

Backgroud
Main results
Annulus-busting
Proof of Theorem
Proof of Theorem
Two Questions

On Maximal Collections of Essential Annuli in a Handlebody

Fengchun Lei (雷逢春)

(Joint with X. Yin and J. Tang)

Department of Applied Mathematics Dalian University of Technology

The 4th East Asian Knot School, Tokyo University, Jan 20-25, 2008

Contents

Backgroud Main results Annulus-busting ... Proof of Theorem 1 Proof of Theorem 2 Two Questions

Background

Main Theorems

- **Annulus-busting curves on** ∂H_n
- **Outline Proof of Theorem 1**
- **Outline Proof of Theorem 2**

Two Questions

Two Questions

Backgroud

Let H_n be an orientable handlebody of genus n. A properly embedded surface S in H_n is essential if S is incompressible and no component of S is ∂ -parallel in H_n .

It is well known that the only essential surface in H_1 consists of only parallel copies of a meridian disk of H_1 , and any essential surface in H_n $(n \ge 2)$ either is ∂ -compressible or totally contains essential disks. Thus an essential annulus in H_n with $n \ge 2$ may be regarded as a union of an essential disk and a band in H_n .

Backgroud
Main results
Annulus-busting
Proof of Theorem 1
Proof of Theorem 2
Two Questions

Let \mathcal{D} be a collection of pairwise disjoint, nonparallel, essential disks in H_n . It is a fundamental fact that \mathcal{D} contains only one disk if n = 1, and at most 3n - 3 disks if $n \ge 2$.

Let \mathcal{A} be a collection of pairwise disjoint, nonparallel, essential annuli in handlebody H_n . We say that \mathcal{A} is maximal if A is an essential annulus in H_n with $A \cap \mathcal{A} = \emptyset$ then A is parallel to a component of \mathcal{A} in H_n .

Question: How many annuli are there in a maximal collection of essential annuli in H_n ?

Backgroud
Main results
Annulus-busting
Proof of Theorem 1
Proof of Theorem 2
Two Questions

It is a result of Rubinstein-Scharlemann that a maximal collection of essential annuli in H_2 may contain exactly 1, or 2, or at most 3 annuli.

Before stating Rubinstein-Scharlemann's result, we first review some definitions.

Definition

Suppose H is a handlebody and $C \subset \partial H$ is a simple closed curve. We say C is twisted if there is a properly embedded disk Δ in H such that a component of H cut along Δ is a solid torus T with $C \subset \partial T - \Delta$, and C is a (p,q)-torus knot on ∂T $(p \geq 2)$. We say C is a longitude if there exists an essential disk Δ in H such that C transversely meet Δ in a single point.

Backgroud
Main results
Annulus-busting
Proof of Theorem 1
Proof of Theorem 2
Two Questions

Definition

Let H be a handlebody. Let A be a properly embedded annulus in H. If both boundary components of A are longitudes, A is called longitudinal; if both are twisted, A is called twisted.

Example

Twisted annulus: Let H_n be a handlebody of genus $n \ge 2$, Δ an essential disk in H_n which cuts out of a solid torus T from H_n . Let C be a (p,q)-torus knot on ∂T $(p \ge 2)$. Let A be a ∂ -parallel annulus in T such that each component of ∂A is parallel to C on ∂T and A is parallel to the annulus in ∂T bounded by ∂A which contains the cutting section of Δ . Then A is twisted in H_n .

Longitudinal annulus:

Backgroud
Main results
Annulus-busting.
Proof of Theorem

Proof of Theorem 2 Two Questions

Home Page 标题页 ◀ ♪ 第7页共25页 返回 全屏显示 关闭 退出

Rubinstein-Scharlemann Theorem:

Let \mathcal{A} be a maximal collection of essential annuli in H_2 . Then there exists an essential disk Δ in H_2 with $\Delta \cap \mathcal{A} = \emptyset$. Moreover,

(1) if Δ is separating in H_2 , say, into two solid tori T_1 and T_2 , then \mathcal{A} contains two annuli A_1, A_2 , such that A_1 is twisted lying in T_1, A_2 is twisted lying in T_2 , and in each T_i , Δ is lying in the interior of the annulus in ∂T_i to which A_i is parallel in T_i , see figure 1.

Backgroud
Main results
Annulus-busting
Proof of Theorem
Proof of Theorem 2
Two Questions

(2) if Δ is non-separating in H_2 , let T be the solid torus obtained by cutting H_2 open along Δ , then there are two subcases:

(2.1) \mathcal{A} contains exact one longitudinal (therefore non-separating in H_2) annulus A in T such that the two cutting sections of Δ are lying in the interior of the two annuli in ∂T bounded by ∂A , see figure 2;

(2.2) \mathcal{A} consists of exactly three twisted annuli A_0, A_1, A_2 in T, such that A_1, A_2 are lying in the solid torus T' via which A_0 is parallel to the annulus A' bounded by ∂A_0 in ∂T , and $A_1, A_2 \subset T'$ are parallel to two disjoint annuli on A' bounded by $\partial A_1, \partial A_2$ respectively, each of which contains one cutting section of Δ , see figure 3.

Figure 3

We will generalize Rubinstein-Scharlemann's theorem to the case of H_n with $n \ge 3$.

Two Questions

2 Main results

We use $|\cdot|$ to denote the number of elements of the corresponding set.

Theorem 1

Let \mathcal{A} be a maximal collection of essential annuli in H_n with $n \geq 3$. Then $2 \leq |\mathcal{A}| \leq 4n - 5$, and the bounds are best possible.

Theorem 2

Let H_n be a handlebody of genus $n \ge 3$. Then for each m, 2 < m < 4n - 5, there exists a maximal collection of essential annuli in H_n which contains exactly m annuli.

Backgroud
Main results
Annulus-busting
Proof of Theorem 1
Proof of Theorem 2
Two Questions

3 Annulus-busting curves on ∂H_n

A simple closed curve C on ∂H_n which intersects every essential annulus in H_n nonempty is called an annulus-busting curve, or simply, an AB curve.

The next theorem shows the existence of the annulus-busting curves on ∂H_n ($n \ge 2$), which might be of interesting itself:

Theorem 3: For each $n \ge 2$, there exists infinitely many AB curves C on ∂H_n .

We will use the theorem to show the lower bound in Theorem 1.

In proving the theorem, we use a theorem of Hempel on Heegaard distance.

Hempel's idea of the distance of a Heegaard splitting:

Let *F* be an orientable connected closed surface, α , β are two essential simple closed curves on *F*. Then there exists a sequence of essential simple closed curves $\alpha = \alpha_0, \alpha_1, \dots, \alpha_n = \beta$ on *F* such that, for each *i*, $1 \leq i \leq n, \alpha_{i-1}$ and α_i are pairwise disjoint. *n* is called the length of the sequence. The *distance* $d(\alpha, \beta)$ of α and β is defined to be the smallest length $n \in N$ of all sequences as above.

Let $V_1 \cup_F V_2$ be a Heegaard splitting. Denote by $D(V_1 \cup_F V_2)$ or D(F) the integer $min\{d(C_1, C_2)|C_i$ bounds an essential disk in $C_i, i = 1, 2\}$, and call it the *distance* of the splitting $V_1 \cup_F V_2$.

Backgroud
Main results
Annulus-busting
Proof of Theorem 1
Proof of Theorem 2
Two Questions

Hempel's Theorem

For any positive integers $m, n \ge 2$, there exists a Heegaard splittings $V_1 \cup_F V_2$ of genus n for a closed orientable 3-manifolds M with distance D(F) > m.

Backgroud
Main results
Annulus-busting
Proof of Theorem 1
Proof of Theorem 2
Two Questions

Proof of the AB curve existence theorem:

By Hempel's theorem, there exists a Heegaard splittings $V_1 \cup_{F'} V_2$ of genus $n \ge 2$ for a closed orientable 3-manifolds M' with distance $D(F') \ge 3$, for any positive integers $n \ge 2$. Let C be a meridian curve of V_2 . Let M be the 3-manifold obtained by adding a 2-handle to V_1 along C. Push F' slightly into the interior of M by isotopy, we get a surface F which is in fact a Heegaard surface in M. Clearly, $D(F) \ge D(F') \ge 3$.

Let A be an essential annulus properly embedded in H_n with $A \cap C = \emptyset$. We can show that A is essential in M.

On the other hand, since $D(F) \ge 3$, we can show that M contains no essential annulus (and torus), a contradiction.

Backgroud
Main results
Annulus-busting
Proof of Theorem 1
Proof of Theorem 2
Two Questions

4 Proof of Theorem 1

In Rubinstein-Scharlemann's theorem, the icons are used to show the maximal collections of essential annuli in H_2 in a very simple and clear way. We will use similar icons in general cases.

Case $|\mathcal{A}| \geq 2$:

Let H^1 , H^2 be two handlebodies of genus n_1 , n_2 , respectively, and $n_1 \ge 1$, and $n_2 \ge 2$, $n_1 + n_2 = n \ge$ 3. Choose a simple closed curve C_1 on ∂H^1 in the following way: when $n_1 = 1$, let C_1 be a twisted curve on ∂H^1 ; when $n_1 > 1$, let C_1 be an annulus-busting curve on ∂H^1 . Let C_2 be an annulus-busting curve on ∂H^2 . Let A_i be a ∂ -parallel properly embedded annulus in H^i such that each component of ∂A_i is parallel to C_i on ∂H^i , i = 1, 2.

Backgroud
Main results
Annulus-busting
Proof of Theorem
Proof of Theorem 2
Two Questions

Let D_i be a disk in the interior of the annulus bounded by ∂A_i on ∂H^i . Glue H^1 and H^2 together by identifying D_1 and D_2 to obtain a handlebody $H_n =$ $H^1 \bigcup_{D_1=D_2} H^2$ of genus n. Then there is no other essential annulus in H_n which is disjoint from $A_1 \cup A_2$. Thus $\{A_1, A_2\}$ is maximal.

Case $|\mathcal{A}| \leq 4n - 5$:

The proof here goes by induction on genus n of H_n .

Next we construct a maximal collection of essential annuli in H_n ($n \ge 3$) with exact 4n - 5 annuli.

Backgroud
Main results
Annulus-busting
Proof of Theorem 1
Proof of Theorem 2
Two Questions

Let D be a disk, $\{a_1, a_2, \cdots, a_{4n-5}\}$ $(n \geq 2)$ a collection pairwise disjoint simple arcs properly embedded in D shown as in figure 4. Let $T = D \times S^1$, and $A_i = a_i \times S^1$, $1 \leq i \leq 4n - 5$. For each i, 1 < i < 2n - 1, A_i is parallel to an annulus A'_i bounded by ∂A_i in ∂T whose interior contains no component of $\partial \{A_i : 1 \leq i \leq 4n-5\}$. Let H be the handlebody of genus n obtained by adding n-1 1-handle to T such that each A'_i $(1 \le i \le 2n-2)$ contains exact one end disk of the n-1 1-handles.

Let T' be another solid torus, $A' \subset \partial T'$ be an annulus, each of whose boundary components is a (p, q)-torus knot on $\partial T'$, $p \geq 2$. Union T and T' via a homeomorphism from A'_{2n-1} to A', we again get a handlebody H_n of genus n.

We can check that $\mathcal{A} = \{A_1, A_2, \cdots, A_{4n-5}\}$ is a maximal collection of pairwise disjoint non-parallel essential annuli in H_n .

Backgroud
Main results
Annulus-busting
Proof of Theorem 1
Proof of Theorem 2
Two Questions

5 Proof of Theorem 2

We only need to consider the case 2 < m < 4n - 5. We will divide it into 6 cases to discuss, and in each case we will describe a maximal collection of essential annuli in H_n which contains exact m annuli.

- ullet Case 1. $m=4k,\,(1\leq k\leq n-2,k\in Z)$
- ullet Case 2. $m=4k+2,\,(1\leq k\leq n-2,k\in Z)$
- Case 3. m = 3
- Case 4. m = 5
- \bullet Case 5. $m=4k-1, (2\leq k\leq n-2)$
- Case 6. $m = 4k + 1, (2 \le k \le n 2)$

Backgroud
Main results
Annulus-busting
Proof of Theorem 1
Proof of Theorem 2

Two Questions

We only show the proof of case 1 here.

Proof of Case 1. m = 4k, $(1 \le k \le n - 2, k \in Z)$.

Let D_0 be a disk. For $k \in \{1, 2, \dots, n-2\}$, let $\alpha_1, \alpha_2, \dots, \alpha_{4k-1}$ be a collection pairwise disjoint simple arcs properly embedded in D_0 as shown in Figure below.

Backgroud
Main results
Annulus-busting
Proof of Theorem 1
Proof of Theorem 2
Two Questions

Let $T = D_0 \times S^1$, $A_i = \alpha_i \times S^1$, $1 \le i \le 4k - 1$. For $1 \le i \le 2k + 1$, let A'_i be the annulus bounded by ∂A_i in ∂T with $A'_i \cap \partial A_j = \emptyset$ for any $j \ne i, 1 \le j \le 4k - 1$. Let H be the handlebody of genus k + 1obtained by adding k 1-handles to T such that each A'_i $(1 \le i \le 2k)$ contains exactly one end disk of the k1-handles.

Let H' be a genus n - k - 1 handlebody. Choose a simple closed curve C on $\partial H'$ in the following way: when n - k - 1 > 1, C is annulus-busting in H'; when n - k - 1 = 1, C is twisted in H'. Let A' be an annulus in $\partial H'$ such that each component of $\partial A'$ is parallel to C on $\partial H'$, and A'' a properly embedded annulus in H' such that $\partial A'' = \partial A'$ and A' and A'' are parallel in H'.

Let D' be a disk in the interior of A', and D a disk in the interior of A'_{2k+1} on ∂H . Glue H and H' together by identifying D and D' to obtain $H_n = H \bigcup_{D-D'} H'$.

We can check that $\mathcal{A} = \{A_1, A_2, \cdots, A_{4k-1}, A''\}$ is a maximal collection of essential annuli in H_n .

The proofs of other cases are similar.

6 **Two Questions**

Question 1: Classify the maximal collections of essential annuli in H_n for $n \ge 3$.

Question 2: Let \mathcal{A} be a maximal collection of pairwise disjoint, non-parallel, essential, *m*-punctured 2-spheres. Estimate $|\mathcal{A}|$.

Backgroud
Main results
Annulus-busting
Proof of Theorem 1
Proof of Theorem 2
Two Questions

References

- [1] Fengchun Lei and Jingyan Tang, On maximal collections of essential annuli in a Handlebody, Journal of Knot Theory and Its Ramifications, Vol. 15, No. 10(2006) 1363-1369.
- [2] Xunbo Yin, Jingyan Tang and Fengchun Lei, *On maximal collections of essential annuli in a Handlebody II*, to appear Journal of Knot Theory and Its Ramifications.
- [3] H. Rubinstein and M. Scharlemann, *Genus two Heegaard splittings of orientable three-manifold*, Geometry and Topology Monographs Volume 2(1999): Proceedings of the Kirbyfest Pages 486-553.

Backgroud
Main results
Annulus-busting
Proof of Theorem 1
Proof of Theorem 2
Two Questions

THANKS!