On embedding all *n*-manifolds into a single (n + 1)-manifold

Jiangang Yao, UC Berkeley

The Forth East Asian School of Knots and Related Topics

Joint work with Fan Ding & Shicheng Wang 2008-01-23

• □ ▶ • 4 🖓 ▶ • 3 ≥ ▶

Introduction

Question

Find the smallest nonnegative integer e_n , such that any *n*-dimensional connected, closed manifold can be embedded into a single connected, closed manifold of dimension $n + e_n$.

Note

All embeddings are considered to be topologically flat.

• $0 \le e_n \le n$, by Whitney embedding theorem,

•
$$e_0 = e_1 = 0$$
,

•
$$e_2 = 1$$
,

•
$$e_3 = 2$$
.

Why $e_2 = 1$?

Classification of connected, closed 2-manifolds

- Orientable surface: $#nT^2$,
- non-orientable surface: $\#nT^2 \# \mathbb{RP}^2$ or $\#nT^2 \# \mathbb{RP}^2 \# \mathbb{RP}^2$.

Lemma

If
$$M_1^n \hookrightarrow W_1^{n+1}$$
 and $M_2^n \hookrightarrow W_2^{n+1}$, then

 $M_1 # M_2 \hookrightarrow W_1 # W_2.$

As $\#nT^2 \hookrightarrow S^3$, $\mathbb{RP}^2 \hookrightarrow \mathbb{RP}^3$, every surface embeds in

 $S^3 \# \mathbb{RP}^3 \# \mathbb{RP}^3 \cong \mathbb{RP}^3 \# \mathbb{RP}^3.$

Why $e_3 = 2$?

- Every oriented, closed 3-manifolds embeds into *S*⁵. [Hirsch, 1961]
- Every non-orientable, closed 3-manifolds embeds into *S*⁵. [Rohlin, 1965; Wall, 1965]
- There does not exist a single <u>oriented</u>, closed 4-manifold such that any connected, closed 3-manifold can be embedded into it. [Kawauchi, 1988]
- The condition "oriented" can be eliminated from the above statement. [Shiomi, 1991]

Does $e_n > 1$?

Question

Let *n* be a positive integer, whether there exists a connected, closed (n + 1)-manifold *W*, such that any connected, closed *n*-manifold *M* can be embedded into *W*.

Up To Date Results

- YES for *n* = 1, 2,
- NO for n = 3 and n = 4m 1, [Kawauchi].
- Partially YES for n = 4,
- No for *n* is a composite number and is not a power of 2.

We expect the answer to be NO for any $n \ge 4$.

Negative result

Theorem

If *n* is a composite number and is not a power of 2, then there does not exist a connected, closed (n + 1)-manifold *W*, such that any smooth, simply-connected, closed *n*-manifold *M* can be embedded into *W*.

If such a W exists and is non-orientable, then its orientation double cover \tilde{W} will also satisfies the condition, but \tilde{W} is oriented.

Note

All manifolds are considered to be oriented, connected and closed.

Homological obstruction (in a simple case)

Suppose $M^n \hookrightarrow W^{n+1}$, then $W \setminus M$ could

be connected

• have two components W_1 and W_2 .

In the latter case, by using the Mayer-Vietoris sequence for (W_1, W_2) , we get

Proposition

For any integer factorization n = pq, where p, q > 0, there exists a subspace $V \subset H^p(M; \mathbb{R})$ such that (ii) dim $V \ge \frac{1}{2}(\beta_p(M) - \beta_{p+1}(W))$, and (iii) for any $x_1, \ldots, x_q \in V, x_1 \cup \ldots \cup x_q = 0$.

Homological obstruction (full version)

Proposition

Suppose $M^n \hookrightarrow W^{n+1}$, then for any integer factorization n = pq, where p, q > 0, there exists a subspace V of $H^p(M; \mathbb{R})$ and a linear transformation $\varphi : V \to H^p(M; \mathbb{R})$ such that (*i*) φ has no fixed non-zero vectors, (*ii*) dim $V \ge \frac{1}{2}(\beta_p(M) - \beta_{p+1}(W))$, and (*iii*) for any $x_1, \ldots, x_q \in V$, $x_1 \cup \ldots \cup x_q = \varphi(x_1) \cup \ldots \cup \varphi(x_q)$.

イロト イポト イヨト イヨト

There are 3 items in this statement.

- a subspace
- a linear transformation
- a cup product relation

Sketch of the proof for the theorem

Let n = pq, where $p \ge 2$, $q \ge 3$ and is odd. Given W^{n+1} , then $\beta_{p+1}(W)$ is fixed. We will find M^n whose cohomology ring does not satisfy the obstruction, thus

 $M^n \not\hookrightarrow W^{n+1}.$

The construction of *M* has three steps.

- A good(bad?) multilinear function *F* on *V*, (with V = H^p(M), F = ∪ in mind),
- A commutative graded algebra A = ⊕[∞]_{i=0} A_i, (with A = H^{*}(M) in mind),
- A smooth manifold *M*.

Problem high-dim 4-dim

Step 1: Special multilinear function

Recall that the cup product induces a symmetric/skew-symmetric multilinear function on $H^p(M)$.

Note

 $(\wedge^{q}\mathbb{R}^{m})^{*}$ denotes the space of all the *q*-th skew-symmetric multilinear functions on \mathbb{R}^{m} . $(\vee^{q}\mathbb{R}^{m})^{*}$ denotes the space of all the *q*-th symmetric multilinear functions on \mathbb{R}^{m} .

Definition

Let *F* be an element of $(\wedge^q \mathbb{R}^m)^*$ (resp. $(\vee^q \mathbb{R}^m)^*$). We say that *F* is *special* if there exist a subspace *U* of \mathbb{R}^m with $\bullet \dim U \ge \frac{m}{3}$ and \bullet a linear map $\varphi : U \to \mathbb{R}^m$ with no fixed non-zero vectors such that \bullet for all $x_1, \ldots, x_q \in U$, $F(x_1, \ldots, x_q) = F(\varphi(x_1), \ldots, \varphi(x_q))$.

 $\frac{m}{3}$ is related to $\frac{1}{2}(\beta_p(M) - \beta_{p+1}(W))$.

Problem high-dim 4-dim

Step 1: Special multilinear function (Cont.)

Definition

F is called *special* if there exist a subspace *U* of \mathbb{R}^m with dim $U \ge \frac{m}{3}$ and a linear map $\varphi : U \to \mathbb{R}^m$ with no fixed non-zero vectors such that for all $x_1, \ldots, x_q \in U$, $F(x_1, \ldots, x_q) = F(\varphi(x_1), \ldots, \varphi(x_q))$.

Proposition

Suppose $q \ge 3$ is an <u>odd</u> integer. If *m* is sufficiently large, then there exists a proper closed subset X_m of $(\wedge^q \mathbb{R}^m)^*$ (resp. $(\vee^q \mathbb{R}^m)^*$) such that all the special functions are in X_m .

- The condition "q is odd" is crucial. If q is even, then each F is special. We may simply take U = ℝ^m and φ : ℝ^m → ℝ^m to be the map sending x to -x for all x ∈ ℝ^m.
- The conditions " $q \ge 3$ " is necessary in the estimation.

Step 2: From multilinear function to cohomology ring

By using symmetric/skew-symmetric tensor product and dual space, we can prove

Proposition

Suppose that *p* is a positive integer, $q \ge 3$ is an odd integer. Let $F \in (\wedge^q V)^*$ if *p* is odd and $F \in (\vee^q V)^*$ if *p* even, where *V* is a finite dimensional vector space over \mathbb{Q} .

There exists a commutative graded algebra $A = \bigoplus_{i=0}^{pq} A_i$ satisfying Poincaré duality such that

(i) $A_p = V$, $A_{pq} = \mathbb{Q}$, and $A_i \neq 0$ only if *i* is a multiple of *p*, (ii) for all $v_1, \ldots, v_q \in A_p = V$, $F(v_1, \ldots, v_q) = v_1 \cup \ldots \cup v_q$.

Note

Commutativity means for all $a \in A_r$, $b \in A_s$, $a \cup b = (-1)^{rs}(b \cup a)$. Poincaré duality means $A_n = \mathbb{Q}$ and $\varphi_i : A_i \to \text{Hom}(A_{n-i}, A_n)$ given by $\varphi_i(u)(v) = u \cup v$, $\forall u \in A_i$, $v \in A_{n-i}$ is an isomorphism for all *i*.

Step 3: From cohomology ring to manifold

Theorem (Sullivan 1977)

For any commutative graded algebra $A = \bigoplus_{i=0}^{n} A_i$ over \mathbb{Q} , If A satisfies Poincaré duality, $A_1 = 0$ and $A_{\frac{n}{2}} = 0$, then there exists a simply-connected, closed, smooth n-manifold Msuch that $H^*(M; \mathbb{Q})$ is isomorphic to A.

Recall that n = pq, where $p \ge 2$, $q \ge 3$ and is odd.

- For m ≥ 3β_{p+1}(W), we can find a rational non-special multilinear function F.
- *F* can be extended to a C.G.A. $A = \bigoplus_{i=0}^{q} A_{pi}$ over \mathbb{Q} .

•
$$p \ge 2 \Longrightarrow A_1 = 0$$
,
 $q \text{ is odd} \Longrightarrow A_{\frac{n}{2}} = 0$

So we can finally get the desired manifold M.

Problem high-dim 4-dim

Positive result in dimension 4

Note

All manifolds are considered to be topological.

Theorem (a)

All simply-connected, indefinite, closed 4-manifolds can be embedded into an oriented closed 5-manifold.

Theorem (b)

All simply-connected, compact 4-manifolds with non-empty boundary can be embedded into $S^2 \tilde{\times} S^3$, the non-trivial S^3 -bundle over S^2 .

Intersection forms on 4-manifolds

For any compact, connected, oriented 4-manifold M, the cup product

$$\cup: H^2(M,\partial M) \times H^2(M,\partial M) \to H^4(M,\partial M)$$

gives a symmetric bilinear form

 $Q_M: H_2(M) \times H_2(M) \to \mathbb{Z}$

through duality theorem. Clearly, $Q_M(a, b) = 0$ if *a* or *b* is a torsion element. So Q_M descends to an integral symmetric bilinear form on $H_2(M)/\text{Torsion} \cong \mathbb{Z}^r$.

By choosing a basis of \mathbb{Z}^r , Q_M can be represented by a symmetric matrix Q. Poincaré theorem implies det $Q = \pm 1$ when M is closed and we say Q_M is called unimodular.

Integral symmetric bilinear form

Given an integral symmetric bilinear form Q on \mathbb{Z}^r .

- *r* is called the rank of *Q*, denoted by rk(*Q*).
- Extend and diagonalize Q over Q^r, the number of positive entries and the number of negative entries are denoted by b⁺₂ and b⁻₂ respectively, the difference b⁺₂ − b⁻₂ is called the signature of Q, denoted by σ(Q).
- *Q* is called indefinite if both b_2^+ and b_2^- are positive, and definite otherwise.
- Q is called even if Q(a, a) is even for any a, and odd otherwise.

Classification results

Given an integral unimodular symmetric bilinear form Q,

• If Q is odd, then

$$Q \cong b_2^+[+1] \oplus b_2^-[-1].$$

If Q is even, then

$$Q \cong c_1 E_8 \oplus c_2 H,$$

where $c_1, c_2 \in \mathbb{Z}, c_2 \ge 0$,

 E_8 is an even form with $\operatorname{rk}(E_8) = \sigma(E_8) = 8$, and $H = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Theorem (Freedman)

Up to homeomorphism, there exists exactly one (Q is even) or two (Q is odd) simply-connected, closed, topological 4-manifold M such that its intersection form is Q.

Standard form of indefinite 4-manifolds

Based on the following facts,

- Every indefinite form is build from [+1], [-1], E₈, -E₈ and H by ⊕.
- $Q_M \oplus Q_{M'}$ is the intersection form of M#M'.

we have

Proposition

There exist oriented closed connected 4-manifolds M_i , $1 \le i \le 7$, such that any simply-connected indefinite closed 4-manifold M is homeomorphic to

 $#k_1M_1#k_2M_2...#k_7M_7$

for some non-negative integers k_i .

$$M_1 = \mathbb{CP}^2, ..., M_3 = \overline{\mathbb{CP}}^2, ..., M_7 = S^2 \times S^2.$$

Sketch of the proof of theorem (a)

With direct construction, we have

Lemma

For any oriented closed connected 4-manifold M, there exists an oriented closed connected 5-manifold W such that for any positive integer r, #rM can be embedded into W.

For the each M_i in the above proposition, find corresponding W_i by this lemma, then choose

$$W = W_1 \# W_2 \# \dots \# W_7.$$

Proof of the lemma

See figures.

Problem high-dim 4-dim

Key points in the proof of theorem (b)

- The double of M, DM = M#(-M), is a simply-connected, indefinite, closed 4-manifold with $\sigma = 0$.
- *DM* is homeomorphic to either $#k\mathbb{CP}^2 #k\overline{\mathbb{CP}}^2$ or $#kS^2 \times S^2$
- *DM* is homeomorphic to either #kS² × S² or #(k − 1)S² × S²#S²×S².
- $#kS^2 \times S^2 \hookrightarrow S^5$, $S^2 \tilde{\times} S^2 \hookrightarrow S^2 \tilde{\times} S^3$.

Remark

Definite integral bilinear forms are far more complicated than indefinite ones.

Signature is not an obstruction for this embedding problem.

Thank you ありがとう 감사합니다 谢谢