)$

Proposition Let A be an incompressible annulus properly embedded in a handlebody H. Then A cuts H into handlebodies(or a handlebody).

Standard innermost disk and outermost arc argument.

Heegaard splitting of a 3-manifold M is a decomposition $M=H_{1} \cup_{S} H_{2}$.
$\left(H_{1}, H_{2}\right.$ are handlebodies and $\left.S=\partial H_{1}=\partial H_{2}\right)$

From one Heegaard splitting to another

Theorem Let $M=H_{1} \cup H_{2}$ be a Hegaard splitting. Let A be an incompressible annulus properly embedded in H_{2} and $\partial A=a_{1} \cup a_{2}$.
Suppose that there exists an essential disk D of H_{1} such that $\left|D \cap a_{1}\right|=1$ and $D \cap a_{2}=\emptyset$.

Let H_{1}^{\prime} be obtained from H_{1} by attaching $A \times I \subset H_{2}$ along $a_{1} \times I$ and $a_{2} \times I$.

Let H_{2}^{\prime} be obtained from H_{2} by cutting along A.

Then $M=H_{1}^{\prime} \cup H_{2}^{\prime}$ is a Heegaard splitting of same genus with $H_{1} \cup H_{2}$.

