On embedding all n-manifolds into a single $(n+1)$-manifold

Jiangang Yao, UC Berkeley

The Forth East Asian School of Knots and Related Topics

Joint work with Fan Ding \& Shicheng Wang 2008-01-23

Introduction

Question

Find the smallest nonnegative integer e_{n}, such that any n-dimensional connected, closed manifold can be embedded into a single connected, closed manifold of dimension $n+e_{n}$.

Note

All embeddings are considered to be topologically flat.

- $0 \leq e_{n} \leq n$, by Whitney embedding theorem,
- $e_{0}=e_{1}=0$,
- $e_{2}=1$,
- $e_{3}=2$.

Why $e_{2}=1 ?$

Classification of connected, closed 2-manifolds

- Orientable surface: $\# n T^{2}$,
- non-orientable surface: $\# n T^{2} \# \mathbb{R} \mathbb{P}^{2}$ or $\# n T^{2} \# \mathbb{R} \mathbb{P}^{2} \# \mathbb{R} \mathbb{P}^{2}$.

Lemma
If $M_{1}^{n} \hookrightarrow W_{1}^{n+1}$ and $M_{2}^{n} \hookrightarrow W_{2}^{n+1}$, then
$M_{1} \# M_{2} \hookrightarrow W_{1} \# W_{2}$.
As $\# n T^{2} \hookrightarrow S^{3}, \mathbb{R} \mathbb{P}^{2} \hookrightarrow \mathbb{R}^{3}$, every surface embeds in

$$
S^{3} \# \mathbb{R} \mathbb{P}^{3} \# \mathbb{R} \mathbb{P}^{3} \cong \mathbb{R} \mathbb{P}^{3} \# \mathbb{R} \mathbb{P}^{3}
$$

Why $e_{3}=2 ?$

- Every oriented, closed 3-manifolds embeds into S^{5}. [Hirsch, 1961]
- Every non-orientable, closed 3-manifolds embeds into S^{5}. [Rohlin, 1965; Wall, 1965]
- There does not exist a single oriented, closed 4-manifold such that any connected, closed 3-manifold can be embedded into it. [Kawauchi, 1988]
- The condition "oriented" can be eliminated from the above statement. [Shiomi, 1991]

Does $e_{n}>1$?

Question

Let n be a positive integer, whether there exists a connected, closed ($n+1$)-manifold W, such that any connected, closed n-manifold M can be embedded into W.

Up To Date Results

- YES for $n=1,2$,
- NO for $n=3$ and $n=4 m-1$, [Kawauchi].
- Partially Yes for $n=4$,
- No for n is a composite number and is not a power of 2 .

We expect the answer to be NO for any $n \geq 4$.

Negative result

Theorem

If n is a composite number and is not a power of 2, then there does not exist a connected, closed ($n+1$)-manifold W, such that any smooth, simply-connected, closed n-manifold M can be embedded into W.

If such a W exists and is non-orientable, then its orientation double cover \tilde{W} will also satisfies the condition, but \tilde{W} is oriented.

Note

All manifolds are considered to be oriented, connected and closed.

Homological obstruction (in a simple case)

Suppose $M^{n} \hookrightarrow W^{n+1}$, then $W \backslash M$ could

- be connected
- have two components W_{1} and W_{2}.

In the latter case, by using the Mayer-Vietoris sequence for (W_{1}, W_{2}), we get

Proposition

For any integer factorization $n=p q$, where $p, q>0$, there exists a subspace $V \subset H^{p}(M ; \mathbb{R})$ such that
(ii) $\operatorname{dim} V \geq \frac{1}{2}\left(\beta_{p}(M)-\beta_{p+1}(W)\right)$, and
(iii) for any $x_{1}, \ldots, x_{q} \in V, x_{1} \cup \ldots \cup x_{q}=0$.

Homological obstruction (full version)

Proposition

Suppose $M^{n} \hookrightarrow W^{n+1}$, then for any integer factorization $n=p q$, where $p, q>0$, there exists a subspace V of $H^{p}(M ; \mathbb{R})$ and a linear transformation $\varphi: V \rightarrow H^{p}(M ; \mathbb{R})$ such that
(i) φ has no fixed non-zero vectors,
(ii) $\operatorname{dim} V \geq \frac{1}{2}\left(\beta_{p}(M)-\beta_{p+1}(W)\right)$, and
(iii) for any $x_{1}, \ldots, x_{q} \in V, x_{1} \cup \ldots \cup x_{q}=\varphi\left(x_{1}\right) \cup \ldots \cup \varphi\left(x_{q}\right)$.

There are 3 items in this statement.

- a subspace
- a linear transformation
- a cup product relation

Sketch of the proof for the theorem

Let $n=p q$, where $p \geq 2, q \geq 3$ and is odd.
Given W^{n+1}, then $\beta_{p+1}(W)$ is fixed. We will find M^{n} whose cohomology ring does not satisfy the obstruction, thus

$$
M^{n} \hookrightarrow W^{n+1}
$$

The construction of M has three steps.

- A good(bad?) multilinear function F on V, (with $V=H^{p}(M), F=\cup$ in mind),
- A commutative graded algebra $A=\bigoplus_{i=0}^{\infty} A_{i}$, (with $A=H^{*}(M)$ in mind),
- A smooth manifold M.

Step 1: Special multilinear function

Recall that the cup product induces a symmetric/skew-symmetric multilinear function on $H^{p}(M)$.

Note

$\left(\wedge^{q} \mathbb{R}^{m}\right)^{*}$ denotes the space of all the q-th skew-symmetric multilinear functions on \mathbb{R}^{m}.
$\left(\vee^{q} \mathbb{R}^{m}\right)^{*}$ denotes the space of all the q-th symmetric multilinear functions on \mathbb{R}^{m}.

Definition

Let F be an element of $\left(\wedge^{q} \mathbb{R}^{m}\right)^{*}$ (resp. $\left.\left(\vee^{q} \mathbb{R}^{m}\right)^{*}\right)$. We say that F is special if there exist a subspace U of \mathbb{R}^{m} with $\bullet \operatorname{dim} U \geq \frac{m}{3}$ and \bullet a linear map $\varphi: U \rightarrow \mathbb{R}^{m}$ with no fixed non-zero vectors such that - for all $x_{1}, \ldots, x_{q} \in U, F\left(x_{1}, \ldots, x_{q}\right)=F\left(\varphi\left(x_{1}\right), \ldots, \varphi\left(x_{q}\right)\right)$.
$\frac{m}{3}$ is related to $\frac{1}{2}\left(\beta_{p}(M)-\beta_{p+1}(W)\right)$.

Step 1: Special multilinear function (Cont.)

Definition

F is called special if there exist a subspace U of \mathbb{R}^{m} with $\operatorname{dim} U \geq \frac{m}{3}$ and a linear map $\varphi: U \rightarrow \mathbb{R}^{m}$ with no fixed non-zero vectors such that for all $x_{1}, \ldots, x_{q} \in U, F\left(x_{1}, \ldots, x_{q}\right)=F\left(\varphi\left(x_{1}\right), \ldots, \varphi\left(x_{q}\right)\right)$.

Proposition

Suppose $q \geq 3$ is an odd integer. If m is sufficiently large, then there exists a proper closed subset X_{m} of $\left(\wedge^{q} \mathbb{R}^{m}\right)^{*}\left(\operatorname{resp} .\left(\vee^{q} \mathbb{R}^{m}\right)^{*}\right)$ such that all the special functions are in X_{m}.

- The condition " q is odd" is crucial. If q is even, then each F is special. We may simply take $U=\mathbb{R}^{m}$ and $\varphi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ to be the map sending x to $-x$ for all $x \in \mathbb{R}^{m}$.
- The conditions " $q \geq 3$ " is necessary in the estimation.

Step 2: From multilinear function to cohomology ring

By using symmetric/skew-symmetric tensor product and dual space, we can prove

Proposition

Suppose that p is a positive integer, $q \geq 3$ is an odd integer. Let $F \in\left(\wedge^{q} V\right)^{*}$ if p is odd and $F \in\left(\vee^{q} V\right)^{*}$ if p even, where V is a finite dimensional vector space over \mathbb{Q}.
There exists a commutative graded algebra $A=\bigoplus_{i=0}^{p q} A_{i}$ satisfying Poincaré duality such that
(i) $A_{p}=V, A_{p q}=\mathbb{Q}$, and $A_{i} \neq 0$ only if i is a multiple of p,
(ii) for all $v_{1}, \ldots, v_{q} \in A_{p}=V, F\left(v_{1}, \ldots, v_{q}\right)=v_{1} \cup \ldots \cup v_{q}$.

Note

Commutativity means for all $a \in A_{r}, b \in A_{s}, a \cup b=(-1)^{r s}(b \cup a)$. Poincaré duality means $A_{n}=\mathbb{Q}$ and $\varphi_{i}: A_{i} \rightarrow \operatorname{Hom}\left(A_{n-i}, A_{n}\right)$ given by $\varphi_{i}(u)(v)=u \cup v, \forall u \in A_{i}, v \in A_{n-i}$ is an isomorphism for all i.

Step 3: From cohomology ring to manifold

Theorem (Sullivan 1977)

For any commutative graded algebra $A=\bigoplus_{i=0}^{n} A_{i}$ over \mathbb{Q},
If A satisfies Poincaré duality, $A_{1}=0$ and $A_{\frac{n}{2}}=0$, then there exists a simply-connected, closed, smooth n-manifold M such that $H^{*}(M ; \mathbb{Q})$ is isomorphic to A.

Recall that $n=p q$, where $p \geq 2, q \geq 3$ and is odd.

- For $m \geq 3 \beta_{p+1}(W)$, we can find a rational non-special multilinear function F.
- F can be extended to a C.G.A. $A=\bigoplus_{i=0}^{q} A_{p i}$ over \mathbb{Q}.
- $p \geq 2 \Longrightarrow A_{1}=0$,
q is odd $\Longrightarrow A_{\frac{n}{2}}=0$.
So we can finally get the desired manifold M.

Positive result in dimension 4

Note

All manifolds are considered to be topological.

Theorem (a)

All simply-connected, indefinite, closed 4-manifolds can be embedded into an oriented closed 5-manifold.

Theorem (b)

All simply-connected, compact 4-manifolds with non-empty boundary can be embedded into $S^{2} \tilde{\times} S^{3}$, the non-trivial S^{3}-bundle over S^{2}.

Intersection forms on 4-manifolds

For any compact, connected, oriented 4-manifold M, the cup product

$$
\cup: H^{2}(M, \partial M) \times H^{2}(M, \partial M) \rightarrow H^{4}(M, \partial M)
$$

gives a symmetric bilinear form

$$
Q_{M}: H_{2}(M) \times H_{2}(M) \rightarrow \mathbb{Z}
$$

through duality theorem. Clearly, $Q_{M}(a, b)=0$ if a or b is a torsion element. So Q_{M} descends to an integral symmetric bilinear form on $H_{2}(M) /$ Torsion $\cong \mathbb{Z}^{r}$.

By choosing a basis of \mathbb{Z}^{r}, Q_{M} can be represented by a symmetric matrix Q. Poincaré theorem implies $\operatorname{det} Q= \pm 1$ when M is closed and we say Q_{M} is called unimodular.

Integral symmetric bilinear form

Given an integral symmetric bilinear form Q on \mathbb{Z}^{r}.

- r is called the rank of Q, denoted by $\operatorname{rk}(Q)$.
- Extend and diagonalize Q over \mathbb{Q}^{r}, the number of positive entries and the number of negative entries are denoted by b_{2}^{+} and b_{2}^{-}respectively, the difference $b_{2}^{+}-b_{2}^{-}$is called the signature of Q, denoted by $\sigma(Q)$.
- Q is called indefinite if both b_{2}^{+}and b_{2}^{-}are positive, and definite otherwise.
- Q is called even if $Q(a, a)$ is even for any a, and odd otherwise.

Classification results

Given an integral unimodular symmetric bilinear form Q,

- If Q is odd, then

$$
Q \cong b_{2}^{+}[+1] \oplus b_{2}^{-}[-1] .
$$

- If Q is even, then

$$
Q \cong c_{1} E_{8} \oplus c_{2} H,
$$

where $c_{1}, c_{2} \in \mathbb{Z}, c_{2} \geq 0$,
E_{8} is an even form with $\operatorname{rk}\left(E_{8}\right)=\sigma\left(E_{8}\right)=8$, and $H=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

Theorem (Freedman)

Up to homeomorphism, there exists exactly one (Q is even) or two (Q is odd) simply-connected, closed, topological 4-manifold M such that its intersection form is Q.

Standard form of indefinite 4-manifolds

Based on the following facts,

- Every indefinite form is build from [+1], [-1], $E_{8},-E_{8}$ and H by \oplus.
- $Q_{M} \oplus Q_{M^{\prime}}$ is the intersection form of $M \# M^{\prime}$.
we have

Proposition

There exist oriented closed connected 4-manifolds $M_{i}, 1 \leq i \leq 7$, such that any simply-connected indefinite closed 4-manifold M is homeomorphic to

$$
\# k_{1} M_{1} \# k_{2} M_{2} \ldots \# k_{7} M_{7}
$$

for some non-negative integers k_{i}.
$M_{1}=\mathbb{C P}^{2}, \ldots, M_{3}=\overline{\mathbb{C P}}^{2}, \ldots, M_{7}=S^{2} \times S^{2}$.

Sketch of the proof of theorem (a)

With direct construction, we have

Lemma

For any oriented closed connected 4-manifold M, there exists an oriented closed connected 5-manifold W such that for any positive integer r, \#rM can be embedded into W.

For the each M_{i} in the above proposition, find corresponding W_{i} by this lemma, then choose

$$
W=W_{1} \# W_{2} \# \ldots \# W_{7}
$$

Proof of the lemma

See figures.

Key points in the proof of theorem (b)

- The double of $M, D M=M \#(-M)$, is a simply-connected, indefinite, closed 4-manifold with $\sigma=0$.
- $D M$ is homeomorphic to either $\# k \mathbb{C P}^{2} \# k \overline{\mathbb{C P}}^{2}$ or $\# k S^{2} \times S^{2}$
- $D M$ is homeomorphic to either $\# k S^{2} \times S^{2}$ or $\#(k-1) S^{2} \times S^{2} \# S^{2} \tilde{\times} S^{2}$.
- $\# k S^{2} \times S^{2} \hookrightarrow S^{5}, S^{2} \tilde{\times} S^{2} \hookrightarrow S^{2} \tilde{\times} S^{3}$.

Remark

Definite integral bilinear forms are far more complicated than indefinite ones.

Signature is not an obstruction for this embedding problem.

Thank you

ありがとう
감사합니다

谢 谢

