Lattice Edge
Number of
Figure-8 knot
H. Kim, etc
Lattice Knot
Definitions
Known Results
Presentation
Tabulating
Results

Lattice Edge Number of Figure-8 knot

Hun Kim, Gyo Taek Jin, Choon Bae Jeon
S. U. Chang, S. H. Moon, S. H. Park, Y. S. Song

22. Jan. 2008

Stick knots and Lattice Knots

- Stick Knot

A simple closed curve in \mathbf{R}^{3} which consists of finite line segments.

- Cubic Lattice

$$
\mathbf{Z}^{3}=\left(\mathbf{R}^{3} \times \mathbf{Z} \times \mathbf{Z}\right) \cup\left(\mathbf{Z} \times \mathbf{R}^{3} \times \mathbf{Z}\right) \cup\left(\mathbf{Z} \times \mathbf{Z} \times \mathbf{R}^{3}\right)
$$

- Lattice Knot

A stick knot in \mathbf{Z}^{3}

- Stick Number $s(K)$ minimum number of sticks required to construct a stick knot representation of K
- Latiitce Stick Number $s_{L}(K)$
minimum number of sticks requireed to construct a lattice knot representation of K
- Lattice Edge Number $e_{L}(K)$ minimum length of lattice knot representation of K

Results

- [Huh-Oh 2005]
$s_{L}\left(3_{1}\right)=12, s_{L}\left(4_{1}\right)=14$
And $s_{L}(K)>14$ for any other nontrivial knot K.
- [Diao 1993, 1994]
$e_{L}\left(3_{1}\right)=24$
And $e_{L}(K)>24$ for any other nontrivial knot K.

Results

- [Huh-Oh 2005]
$s_{L}\left(3_{1}\right)=12, s_{L}\left(4_{1}\right)=14$
And $s_{L}(K)>14$ for any other nontrivial knot K.
- [Diao 1993, 1994]
$e_{L}\left(3_{1}\right)=24$
And $e_{L}(K)>24$ for any other nontrivial knot K.
- Our Result

$$
e_{L}\left(4_{1}\right)=30
$$

Presentation of Lattice Knot

- Vector Sequence

For a given lattice knot, we can get a sequence of standard unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$.

- Type of Lattice Knot

A lattice knot is of the type $I-m-n$ if the number of $\mathbf{i}($ resp. $\mathbf{j}, \mathbf{k})$ is $I($ resp. m, n) in the vector sequence of the given knot.

$\mathbf{i}, \mathbf{i}, \mathbf{i}, \mathbf{k}, \mathbf{k},-\mathbf{j},-\mathbf{i},-\mathbf{i},-\mathbf{k},-\mathbf{k},-\mathbf{k}, \mathbf{j}, \mathbf{j}, \mathbf{i}, \mathbf{k}, \mathbf{k},-\mathbf{j},-\mathbf{j},-\mathbf{j},-\mathbf{i},-\mathbf{i},-\mathbf{k}, \mathbf{j}, \mathbf{j}$ Multiple Vector Sequence: $3 \mathbf{i}, 2 \mathbf{k},-\mathbf{j},-2 \mathbf{i},-3 \mathbf{k}, 2 \mathbf{j}, \mathbf{i}, 2 \mathbf{k},-3 \mathbf{j},-2 \mathbf{i},-\mathbf{k}, 2 \mathbf{j}$ 4-4-4 type

Properly Leveled Cyclic Multiple Vector Sequence

Without lose of generality, every lattice knot can be written as a vector sequence $\left\{V_{i}\right\}_{i=1}^{n}$ such that $V_{1}=\mathbf{i}$ and $V_{n}= \pm \mathbf{j}$ or $\pm \mathbf{k}$.

Definition

Let $\left\{V_{i}\right\}_{i=1}^{n}$ be a multiple vector sequence of a given lattice knot. Then $\left\{V_{i}\right\}_{i=1}^{n}$ is cyclic if
(1) $n=3 m$
(2) $V_{3 k+1}=a \mathbf{i}, V_{3 k+2}=b \mathbf{j}, V_{3 k+3}=c \mathbf{k}, a, b, c \in \mathbf{Z}$

Properly Leveled Cyclic Multiple Vector Sequence

Without lose of generality, every lattice knot can be written as a vector sequence $\left\{V_{i}\right\}_{i=1}^{n}$ such that $V_{1}=\mathbf{i}$ and $V_{n}= \pm \mathbf{j}$ or $\pm \mathbf{k}$.

Definition

Let $\left\{V_{i}\right\}_{i=1}^{n}$ be a multiple vector sequence of a given lattice knot. Then $\left\{V_{i}\right\}_{i=1}^{n}$ is cyclic if
(1) $n=3 m$
(2) $V_{3 k+1}=a \mathbf{i}, V_{3 k+2}=b \mathbf{j}, V_{3 k+3}=c \mathbf{k}, a, b, c \in \mathbf{Z}$

Properly Leveled

Let $\left\{V_{i}\right\}_{i=1}^{3 n}$ be a cyclic multiple vector sequence.
Define x_{k}, y_{k}, and z_{k} by

$$
\cdot x_{k}=\left(\sum_{l=0}^{3 k+1} V_{l}\right) \cdot \mathbf{i}, y_{k}=\left(\sum_{l=0}^{3 k+2} V_{l}\right) \cdot \mathbf{j}, z_{k}=\left(\sum_{l=0}^{3 k+3} V_{l}\right) \cdot \mathbf{k}
$$

Definition

A cyclic multiple vector sequence $\left\{V_{i}\right\}_{i=1}^{3 n}$ is properly leveled if $x_{k} \neq x_{l}, y_{k} \neq y_{l}, z_{k} \neq z_{l}$, whenever $k \neq 1$

Properly Leveled

Let $\left\{V_{i}\right\}_{i=1}^{3 n}$ be a cyclic multiple vector sequence.
Define x_{k}, y_{k}, and z_{k} by

$$
\cdot x_{k}=\left(\sum_{l=0}^{3 k+1} V_{l}\right) \cdot \mathbf{i}, y_{k}=\left(\sum_{l=0}^{3 k+2} V_{l}\right) \cdot \mathbf{j}, z_{k}=\left(\sum_{l=0}^{3 k+3} V_{l}\right) \cdot \mathbf{k}
$$

Definition

A cyclic multiple vector sequence $\left\{V_{i}\right\}_{i=1}^{3 n}$ is properly leveled if $x_{k} \neq x_{l}, y_{k} \neq y_{l}, z_{k} \neq z_{l}$, whenever $k \neq 1$

Lattice Edge
Number of
Figure-8 knot
H. Kim, etc
Lattice Knot
Definitions
Known Results
Presentation
Tabulating
Results

Lemma
Let $\left\{V_{i}\right\}_{i=1}^{n}$ be a multiple vector sequence of a lattice knot K. If $\left\{V_{i}\right\}_{i=1}^{n}$ is cyclic and properly leveled, then the projection of K onto $x y$-plane is regular.

Lemma
Let $\left\{V_{i}\right\}_{i=1}^{n}$ be a multiple vector sequence of a lattice knot K. If $\left\{V_{i}\right\}_{i=1}^{n}$ is cyclic and properly leveled, then the projection of K onto $x y$-plane is regular.

Proof.
Suppose that $(3 k+2)$-th stick and $(3 I+2)$-th stick are overlap in $x y$-plane. Then $x_{k}=x_{l}$. It is impossible because $\left\{V_{i}\right\}_{i=1}^{n}$ is properly leveled.

Tabulating of Lattice Knots

For each $n=24,26,28,30$, we had the following steps for the tabulation of lattice knot with length n.
(1) Generate all vector sequence with length n as follows:
(1) Start with \mathbf{i} and end with $\pm \mathbf{j}$ or $\pm \mathbf{k}$.
(2) $\#$ of $\mathbf{i})=(\#$ of $-\mathbf{i})$, and so on.
(3) Discard if there is a self intersection.
(4) Discard if the first appearance of y-axis direction vector is -j, and so on.
(5) Discard if the length can be reduced.
(2) Rewrite vector sequence as multiple vector sequence.
(3) Add virtual edge($0 \mathbf{i}, 0 \mathbf{j}, 0 \mathbf{k}$) to make cyclic.
(4) Add new edges to make properly leveled.
(5) Make Dowker-Thistlethwait notation from properly leveled cyclic multiple vector sequence.
© Discard repeated Dowker-Thistlethwait notations
(7) Identify knot using knotscape

Results

H. Kim, etc

- $n=24$

type	trivial knot	trefoil	total
$4-4-4$	5	1	6
$5-4-3$	1	0	1

- $n=26$

type	trivial knot	trefoil	total
$5-4-4$	11	22	33
$5-5-3$	7	1	8
$6-4-3$	38	23	61

- $n=28$

type	trivial knot	trefoil	total
$5-5-4$	118	92	210
$6-4-4$	126	132	258
$6-5-3$	101	79	180
$7-4-3$	33	22	55

Lattice knot with length 30

- type 8-4-3, 8-5-2, 7-4-4, 7-5-3, 7-6-2, 6-6-3, 6-5-4 are all trivial knots or trefoil knots
- type 6-5-4

vector sequence	DT-notation	
111133522444663352551166322244	$6-10-82-4$	4_{1}
111133224255116664455323322644	$-1014-124-16-6-82$	4_{1}
111133222466115554426633322445	4682	4_{1}
$1=\mathbf{i}, 2=-\mathbf{i}, 3=\mathbf{j}, 4=-\mathbf{j}, 5=\mathbf{k}, 6=-\mathbf{k}$		

Lattice Edge

 Number of Figure-8 knot H. Kim, etcLattice Knot

Definitions

Known Results

```
Presentation
```

Tabulating
Results


```
Lattice Edge Number of Figure-8 knot
H. Kim, etc
Lattice Knot
Definitions
Known Results
Presentation
Tabulating

\section*{Thank You!}```

