H. Kim, etc

Lattice Knot Definitions Known Results Presentation Tabulating

Results

Lattice Edge Number of Figure-8 knot

Hun Kim, Gyo Taek Jin, Choon Bae Jeon S. U. Chang, S. H. Moon, S. H. Park, Y. S. Song

22. Jan. 2008

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

H. Kim, etc

Lattice Knot

- Definitions Known Result Presentation
- Tabulatin
- Results

Stick knots and Lattice Knots

• Stick Knot

A simple closed curve in \mathbf{R}^3 which consists of finite line segments.

• Cubic Lattice

 $\textbf{Z}^3 = (\textbf{R}^3 \times \textbf{Z} \times \textbf{Z}) \cup (\textbf{Z} \times \textbf{R}^3 \times \textbf{Z}) \cup (\textbf{Z} \times \textbf{Z} \times \textbf{R}^3)$

• Lattice Knot

A stick knot in ${\boldsymbol{\mathsf{Z}}}^3$

Definitions

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

H. Kim, etc

Lattice Edge Number of

Figure-8 knot

Definitions Known Results Presentation Tabulating Results

For a knot type K,

• Stick Number s(K)

minimum number of sticks required to construct a stick knot representation of \boldsymbol{K}

• Latiitce Stick Number s_L(K)

minimum number of sticks requireed to construct a lattice knot representation of ${\ensuremath{\mathcal K}}$

• Lattice Edge Number $e_L(K)$

minimum length of lattice knot representation of \boldsymbol{K}

H. Kim, etc

Lattice Knot

Definitions Known Result Presentation Tabulating

number of sticks = 6

number of sticks = 6, length = 24

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Results

Lattice Knot Definitions Known Results Presentation Tabulating Results

Lattice Edge Number of

Figure-8 knot H. Kim, etc

• [Huh-Oh 2005]

 $s_L(3_1) = 12$, $s_L(4_1) = 14$ And $s_L(K) > 14$ for any other nontrivial knot K.

• [Diao 1993, 1994]

 $e_L(3_1)=24$

And $e_L(K) > 24$ for any other nontrivial knot K.

Results

Lattice Knot Definitions Known Results Presentation Tabulating Results

Lattice Edge Number of

Figure-8 knot H. Kim, etc

• [Huh-Oh 2005]

 $s_L(3_1) = 12$, $s_L(4_1) = 14$ And $s_L(K) > 14$ for any other nontrivial knot K.

- [Diao 1993, 1994] $e_L(3_1) = 24$ And $e_L(K) > 24$ for any other nontrivial knot K.
- Our Result $e_L(4_1) = 30$

H. Kim, etc

Lattice Knot Definitions Known Resul[:]

Presentation

Tabulating

Results

Presentation of Lattice Knot

• Vector Sequence

For a given lattice knot, we can get a sequence of standard unit vectors ${\bf i},\,{\bf j},\,{\bf k}.$

• Type of Lattice Knot

A lattice knot is of the type *l*-*m*-*n* if the number of i(resp. j, k) is *l*(resp. *m*, *n*) in the vector sequence of the given knot.

i, i, i, k, k, -j, -i, -i, -k, -k, -k, j, j, i, k, k, -j, -j, -j, -i, -i, -k, j, jMultiple Vector Sequence: 3i, 2k, -j, -2i, -3k, 2j, i, 2k, -3j, -2i, -k, 2j

4-4-4 type

H. Kim, etc

Definitions Known Result

Tabulating

Results

Properly Leveled Cyclic Multiple Vector Sequence

Without lose of generality, every lattice knot can be written as a vector sequence $\{V_i\}_{i=1}^n$ such that $V_1 = \mathbf{i}$ and $V_n = \pm \mathbf{j}$ or $\pm \mathbf{k}$.

Definition

Let $\{V_i\}_{i=1}^n$ be a multiple vector sequence of a given lattice knot. Then $\{V_i\}_{i=1}^n$ is cyclic if

2
$$V_{3k+1} = a$$
i, $V_{3k+2} = b$ j, $V_{3k+3} = c$ k, a, b, $c \in Z$

H. Kim, etc

Definitions Known Result Presentation

Tabulating

Results

Properly Leveled Cyclic Multiple Vector Sequence

Without lose of generality, every lattice knot can be written as a vector sequence $\{V_i\}_{i=1}^n$ such that $V_1 = \mathbf{i}$ and $V_n = \pm \mathbf{j}$ or $\pm \mathbf{k}$.

Definition

Let $\{V_i\}_{i=1}^n$ be a multiple vector sequence of a given lattice knot. Then $\{V_i\}_{i=1}^n$ is cyclic if

2 $V_{3k+1} = ai$, $V_{3k+2} = bj$, $V_{3k+3} = ck$, $a, b, c \in Z$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

H. Kim, etc

Lattice Knot Definitions Known Resul Presentation

Tabulating

Definition

Let $\{V_i\}_{i=1}^{3n}$ be a cyclic multiple vector sequence. Define x_k , y_k , and z_k by

•
$$x_k = \left(\sum_{l=0}^{3k+1} V_l\right) \cdot \mathbf{i}, \ y_k = \left(\sum_{l=0}^{3k+2} V_l\right) \cdot \mathbf{j}, \ z_k = \left(\sum_{l=0}^{3k+3} V_l\right) \cdot \mathbf{k}$$

Properly Leveled

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A cyclic multiple vector sequence $\{V_i\}_{i=1}^{3n}$ is properly leveled if $x_k \neq x_l, y_k \neq y_l, z_k \neq z_l$, whenever $k \neq l$

H. Kim, etc

Lattice Knot Definitions Known Resul Presentation

Tabulating

Results

Let $\{V_i\}_{i=1}^{3n}$ be a cyclic multiple vector sequence. Define x_k , y_k , and z_k by

•
$$x_k = \left(\sum_{l=0}^{3k+1} V_l\right) \cdot \mathbf{i}, \ y_k = \left(\sum_{l=0}^{3k+2} V_l\right) \cdot \mathbf{j}, \ z_k = \left(\sum_{l=0}^{3k+3} V_l\right) \cdot \mathbf{k}$$

Properly Leveled

Definition

A cyclic multiple vector sequence $\{V_i\}_{i=1}^{3n}$ is properly leveled if $x_k \neq x_l, y_k \neq y_l, z_k \neq z_l$, whenever $k \neq l$

H. Kim, etc

Lattice Knot Definitions Known Result Presentation

Tabulating

Results

Lemma

Let $\{V_i\}_{i=1}^n$ be a multiple vector sequence of a lattice knot K. If $\{V_i\}_{i=1}^n$ is cyclic and properly leveled, then the projection of K onto xy-plane is regular.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

H. Kim, etc

Lattice Knot Definitions Known Results Presentation Tabulating

Results

Lemma

Let $\{V_i\}_{i=1}^n$ be a multiple vector sequence of a lattice knot K. If $\{V_i\}_{i=1}^n$ is cyclic and properly leveled, then the projection of K onto xy-plane is regular.

Proof.

Suppose that (3k + 2)-th stick and (3l + 2)-th stick are overlap in *xy*-plane. Then $x_k = x_l$. It is impossible because $\{V_i\}_{i=1}^n$ is properly leveled.

H. Kim, etc

Lattice Knot Definitions Known Results Presentation Tabulating

Results

Tabulating of Lattice Knots

For each n = 24, 26, 28, 30, we had the following steps for the tabulation of lattice knot with length n.

1 Generate all vector sequence with length n as follows:

- **1** Start with **i** and end with \pm **j** or \pm **k**.
- **2** $(\# \text{ of } \mathbf{i}) = (\# \text{ of } -\mathbf{i})$, and so on.
- **3** Discard if there is a self intersection.
- Obscard if the first appearance of y-axis direction vector is -j, and so on.

5 Discard if the length can be reduced.

H. Kim, etc

Lattice Knot Definitions Known Results Presentation Tabulating

Results

- 2 Rewrite vector sequence as multiple vector sequence.
- 3 Add virtual edge(0i, 0j, 0k) to make cyclic.
- 4 Add new edges to make properly leveled.
- 6 Make Dowker-Thistlethwait notation from properly leveled cyclic multiple vector sequence.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- 6 Discard repeated Dowker-Thistlethwait notations
- Identify knot using knotscape

Results

Lattice Edge Number of Figure-8 knot

H. Kim, etc

Lattice Knot Definitions Known Resul Presentation

Tabulating

Results

• *n* = 24

type	trivial knot	trefoil	total
4-4-4	5	1	6
5-4-3	1	0	1

• *n* = 26

type	trivial knot	trefoil	total
5-4-4	11	22	33
5-5-3	7	1	8
6-4-3	38	23	61

• *n* = 28

type	trivial knot	trefoil	total
5-5-4	118	92	210
6-4-4	126	132	258
6-5-3	101	79	180
7-4-3	33	22	55

H. Kim, etc

- Lattice Knot Definitions
- Presentation
- Tabulating
- Results

Lattice knot with length 30

- type 8-4-3, 8-5-2, 7-4-4, 7-5-3, 7-6-2, 6-6-3, 6-5-4 are all trivial knots or trefoil knots
- type 6-5-4

vector sequence	DT-notation	
111133522444663352551166322244	6 -10 -8 2 -4	41
111133224255116664455323322644	-10 14 -12 4 -16 -6 -8 2	41
111133222466115554426633322445	4682	41
1 = i 2 = -i 3 = i 4 = -i 5 = k 6 = -k		

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

H. Kim, etc

Lattice Knot Definitions Known Results Presentation Tabulating Results

< □ > < □ > < □ > < □ > < □ > = Ξ

H. Kim, etc

Lattice Knot

Known Results

Presentation

Tabulating

Results

Thank You!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ