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Cromwell diagram

Cromwell showed that every link diagram is isotopic to a diagram which is
a finite union of the following local diagrams in such a way that no more than
two corners exist in any vertical line and any horizontal line.

Cromwell’s local diagrams

Such a diagram is called a Cromwell diagram.

Cromwell diagram of a trefoil knot
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Cromwell matrix

An n× n matrix each of whose rows and columns has exactly two 1’s and
0’s elsewhere is called a Cromwell matrix. By joining two 1’s in each column
of a Cromwell matrix with a vertical line segment and two 1’s in each row
with a horizontal line segment which underpasses any vertical line segments
that it crosses, we obtain its Cromwell diagram. Conversely, given a Cromwell
diagram with n horizontal lines and n vertical lines, we place 1’s at each corner
and 0’s at other points where the lines and their extensions cross, to construct
its Cromwell matrix.

1 0 0 0 1 0

0 0 1 0 0 1

0 1 0 1 0 0

1 0 1 0 0 0

0 1 0 0 1 0

0 0 0 1 0 1

1 0 0 0 1 0

0 0 1 0 0 1

0 1 0 1 0 0

1 0 1 0 0 0

0 1 0 0 1 0

0 0 0 1 0 1

Construction of Cromwell matrix from Cromwell diagram and its inverse
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Arc presentation

An arc presentaation of a knot or a link L is an ambient isotopic image
of L contained in the union of finitely many half planes, called pages, with a
common boundary line in such a way that each half plane contains a properly
embedded single arc.
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An arc presentation and its projection of the figure eight knot

Proposition 1 (Cromwell 1995) Every link admits an arc presentation.
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Proof of Proposition 1 (Existence of arc presentation)

As illustrated below, the horizontal line segments of a Cromwell diagram
are horizontally pulled backwards to touch a vertical axis behind the diagram
to form an arc presentation. As every link has a Cromwell diagram, we can
conclude that every link admits an arc presentation.
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Arc presentation constructed from a Cromwell diagram
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Arc index

The minimal number of pages among all arc presentations of a link L is
called the arc index of L and is denoted by α(L).

α(L) 2 3 4 5

L unknot none 2-component unlink, Hopf link trefoil

Links with arc index up to 5

• Nutt identified all knots up to arc index 9. (1999, Math. Proc. Camb.
Phil. Soc. 126)

• Beltrami determined arc index for prime knots up to 10 crossings. (2002,
JKTR 11(3) — Proc. Knots 2000 Korea v.1)

• J-Kim-Lee-Gong-Kim-Kim-Oh identified all prime knots up to arc index
10. (2007, Knots and Everything 40 — Proc. ILDT 2006)

• Ng determined arc index for prime knots up to eleven crossings. (2006,
arXiv:math/0612356)
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Properties of arc index

Theorem 2 (1995, Cromwell) α(K1]K2) = α(K1) + α(K2)− 2.

Theorem 3 (2000, Bae-Park) If L is a non-split link then

α(L) ≤ c(L) + 2

where c(L) is the minimal crossing number of L. The equality holds if and
only if L is alternating.

Lemma 4 There are finitely many knots with arc index n for each n ≥ 2.
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Allowable moves on Cromwell matrices

Any finite combination of the following moves on a Cromwell matrix does
not change the link type of the corresponding Cromwell diagram up to mirror
images.

M1. Flipping in a horizontal axis, a vertical axis, a diagonal axis or an an-
tidiagonal axis.

M2. Rotation in the plane by 90 degrees.

M3. Moving the first row to the bottom or the first column to the rear.

M4. Interchange of two adjacent rows or columns whose ones are in ‘non-
interleaving’ position.




· · ·
1 0 0 0 0 1 0
0 1 0 0 1 0 0

· · ·


 ⇐⇒




· · ·
0 1 0 0 1 0 0
1 0 0 0 0 1 0

· · ·




Interchange of adjacent rows in a non-interleaving position
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The norm of a Cromwell matrix

The norm of a Cromwell matrix is the n2 digit binary number obtained by
concatenating its rows. An example is shown below.




1 0 0 0 1 0
0 0 1 0 0 1
0 1 0 1 0 0
1 0 1 0 0 0
0 1 0 0 1 0
0 0 0 1 0 1




100010 001001 010100 101000 010010 0001012
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Tabulation procedure

To tabulate prime knots with arc index up to 11, we proceeded with the
following steps, for each integer n = 5, . . . , 11.

(1) In the norm-decreasing order, generate all n×n Cromwell matrices whose
leading entry of the first row is 1.

(2) Discard if it corresponds to a link of more than one components.

(3) Discard if its Cromwell diagram is not prime.

(4) Discard if a sequence of moves M1–M4 ever increase the norm.

(5) Discard if a finite sequence of move M4 ever makes two 1’s adjacent
horizontally or vertically, as their existence causes a reduction of the
size of Cromwell matrix.

(6) Identify the knot of its Cromwell diagram.

(7) Discard the knot if it already appeared for n or for k < n.
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Dowker-Thistlethwaite codes
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A summary of our tabulation

Our computer program in which the steps (1)–(5) were implemented, pro-
duced 663,341 Cromwell matrices for n = 11 and their Dowker-Thistlethwaite
codes (‘DT codes’ for short). Using ‘Knotscape’, we were able to eliminate
most of the duplications and obtained 2,727 distinct DT codes of prime knots.
They include

• All prime knots up to arc index 11 except the 13n4639 having arc index
10. There are 2,616 such knots.

• All prime knots up to 11 crossings except the alternating knots with 10
or 11 crossings. There are 311 such knots.

• One duplication among 13 crossing knots, three among 14 crossing knots
and two among 15 crossing knots.

• 105 duplications among 392 knots with 17 crossings or higher.

These duplications were detected by using polynomial invariants and hyper-
bolic invariants computed by Knotscape.
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Prime knots up to arc index 11 or up to 12 crossings

Crossings

Arc index 5 6 7 8 9 10 11 12 13 14 Total

3 1 1

4 1 1

5 2 2

6 3 3

7 7 7

8 1 2 18 21

9 2 6 41 49

10 1 9 32 123 165

11 4 46 135 367 552

12 2 48 211 627 1288 2176

13 49 399

14 17 477

15 1 22 441

16 7 345

17 1 191

18 76

19 12

20 3

21 3

24 1

Total 1 1 3 8 29 240 2335
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Non-alternating prime links

The numbers on the main diagonal of the table in the previous page count
alternating knots. The following is our main theorem.

Theorem 5 A prime link L is non-alternating if and only if

α(L) ≤ c(L).

• This inequality explains why the boxes one step below the main diagonal
are all empty.

• Beltrami obtained an inequality sharper than this for semi-alternating
links.

• This theorem allows us to put 627 in the table for the number of 12
crossing knots with arc index 12.
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Knot-spoke diagram

A knot-spoke diagram D is a finite connected plane graph satisfying

1. There are three kinds of vertices in D; a distinguished vertex v0 with
valency at least four, 4-valent vertices, and 1-valent vertices.

2. Every edge incident to a 1-valent vertex is also incident to v0. Such an
edge is called a spoke.
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Knot-spoke diagrams

A wheel diagram is a knot-spoke diagram without any non-spoke edges.
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Prime knot-spoke diagrams

A knot-spoke diagram D is said to be prime if no simple closed curve
meeting D in two interior points of edges separates multi-valent vertices into
two parts.
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Cut-point

A multi-valent vertex v of a knot-spoke diagram D is said to be a cut-point
if there is a simple closed curve S meeting D in v and separating non-spoke
edges into two parts.
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Cut-point

• A cut-point free knot-spoke diagram with more than one non-spoke edges
cannot have a loop.

• If a prime knot-spoke diagram D has a cut-point, then the distinguished
vertex v0 must be the cut-point with valency bigger than four.
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Assigning relative edge-heights at vertices

To obtain the type of a knot or link which can be projected onto a knot-
spoke diagram D, we may assign relative heights of the endpoints of edges of
D in the following way.

1. At every 4-valent vertex, pairs of opposite edges meet in two distinct
levels so that a knot-crossing is created.

2. If the distinguished vertex v0 is incident to 2a non-spoke edges and b
spokes, then its small neighborhood is the projection of n = a+b arcs at
distinct levels whose relatives heights can be specified by the numbers
1, · · · , n. Every spoke is understood as the projection of an arc on a
vertical plane whose endpoints project to v0.
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Knot spoke diagram of a knot or a link

Suppose a knot-spoke diagram D has height information at multi-valent
vertices, then

1. D determines a knot(or link) L. In this case, we say that D is a knot-
spoke diagram of L.

2. If D has only 4-valent vertices then it is a knot(or link) diagram.

3. If D has no non-spoke edges, i.e., if D is a wheel diagram, then it is an
arc presentation.
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Contracting an edge incident to v0

Let e be an edge of a cut-point free knot-spoke diagram D as in the figure.
The knot-spoke diagram De is obtained by

• contracting e and

• replacing any simple loop thus created by a spoke.
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A loop in a knot-spoke diagram is said to be simple if the other non-spoke
edges are in one side of it.
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D and De

There are two important facts to point out.

1. D and De represent the same knot or link.

2. The sum of the number of regions divided by the non-spoke edges and
the number of spokes is unchanged.

3. De is prime if D is prime.

4. Starting from a knot diagram D, we end up with a knot-spoke diagram
with c(D) spokes and only one non-spopke edge which is a non-simple
loop where c(D) is the number of crossings in D.

s¡¡@@
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Wheel diagram with c(D) + 2 spokes
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The last non-spoke edge, which is a loop, is being folded to create two
extra spokes. This shows the inequality

α(L) ≤ c(L) + 2

of Theorem 3.
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Basic tool

The condition ‘4’ above is guaranteed by the lemma below.

Lemma 6 (Bae-Park) Let D be a knot-spoke diagram without cut-points.
Suppose that D has at least two multi-valent vertices. Then there are at least
two non-loop non-spoke edges e and f , incident to v0, such that the knot-spoke
diagrams De and Df have no cut-points.
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Idea of Proof of Theorem 5

Find a sequence of edge-contractions toward a wheel diagram so
that there are at least two occasions that the number of regions is
reduced by one without creating a spoke.
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Reducing the number of regions by one without creating a spoke
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Main tool

Proposition 7 Let D be a prime cut-point free knot-spoke diagram and let e
be an edge incident to v0 and to another 4-valent vertex v1 such that De has a
cut-point. Then there exists a simple closed curve Se satisfying the following
conditions.

1. De ∩ Se = v0

2. Se separates ē and ē′ where the four edges incident to v1 in D are labeled
with e, ē, e′, ē′ so that v1 is the crossing of the arcs e ∪ e′ and ē ∪ ē′.

3. Se separates De into two knot-spoke diagrams D̄ and D̄′ containing ē and
ē′, respectively. Furthermore D̄′ is prime and cut-point free, and there is
a sequence of non-spoke edges e1, . . . , ek of D not contained in D̄′ such
that the knot-spoke diagram De1e2··· ek

is identical with D̄′ on non-spoke
edges in one side of Se and has only spokes in the other side.
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Three cases for the proof of Proposition 7
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ē

ē′
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Case 1.
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ē′

A
A
@

@
Q

Q
Q

```
»»» ´

´
´

¡
¡

¢
¢

T

S

s sv0 e e′

ē
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Case 2.
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ēe′

ē′

A
A
@

@
Q

Q
Q

(T̄ v0)e1··· ek−1

Se

s sv0 e
e′

ē
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Case 3.
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ē′

A
A
@

@
Q

Q
Q

´
´

´
¡

¡
¢

¢
Q

Q
Q

@
@

A
A

T
T ′

Se

S′e sv0

ē
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Proof of Theorem 5

One of the three following cases must occur.

Case I. There is an arc of D which crosses over (or under) three times con-
secutively.

Case II. The two edges of an arc crossing one end of a non-alternating edge
are both alternating.

Case III. One of the two edges of an arc crossing one end of a non-alternating
edge is alternating and the other is non-alternating.
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Case II.
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Case III.
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Thank you!
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