On Maximal Collections of Essential Annuli in a Handlebody

Department of Applied Mathematics Dalian University of Technology

Contents

44	$\stackrel{ }{ }$
4	－
第 2 页共 25 页	
返 回	

全屏显示

关 闭

退 出
（2）Background
（2）Main Theorems
（2）Annulus－busting curves on ∂H_{n}
（3）Outline Proof of Theorem 1
（2）Outline Proof of Theorem 2
（3）Two Questions

1 Backgroud

Let \boldsymbol{H}_{n} be an orientable handlebody of genus \boldsymbol{n}. A properly embedded surface S in \boldsymbol{H}_{n} is essential if S is incompressible and no component of S is ∂-parallel in H_{n}.

It is well known that the only essential surface in \boldsymbol{H}_{1} consists of only parallel copies of a meridian disk of \boldsymbol{H}_{1}, and any essential surface in $\boldsymbol{H}_{n}(\boldsymbol{n} \geq 2)$ either is ∂ compressible or totally contains essential disks. Thus an essential annulus in $\boldsymbol{H}_{\boldsymbol{n}}$ with $\boldsymbol{n} \geq 2$ may be regarded as a union of an essential disk and a band in H_{n}.

Let \mathcal{D} be a collection of pairwise disjoint, nonparallel, essential disks in \boldsymbol{H}_{n}. It is a fundamental fact that \mathcal{D} contains only one disk if $n=1$, and at most $3 n-3$ disks if $n \geq 2$.

Let \mathcal{A} be a collection of pairwise disjoint, nonparallel, essential annuli in handlebody \boldsymbol{H}_{n}. We say that \mathcal{A} is maximal if \boldsymbol{A} is an essential annulus in \boldsymbol{H}_{n} with $\boldsymbol{A} \cap \mathcal{A}=\emptyset$ then \boldsymbol{A} is parallel to a component of \mathcal{A} in \boldsymbol{H}_{n}.
Question: How many annuli are there in a maximal collection of essential annuli in H_{n} ?

It is a result of Rubinstein－Scharlemann that a max－ imal collection of essential annuli in \boldsymbol{H}_{2} may contain ex－ actly 1 ，or 2 ，or at most 3 annuli．

Before stating Rubinstein－Scharlemann＇s result， we first review some definitions．

Definition

Suppose \boldsymbol{H} is a handlebody and $\boldsymbol{C} \subset \boldsymbol{\partial} \boldsymbol{H}$ is a simple closed curve．We say C is twisted if there is a properly embedded disk $\boldsymbol{\Delta}$ in \boldsymbol{H} such that a component of \boldsymbol{H} cut along Δ is a solid torus T with $C \subset \partial T-\Delta$ ，and C is a (p, q)－torus knot on $\partial T(p \geq 2)$ ．We say C is a longitude if there exists an essential disk Δ in H such that C transversely meet Δ in a single point．

Definition

Let \boldsymbol{H} be a handlebody. Let \boldsymbol{A} be a properly embedded annulus in \boldsymbol{H}. If both boundary components of \boldsymbol{A} are longitudes, \boldsymbol{A} is called longitudinal; if both are twisted, \boldsymbol{A} is called twisted.

Example

Twisted annulus: Let \boldsymbol{H}_{n} be a handlebody of genus $\boldsymbol{n} \geq 2, \Delta$ an essential disk in H_{n} which cuts out of a solid torus \boldsymbol{T} from \boldsymbol{H}_{n}. Let \boldsymbol{C} be a $(\boldsymbol{p}, \boldsymbol{q})$-torus knot on $\partial T(p \geq 2)$. Let A be a ∂-parallel annulus in T such that each component of $\partial \boldsymbol{A}$ is parallel to C on ∂T and \boldsymbol{A} is parallel to the annulus in $\partial \boldsymbol{T}$ bounded by $\partial \boldsymbol{A}$ which contains the cutting section of Δ. Then \boldsymbol{A} is twisted in $\boldsymbol{H}_{\boldsymbol{n}}$.

Longitudinal annulus:

Rubinstein－Scharlemann Theorem：

Let \mathcal{A} be a maximal collection of essential annuli in \boldsymbol{H}_{2} ．Then there exists an essential disk Δ in \boldsymbol{H}_{2} with $\Delta \cap \mathcal{A}=\emptyset$ ．Moreover，
（1）if Δ is separating in \boldsymbol{H}_{2} ，say，into two solid tori \boldsymbol{T}_{1} and \boldsymbol{T}_{2} ，then \mathcal{A} contains two annuli $\boldsymbol{A}_{1}, \boldsymbol{A}_{2}$ ，such that \boldsymbol{A}_{1} is twisted lying in $\boldsymbol{T}_{1}, \boldsymbol{A}_{2}$ is twisted lying in \boldsymbol{T}_{2} ， and in each $\boldsymbol{T}_{i}, \boldsymbol{\Delta}$ is lying in the interior of the annulus in $\partial \boldsymbol{T}_{i}$ to which \boldsymbol{A}_{i} is parallel in \boldsymbol{T}_{i} ，see figure 1.

Figure 1
(2) if $\boldsymbol{\Delta}$ is non-separating in \boldsymbol{H}_{2}, let \boldsymbol{T} be the solid torus obtained by cutting \boldsymbol{H}_{2} open along $\boldsymbol{\Delta}$, then there are two subcases:
(2.1) \mathcal{A} contains exact one longitudinal (therefore non-separating in \boldsymbol{H}_{2}) annulus \boldsymbol{A} in \boldsymbol{T} such that the two cutting sections of Δ are lying in the interior of the two annuli in $\partial \boldsymbol{T}$ bounded by $\boldsymbol{\partial A}$, see figure 2 ;

（2．2） \mathcal{A} consists of exactly three twisted annuli $\boldsymbol{A}_{0}, \boldsymbol{A}_{1}, \boldsymbol{A}_{2}$ in \boldsymbol{T} ，such that $\boldsymbol{A}_{1}, \boldsymbol{A}_{2}$ are lying in the solid torus T^{\prime} via which A_{0} is parallel to the annulus \boldsymbol{A}^{\prime} bounded by ∂A_{0} in ∂T ，and $A_{1}, A_{2} \subset T^{\prime}$ are par－ allel to two disjoint annuli on \boldsymbol{A}^{\prime} bounded by $\boldsymbol{\partial} \boldsymbol{A}_{1}, \boldsymbol{\partial} \boldsymbol{A}_{2}$ respectively，each of which contains one cutting section of Δ ，see figure 3 ．

Home Page标 题 页

44	$\rightarrow>$
4	\bullet

第 9 页共 25 页
返 回
全屏显示
关 闭

退 出

We will generalize Rubinstein－Scharlemann＇s the－ orem to the case of H_{n} with $n \geq 3$ ．

2 Main results

We use $|\cdot|$ to denote the number of elements of the corresponding set.

Theorem 1

Let \mathcal{A} be a maximal collection of essential annuli in H_{n} with $n \geq 3$. Then $2 \leq|\mathcal{A}| \leq 4 n-5$, and the bounds are best possible.

Theorem 2

Let H_{n} be a handlebody of genus $n \geq 3$. Then for each $m, 2<m<4 n-5$, there exists a maximal collection of essential annuli in \boldsymbol{H}_{n} which contains exactly m annuli.

3 Annulus-busting curves on ∂H_{n}

A simple closed curve C on ∂H_{n} which intersects every essential annulus in \boldsymbol{H}_{n} nonempty is called an annulus-busting curve, or simply, an AB curve.

The next theorem shows the existence of the annulus-busting curves on $\partial H_{n}(n \geq 2)$, which might be of interesting itself:

Theorem 3: For each $n \geq 2$, there exists infinitely many AB curves C on ∂H_{n}.

We will use the theorem to show the lower bound in Theorem 1.

In proving the theorem, we use a theorem of Hempel on Heegaard distance.

Hempel's idea of the distance of a Heegaard splitting:
Let \boldsymbol{F} be an orientable connected closed surface, $\boldsymbol{\alpha}, \boldsymbol{\beta}$ are two essential simple closed curves on \boldsymbol{F}. Then there exists a sequence of essential simple closed curves $\alpha=\alpha_{0}, \alpha_{1}, \cdots, \alpha_{n}=\beta$ on \boldsymbol{F} such that, for each $i, 1 \leq i \leq n, \alpha_{i-1}$ and α_{i} are pairwise disjoint. n is called the length of the sequence. The distance $d(\alpha, \beta)$ of α and β is defined to be the smallest length $n \in N$ of all sequences as above.

Let $V_{1} \cup_{F} V_{2}$ be a Heegaard splitting. Denote by $D\left(V_{1} \cup_{F} V_{2}\right)$ or $D(F)$ the integer $\min \left\{d\left(C_{1}, C_{2}\right) \mid C_{i}\right.$ bounds an essential disk in $\left.C_{i}, i=1,2\right\}$, and call it the distance of the splitting $V_{1} \cup_{F} V_{2}$.

Hempel＇s Theorem

For any positive integers $m, n \geq 2$ ，there exists a Heegaard splittings $V_{1} \cup_{F} V_{2}$ of genus n for a closed orientable 3－manifolds M with distance $\boldsymbol{D}(\boldsymbol{F})>\boldsymbol{m}$ ．

Main results
Annulus－busting

Proof of the AB curve existence theorem：

By Hempel＇s theorem，there exists a Heegaard splittings $V_{1} \cup_{F^{\prime}} V_{2}$ of genus $n \geq 2$ for a closed ori－ entable 3－manifolds M^{\prime} with distance $D\left(F^{\prime}\right) \geq 3$ ，for any positive integers $n \geq 2$ ．Let C be a meridian curve of V_{2} ．Let M be the 3－manifold obtained by adding a 2－ handle to \boldsymbol{V}_{1} along \boldsymbol{C} ．Push \boldsymbol{F}^{\prime} slightly into the interior of M by isotopy，we get a surface \boldsymbol{F} which is in fact a Heegaard surface in \boldsymbol{M} ．Clearly， $\boldsymbol{D}(\boldsymbol{F}) \geq \boldsymbol{D}\left(\boldsymbol{F}^{\prime}\right) \geq 3$ ．

Let \boldsymbol{A} be an essential annulus properly embedded in H_{n} with $\boldsymbol{A} \cap \boldsymbol{C}=\emptyset$ ．We can show that \boldsymbol{A} is essential in \boldsymbol{M} ．

On the other hand，since $D(F) \geq 3$ ，we can show that \boldsymbol{M} contains no essential annulus（and torus），a contradiction．

4 Proof of Theorem 1
In Rubinstein-Scharlemann's theorem, the icons are used to show the maximal collections of essential annuli in \boldsymbol{H}_{2} in a very simple and clear way. We will use similar icons in general cases.

Case $|\mathcal{A}| \geq 2$:
Let $\boldsymbol{H}^{1}, \boldsymbol{H}^{2}$ be two handlebodies of genus n_{1}, n_{2}, respectively, and $n_{1} \geq 1$, and $n_{2} \geq 2, n_{1}+n_{2}=n \geq$ 3. Choose a simple closed curve C_{1} on ∂H^{1} in the following way: when $n_{1}=1$, let C_{1} be a twisted curve on ∂H^{1}; when $n_{1}>1$, let C_{1} be an annulus-busting curve on $\partial \boldsymbol{H}^{1}$. Let C_{2} be an annulus-busting curve on $\partial \boldsymbol{H}^{2}$. Let \boldsymbol{A}_{i} be a ∂-parallel properly embedded annulus in \boldsymbol{H}^{i} such that each component of $\boldsymbol{\partial} \boldsymbol{A}_{i}$ is parallel to C_{i} on $\partial H^{i}, i=1,2$.

Let D_{i} be a disk in the interior of the annulus bounded by $\boldsymbol{\partial} \boldsymbol{A}_{\boldsymbol{i}}$ on $\boldsymbol{\partial} \boldsymbol{H}^{i}$. Glue \boldsymbol{H}^{1} and \boldsymbol{H}^{2} together by identifying D_{1} and D_{2} to obtain a handlebody $\boldsymbol{H}_{n}=$ $\boldsymbol{H}^{1} \bigcup_{D_{1}=D_{2}} \boldsymbol{H}^{2}$ of genus n . Then there is no other essential annulus in $\boldsymbol{H}_{\boldsymbol{n}}$ which is disjoint from $\boldsymbol{A}_{1} \cup \boldsymbol{A}_{2}$. Thus $\left\{A_{1}, A_{2}\right\}$ is maximal.

Case $|\mathcal{A}| \leq 4 n-5$:
The proof here goes by induction on genus n of \boldsymbol{H}_{n}.

Next we construct a maximal collection of essential annuli in $H_{n}(n \geq 3)$ with exact $4 n-5$ annuli. a collection pairwise disjoint simple arcs properly em－ bedded in D shown as in figure 4．Let $T=D \times S^{1}$ ， and $A_{i}=a_{i} \times S^{1}, 1 \leq i \leq 4 n-5$ ．For each i ， $1 \leq i \leq 2 n-1, A_{i}$ is parallel to an annulus A_{i}^{\prime} bounded by ∂A_{i} in ∂T whose interior contains no com－ ponent of $\partial\left\{A_{i}: 1 \leq i \leq 4 n-5\right\}$ ．Let H be the han－ dlebody of genus n obtained by adding $n-11$－handle to T such that each $A_{i}^{\prime}(1 \leq i \leq 2 n-2)$ contains exact one end disk of the $n-11$－handles．

Let T^{\prime} be another solid torus, $A^{\prime} \subset \partial T^{\prime}$ be an annulus, each of whose boundary components is a (p, q) torus knot on $\partial T^{\prime}, \boldsymbol{p} \geq 2$. Union T and T^{\prime} via a homeomorphism from $\boldsymbol{A}_{2 n-1}^{\prime}$ to \boldsymbol{A}^{\prime}, we again get a handlebody \boldsymbol{H}_{n} of genus n.

We can check that $\mathcal{A}=\left\{A_{1}, A_{2}, \cdots, A_{4 n-5}\right\}$ is a maximal collection of pairwise disjoint non-parallel essential annuli in \boldsymbol{H}_{n}.

5 Proof of Theorem 2

We only need to consider the case $2<m<4 n-$ 5. We will divide it into 6 cases to discuss, and in each case we will describe a maximal collection of essential annuli in \boldsymbol{H}_{n} which contains exact \boldsymbol{m} annuli.

- Case 1. $m=4 k,(1 \leq k \leq n-2, k \in Z)$
- Case 2. $m=4 k+2,(1 \leq k \leq n-2, k \in Z)$
- Case 3. $m=3$
- Case 4. $m=5$
- Case 5. $m=4 k-1,(2 \leq k \leq n-2)$
- Case 6. $m=4 k+1,(2 \leq k \leq n-2)$

We only show the proof of case 1 here.
Proof of Case 1. $m=4 k,(1 \leq k \leq n-2, k \in Z)$.
Let D_{0} be a disk. For $k \in\{1,2, \cdots, n-2\}$, let $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{4 k-1}$ be a collection pairwise disjoint simple arcs properly embedded in D_{0} as shown in Figure below.

Let $T=D_{0} \times S^{1}, A_{i}=\alpha_{i} \times S^{1}, 1 \leq i \leq 4 k-1$. For $1 \leq i \leq 2 k+1$, let A_{i}^{\prime} be the annulus bounded by ∂A_{i} in ∂T with $A_{i}^{\prime} \cap \partial A_{j}=\emptyset$ for any $j \neq i, 1 \leq$ $j \leq 4 k-1$. Let \boldsymbol{H} be the handlebody of genus $k+1$ obtained by adding k 1-handles to T such that each $\boldsymbol{A}_{i}^{\prime}$ $(1 \leq i \leq 2 k)$ contains exactly one end disk of the k 1-handles.

Let \boldsymbol{H}^{\prime} be a genus $\boldsymbol{n}-\boldsymbol{k}-1$ handlebody. Choose a simple closed curve C on $\partial \boldsymbol{H}^{\prime}$ in the following way: when $n-k-1>1, C$ is annulus-busting in H^{\prime}; when $n-k-1=1, C$ is twisted in H^{\prime}. Let \boldsymbol{A}^{\prime} be an annulus in $\partial \boldsymbol{H}^{\prime}$ such that each component of $\partial \boldsymbol{A}^{\prime}$ is parallel to C on ∂H^{\prime}, and $A^{\prime \prime}$ a properly embedded annulus in \boldsymbol{H}^{\prime} such that $\boldsymbol{\partial} \boldsymbol{A}^{\prime \prime}=\boldsymbol{\partial} \boldsymbol{A}^{\prime}$ and \boldsymbol{A}^{\prime} and $\boldsymbol{A}^{\prime \prime}$ are parallel in \boldsymbol{H}^{\prime}.

Let \boldsymbol{D}^{\prime} be a disk in the interior of \boldsymbol{A}^{\prime}, and \boldsymbol{D} a disk in the interior of $\boldsymbol{A}_{2 k+1}^{\prime}$ on $\boldsymbol{\partial H}$. Glue \boldsymbol{H} and \boldsymbol{H}^{\prime} together by identifying D and D^{\prime} to obtain $\boldsymbol{H}_{n}=\boldsymbol{H} \bigcup_{D=D^{\prime}} \boldsymbol{H}^{\prime}$.

We can check that $\mathcal{A}=\left\{A_{1}, A_{2}, \cdots, A_{4 k-1}, A^{\prime \prime}\right\}$ is a maximal collection of essential annuli in \boldsymbol{H}_{n}.

The proofs of other cases are similar.

6 Two Questions

Question 1：Classify the maximal collections of essen－ tial annuli in H_{n} for $n \geq 3$ ．

Question 2：Let \mathcal{A} be a maximal collection of pair－ wise disjoint，non－parallel，essential，m－punctured 2 － spheres．Estimate $|\mathcal{A}|$ ．

References

[1] Fengchun Lei and Jingyan Tang, On maximal collections of essential annuli in a Handlebody, Journal of Knot Theory and Its Ramifications, Vol. 15, No. 10(2006) 1363-1369.
[2] Xunbo Yin, Jingyan Tang and Fengchun Lei, On maximal collections of essential annuli in a Handlebody II, to appear Journal of Knot Theory and Its Ramifications.
[3] H. Rubinstein and M. Scharlemann, Genus two Heegaard splittings of orientable three-manifold, Geometry and Topology Monographs Volume 2(1999): Proceedings of the Kirbyfest Pages 486553.

THANKS！

44	
$\mathbf{4}$	
第25页共 25 页	
返 回	
全屏显示	
关 闭	
退 出	

