A unique decomposition theorem for tight contact 3-manifolds

Fan Ding and Hansjörg Geiges

1 Introduction

In this report, we present the main result of [2] and the rough idea of the proof.

All 3-manifolds are understood to be smooth and oriented. A closed connected 3-manifold is called *non-trivial* if it is not diffeomorphic to S^3 . A non-trivial 3-manifold P is said to be *prime* if in every connected sum decomposition $P = P_0 \sharp P_1$ one of the summands P_0, P_1 is S^3 . It is known that every non-trivial 3-manifold M admits a prime decomposition, i.e., M can be written as a connected sum of finitely many prime manifolds. Moreover, as shown by J. Milnor [4], the summands in this prime decomposition are unique up to order and diffeomorphism.

We prove the analogous result for tight contact 3-manifolds. A contact structure ξ on a 3-manifold M is a totally nonintegrable 2-plane field. Our contact structures are understood to be cooriented and positive. This means that they can be defined as $\xi = \ker \alpha$ with a globally defined 1-form α satisfying the non-integrability condition that the 3-form $\alpha \wedge d\alpha$ be a positive volume form.

A diffeomorphism $f : (M, \xi) \to (M', \xi')$ between contact

manifolds is said to be a *contactomorphism* if its differential maps ξ to ξ' (preserving coorientations).

A contact structure ξ on a 3-manifold M is called *overtwisted* if there is an *embedded* 2-disc $\Delta \subset M$ tangent to ξ along the boundary, that is, with $T_p\Delta = \xi_p$ for all $p \in \partial \Delta$. A disc with this property is referred to as an *overtwisted disc*. A contact structure ξ is called *tight* if it is not overtwisted.

A fundamental result of Y. Eliashberg says that the classification of overtwisted contact structures reduces to a homotopical problem. The classification of tight contact structures, on the other hand, is a difficult problem having deep connections with 3-manifold topology. For instance, the standard contact structure

$$\xi_{st} := \ker(x \,\mathrm{d}y - y \,\mathrm{d}x + z \,\mathrm{d}t - t \,\mathrm{d}z)$$

on $S^3 \subset \mathbf{R}^4$ is the unique tight contact structure, up to isotopy, on S^3 .

Given an embedded oriented surface S in a contact 3-manifold (M, ξ) , the intersections $T_pS \cap \xi_p$, $p \in S$, define an oriented 1-dimensional foliation on S with singularities at the points p where the tangent plane T_pS coincides with ξ_p . This is called the *characteristic foliation* of S and is denoted by S_{ξ} . As shown by E. Giroux, the characteristic foliation S_{ξ} determines the germ of ξ near S. This allows one to glue contact manifolds along surfaces with diffeomorphic characteristic foliations.

Given an embedding $f: S \to (M, \xi)$, we write $S_{f^*\xi}$ for the induced characteristic foliation on S, that is, the pull-back to S via f of the characteristic foliation $(f(S))_{\xi}$.

Lemma 1 (V. Colin). Let (M,ξ) be a tight contact 3manifold. Given embeddings $f_0, f_1 : S^2 \to M$, there is a tight contact structure η on $S^2 \times [0,1]$ such that the characteristic foliation $(S^2 \times \{i\})_{\eta}$ coincides with $S^2_{f_i^*\xi}$, i = 0, 1. This contact structure η is unique up to isotopy rel boundary.

Let $(M_0, \xi_0), (M_1, \xi_1)$ be two connected tight contact 3-manifolds. Equip the 3-disc D^3 with its standard orientation. Let ϕ_0 : $D^3 \to M_0, \phi_1 : D^3 \to M_1$ be embeddings such that ϕ_0 reverses and ϕ_1 preserves orientation. Let η be the contact structure on $S^2 \times [0, 1]$, constructed in the preceding lemma, with the property that $(S^2 \times \{i\})_{\eta} = (\partial D^3)_{\phi_i^*\xi_i}, i = 0, 1$. Then set

$$(M',\xi') = (M \setminus \operatorname{Int}(B),\xi) \cup_{\partial} (S^2 \times [0,1],\eta),$$

where $M = M_0 \sqcup M_1$, $B = \phi_0(D^3) \sqcup \phi_1(D^3)$, 'Int' stands for interior, and \cup_{∂} denotes the obvious gluing along the boundary. Topologically, M' is the connected sum $M_0 \# M_1$ of M_0 and M_1 . We write $\xi_0 \# \xi_1$ for the contact structure ξ' . We also use the notation $(M_0, \xi_0) \# (M_1, \xi_1)$ for this connected sum of tight contact 3-manifolds. As shown by V. Colin [1], the contact structure $\xi_0 \# \xi_1$ on $M_0 \# M_1$ is tight and does not depend, up to contactomorphism, on the choice of embeddings ϕ_0, ϕ_1 . This connected sum operation is commutative and associative. (S^3, ξ_{st}) serves as the zero element.

Theorem 2. Every non-trivial tight contact 3-manifold (M, ξ) is contactomorphic to a connected sum

$$(M_1,\xi_1)$$
 $\ddagger \cdots \ddagger (M_k,\xi_k)$

of finitely many prime tight contact 3-manifolds. The summands (M_i, ξ_i) , i = 1, ..., k, are unique up to order and contactomorphism. As shown by V. Colin [1], given a fixed connected sum decomposition $M = M_0 \# M_1$ of a 3-manifold M, for any tight contact structure ξ on M there are — up to isotopy — unique tight contact structures ξ_i on M_i , i = 0, 1, such that $\xi_0 \# \xi_1$ is the given contact structure ξ . The prime decomposition theorem for tight contact 3-manifolds is an immediate consequence.

Although Colin's result goes a long way, it is not quite strong enough to prove the *unique* decomposition theorem for tight contact 3-manifolds directly. This is due to the fact that the system of 2-spheres in a given manifold M defining the prime decomposition of M is not, in general, unique up to isotopy.

The argument for the unique decomposition of tight contact 3-manifolds given here closely follows the variant of Milnor's argument given in J. Hempel's book [3].

2 Proof of the unique decomposition theorem

There is a well-defined procedure for capping off a compact tight contact 3-manifold whose boundary consists of a collection of 2-spheres. Suppose that (M, ξ) is a tight contact 3manifold whose boundary consists of a collection of 2-spheres. We use the notation \widehat{M} for the manifold obtained from M by capping off each 2-sphere with a 3-cell. We can construct a tight contact structure $\widehat{\xi}$ on \widehat{M} , unique up to isotopy, such that $\widehat{\xi}|_M = \xi$.

A closed connected 3-manifold M is said to be *irreducible* if every embedded 2-sphere bounds a 3-disc in M. Irreducible 3manifolds (except S^3) are prime. There is only one orientable prime 3-manifold that is not irreducible, namely, $S^2 \times S^1$.

Here is the rough idea of the proof of the unique decompo-

sition theorem. Let

$$(M_1,\xi_1)$$
 $\ddagger \cdots \ddagger (M_k,\xi_k)$

and

$$(M_1^*,\xi_1^*) \sharp \cdots \sharp (M_l^*,\xi_l^*)$$

be two prime decompositions of a given non-trivial tight contact 3-manifold (M, ξ) .

(i) Suppose some M_i (say M_k) is diffeomorphic to $S^2 \times S^1$. Then M contains a non-separating 2-sphere. One can find a non-separating 2-sphere in at least one of M_j^* 's, say M_l^* , which therefore must be a copy of $S^2 \times S^1$. By a theorem of Eliashberg, there is a unique tight contact structure on $S^2 \times S^1$. Thus, (M_k, ξ_k) is contactomorphic to (M_l^*, ξ_l^*) . Also

$$(M_1,\xi_1) \sharp \cdots \sharp (M_{k-1},\xi_{k-1})$$

and

$$(M_1^*, \xi_1^*) \sharp \cdots \sharp (M_{l-1}^*, \xi_{l-1}^*)$$

are contactomorphic.

(ii) Suppose all the M_i are irreducible. Then each M_j^* must be irreducible. Choose a separating 2-sphere $S \subset M$ such that the closures U, V of the components of $M \setminus S$ satisfy

$$(\widehat{U},\widehat{\xi|_U}) = (M_1,\xi_1) \sharp \cdots \sharp (M_{k-1},\xi_{k-1})$$

and $(\widehat{V}, \widehat{\xi|_V}) = (M_k, \xi_k).$

Similarly, there exist pairwise disjoint 2-spheres T_1, \ldots, T_{l-1} in M such that — with W_1, \ldots, W_l denoting the closures of the components of $M \setminus (T_1 \cup \ldots \cup T_{l-1})$, and ξ_j the restriction of ξ to W_j — we have $(\widehat{W}_j, \widehat{\xi}_j) = (M_j^*, \xi_j^*), j = 1, \ldots, l$.

Suppose that the system T_1, \ldots, T_{l-1} of embedded spheres has been chosen in general position with respect to S and with $S \cap (T_1 \cup \ldots \cup T_{l-1})$ having the minimal number of components among all such systems.

The minimality condition implies $S \cap (T_1 \cup \ldots \cup T_{l-1}) = \emptyset$. Thus, we have $S \subset W_j$ for some $j \in \{1, \ldots, l\}$. Since $\widehat{W}_j = M_j^*$ is irreducible, S bounds a 3-cell in M_j^* . Thus, S cuts W_j into two pieces X and Y, where say $\widehat{Y} = S^3$. We have $(\widehat{Y}, \widehat{\xi}|_Y) = (S^3, \xi_{st})$ and $(\widehat{X}, \widehat{\xi}|_X) = (M_j^*, \xi_j^*)$.

In the case $Y \subset V$, the numbering (including that of W_j) can be chosen in such a way that $W_1, \ldots, W_{j-1}, X \subset U$ and $Y, W_{j+1}, \ldots, W_l \subset V$, with $j \leq l-1$. (The case with $Y \subset U$ is analogous.) We conclude that

$$(M_1,\xi_1) \sharp \cdots \sharp (M_{k-1},\xi_{k-1}) = (\widehat{U},\widehat{\xi}|_U)$$
$$= (\widehat{W}_1,\widehat{\xi}_1) \sharp \cdots \sharp (\widehat{W}_{j-1},\widehat{\xi}_{j-1}) \sharp (\widehat{X},\widehat{\xi}|_X) = (M_1^*,\xi_1^*) \sharp \cdots \sharp (M_j^*,\xi_j^*)$$
and

$$(M_k, \xi_k) = (\widehat{V}, \widehat{\xi|_V}) = (\widehat{Y}, \widehat{\xi|_Y}) \sharp (\widehat{W}_{j+1}, \widehat{\xi}_{j+1}) \sharp \cdots \sharp (\widehat{W}_l, \widehat{\xi}_l)$$
$$= (M_{j+1}^*, \xi_{j+1}^*) \sharp \cdots \sharp (M_l^*, \xi_l^*).$$

Since M_k is prime, we must have j = l - 1, hence $(M_k, \xi_k) = (M_l^*, \xi_l^*)$.

In both cases (i) and (ii), the proof of the unique decomposition theorem concludes by induction on the number of prime summands.

References

 [1] V. Colin, Chirurgies d'indice un et isotopies de sphères dans les variétés de contact tendues, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), 659–663.

- [2] F. Ding and H. Geiges, A unique decomposition theorem for tight contact 3-manifolds, *Enseign. Math. (2)* 53 (2007), 333–345.
- [3] J. Hempel, 3-Manifolds, Annals of Mathematics Studies 86, Princeton Univ. Press, 1976.
- [4] J. Milnor, A unique decomposition theorem for 3manifolds, Amer. J. Math. 84 (1962), 1–7.