An asymptotic behavior of the dilatation for a family of pseudo-Anosov braids

> Eiko Kin* and Mitsuhiko Takasawa (Tokyo Institute of Technology) {kin,takasawa}@is.titech.ac.jp

The fourth East Asian school of knots and related topics (January 21–24, 2008) D_n ; *n*-punctured disk $\mathcal{M}(D_n)$; mapping class group of D_n

One can classify mapping classes $\phi \in \mathcal{M}(D_n)$ into 3 types

- 1. the order of ϕ is finite
- 2. the order of ϕ is infinite and ϕ is reducible
- 3. (pseudo-Anosov) the order of ϕ is infinite and ϕ is irreducible

In case 3, ϕ contains a beautiful homeo. $\Phi: D_n \to D_n$ (so called pA homeo.) as a representative.

[To study $\mathcal{M}(D_n)$, it is very handy to represent mapping classes as geometric braids] B_n ; *n*-braid group

 ${}^{\exists}\Gamma: B_n \to \mathcal{M}(D_n); \text{ surjective homomorphism}$ $\stackrel{\cdot}{\sigma_i} \mapsto t_i \ (t_i \text{ is the positive half twist})$

Using Γ , one can classify braids into 3 types.

two invariants, dilatation and volume

pA braids have two invariants.

1. $\lambda(b) := \lambda(\Phi_b) > 1;$ <u>dilatation</u> 2. $\operatorname{vol}(b) := \operatorname{vol}(\mathbb{T}(b)) > 0;$ <u>volume</u>

Choose any representative $f: D_n \to D_n$ of $\Gamma(b) \in \mathcal{M}(D_n)$, and form the mapping torus

 $\mathbb{T}(b) := D_n \times [0, 1] / \sim,$ where ~ identifies (x, 0) with (f(x), 1).

Thm. The braid b is pA \iff The mapping torus $\mathbb{T}(b)$ admits a complete hyperbolic structure of finite volume.

If a braid is pA, we can think about its volume.

A family of braids

We consider the following braid $\beta_{(m_1,m_2,\cdots,m_{k+1})}$ for each integer $k \geq 1$ and each integer $m_i \geq 1$. These braids are all pA.

We would like to say this family is nice, because it has interesting properties on the two invariant.

1. Our braids have a nice inductive formula to compute their dilatation.

For an integral polynomial f(t) of degree d, the *reciprocal* of f(t), denoted by $f_*(t)$, is $t^d f(1/t)$.

Thm. A (Inductive formula) The dilatation of the pA braid $\beta_{(m_1,\dots,m_{k+1})}$ is the largest root of the polynomial

$$t^{m_{k+1}} R_{(m_1, \cdots, m_k)}(t) + (-1)^{k+1} R_{(m_1, \cdots, m_k)_*}(t)$$

where $R_{(m_1,\dots,m_i)}(t)$ is given inductively as follows:

 $R_{(m_1)}(t) = t^{m_1+1}(t-1) - 2t, \text{ and}$ $R_{(m_1,\dots,m_i)}(t) = t^{m_i}(t-1)R_{(m_1,\dots,m_{i-1})}(t) + (-1)^i 2tR_{(m_1,\dots,m_{i-1})*}(t) \text{ for } 2 \le i \le k.$ 2. The dilatation of our braids can be arbitrarily small.

Thm B.(Asymptotic behavior)

 $\lim_{m_1,\cdots,m_{k+1}\to\infty}\lambda(\beta_{(m_1,\cdots,m_{k+1})})=1$

The dilatation measures some complexity of pA mapping classes. Thm B. says that if all indices go to ∞ , then the complexity of our braids goes to 0. **Question.** What happen for the volume of a family of pA braids whose dilatation is arbitrarily small.

(Known two families $\{b_n\}$ and $\{\gamma_n\}$ with arbitrarily small dilatation)

1. $\lim_{n\to\infty} \operatorname{vol}(b_n) = \infty$ and the number of the cusps of the mapping torus $\mathbb{T}(b_n)$ goes to ∞ as n goes to ∞ .

2. $\lim_{n\to\infty} \operatorname{vol}(\gamma_n) < \infty$ and the number of the cusps of the mapping torus $\mathbb{T}(\gamma_n)$ is bounded from above.

We can give another family of braids: **Thm.** There exist a family of pA braids β_n such that

$$\lim_{n \to \infty} \lambda(\beta_n) = 1 \text{ and } \lim_{n \to \infty} \operatorname{vol}(\beta_n) = \infty$$

and such that the number of the cusps of the mapping torus $\mathbb{T}(\beta_n)$ is 2 for each n.

(Proof.) Note that the braided link $\overline{\beta}_{(m_1,\dots,m_{k+1})}$ is an alternating link (in fact 2 bridge link) with twist number k + 1. A result by Lackenby tells us that $2m_2$

$$\operatorname{vol}(\beta_{(m_1,\cdots,m_{k+1})}) > \frac{1}{2}(k-1)v_3$$

On the other hand, for any k, we can make the dilatation arbitrarily small:

$$\lim_{m_1,\cdots,m_{k+1}\to\infty}\lambda(\beta_{(m_1,\cdots,m_{k+1})})=1.\ \Box$$

 \mathcal{G} ; graph, A continuous map $g: \mathcal{G} \to \mathcal{G}$ is called a graph map.

We suppose that g is "tight".

One can define the <u>transition matrix</u> $M(g) = (m_{i,j})$ as follows: $m_{i,j} :=$ the number of times that $g(e_j)$ passes through e_i .

Notation

For the transition matrix M(g),

• M(g)(t) := |tI - M(g)|= characteristic poly. of the transition matrix M(g)

• $\lambda(M(g)) :=$ the spectral radius of the transition matrix M(g)= max{ $|\lambda|$; λ is an eigenvalue of M(g)}

In general, the dilatation of a pA braid is given by the spectral radius of the transition matrix for some graph maps.

Inductively, we will define the combined tree $\mathcal{Q}_{(m_1,\cdots,m_{k+1})}$ and the combined tree map $q_{(m_1,\cdots,m_{k+1})} : \mathcal{Q}_{(m_1,\cdots,m_{k+1})} \to \mathcal{Q}_{(m_1,\cdots,m_{k+1})}$

Prop. (combined tree maps know the dilatation of $\beta_{(m_1, \dots, m_{k+1})}$) $\lambda(\beta_{(m_1, \dots, m_{k+1})}) = \lambda(M(q_{(m_1, \dots, m_{k+1})})).$

(combined trees)

Let $\mathcal{G}_{n,+}$ and $\mathcal{G}_{n,-}$ be trees of star type having one vertex of valence n+1.

The <u>combined tree</u> $\mathcal{Q}_{(m_1,\dots,m_{k+1})}$ is the one obtained by gluing k+1 trees $\mathcal{G}_{m_1,+}, \mathcal{G}_{m_2,-}, \dots, \mathcal{G}_{m_{k+1},(-1)^k}$ in the following way:

(combined tree maps)

First, take the following tree map $g_n : \mathcal{G}_{n,\pm} \to \mathcal{G}_{n,\pm}$:

Suppose that the combined tree map (up to k) is defined:

$$q_{(m_1,\cdots,m_k)}: \mathcal{Q}_{(m_1,\cdots,m_k)} \to \mathcal{Q}_{(m_1,\cdots,m_k)}.$$

Note that the two trees $\mathcal{Q}_{(m_1,\dots,m_k)}$ and $\mathcal{G}_{m_{k+1}}$ can be thought as the subtrees of $\mathcal{Q}_{(m_1,\dots,m_{k+1})}$.

Take the extension \widehat{q} of $q_{(m_1, \cdots, m_k)} : \mathcal{Q}_{(m_1, \cdots, m_k)}$ $\overleftarrow{\bigcirc}:$ $\widehat{q} : \mathcal{Q}_{(m_1, \cdots, m_{k+1})} \to \mathcal{Q}_{(m_1, \cdots, m_{k+1})}$

Take the extension \widehat{g} of $g_{m_{k+1}} : \mathcal{G}_{m_{k+1}} \bigcirc$

$$\widehat{g}: \mathcal{Q}_{(m_1, \cdots, m_{k+1})} \to \mathcal{Q}_{(m_1, \cdots, m_{k+1})}$$

Then we define

$$q_{(m_1,\cdots,m_{k+1})} := \widehat{g} \circ \widehat{q} : \mathcal{Q}_{(m_1,\cdots,m_{k+1})} \to \mathcal{Q}_{(m_1,\cdots,m_{k+1})}$$

(example)

Lem.

$$\lambda(M(q_{(m_1,\cdots,m_i,\cdots,m_{k+1})})) > \lambda(M(q_{(m_1,\cdots,m_i+1,\cdots,m_{k+1})})).$$

Cor. (Monotonicity)

$$\lambda(\beta_{(m_1,\cdots,m_i,\cdots,m_{k+1})}) > \lambda(\beta_{(m_1,\cdots,m_i+1,\cdots,m_{k+1})})$$

Thm. A (Inductive formula) The dilatation of the pA braid $\beta_{(m_1,\dots,m_{k+1})}$ is the largest root of the polynomial

$$t^{m_{k+1}}R_{(m_1,\cdots,m_k)}(t) + (-1)^{k+1}R_{(m_1,\cdots,m_k)_*}(t),$$

where $R_{(m_1,\dots,m_i)}(t)$ is given inductively as follows:

 $R_{(m_1)}(t) = t^{m_1+1}(t-1) - 2t, \text{ and}$ $R_{(m_1,\dots,m_i)}(t) = t^{m_i}(t-1)R_{(m_1,\dots,m_{i-1})}(t) + (-1)^i 2tR_{(m_1,\dots,m_{i-1})*}(t) \text{ for } 2tR_{(m_1,\dots,m_{i-1})*}(t)$ Fixing $m_1, \dots, m_k \ge 1$, consider the family of combined tree map

$$\{q_{(m_{k+1})} = q_{(m_1, \cdots, m_{k+1})}\}_{m_{k+1} \ge 1}$$

One can define the dominant tree map

$$\overline{r} = \overline{r}_{(m_1, \cdots, m_k)} : \mathcal{R} = \mathcal{R}_{(m_1, \cdots, m_k)} \to \mathcal{R}$$

whose transition matrix $M(\overline{r})$ equals the upper-left submatrix of $M(q_{(m_{k+1})})$:

$$(h_{k+1})) = \begin{pmatrix} M(\overline{r}) & 1 & & \\ & 1 & & \ddots & \\ & & \ddots & & 1 \\ * & \cdots & * & & 1 \end{pmatrix}$$

$$(*) \qquad M(q_{(m_{k+1})})$$

(How to define the *dominant tree map* $\overline{r} : \mathcal{R} \to \mathcal{R}$)

The tree \mathcal{R} is obtained from the combined tree $\mathcal{Q}_{(m_1,\dots,m_k)}$ together with the edge of $\mathcal{G}_{m_{k+1}}$.

For each $e \in E(\mathcal{R})$, the edge path $\overline{r}(e)$ is given by the edge path $q_{(m_{k+1})}(e)$ by eliminating edges which do not belong to the edge set $E(\mathcal{R})$.

Note: The tree map \overline{r} does not depend on the choice of m_{k+1} .

(example)

dominant tree map $\overline{r} : \mathcal{R} \to \mathcal{R}$ for $\{q_{(4,m)}\}_{m \ge 1}$.

(combined tree map $q_{(4,2)}$)

Lem. Let

$$R(t) = R_{(m_1, \cdots, m_k)}(t) = M(\overline{r})(t).$$

Then there exists a poly. S(t) such that

$$M(q_{(m_1,\dots,m_{k+1})})(t) = t^{m_{k+1}}R(t) + S(t)$$

(Proof.) Use this form

$$(*) \qquad M(q_{(m_1,\cdots,m_{k+1})}) = \begin{pmatrix} M(\overline{r}) & & \\ & 1 & \\ & & \ddots & \\ & & & \ddots & \\ & & & & 1 \\ * & \cdots & * & & & \end{pmatrix}.$$

Mysterious Lem. (the poly. R(t) knows the poly. S(t).) Let S(t) be as in the previous lem. (i.e, $M(q_{(m_{k+1})})(t) = t^{m_{k+1}}R(t) + S(t)$.) Then

$$S(t) = (-1)^{k+1} R_*(t).$$

Thanks to the mysterious lemma, the proof of Thm. A is done:

 $\lambda(\beta_{(m_1,\cdots,m_{k+1})}) \quad \text{(the dilatation of the braid)} \\ = \lambda(M(q_{(m_1,\cdots,m_{k+1})})) \quad \text{(the spectral radius of the matirx)} \\ = \text{ the largest root of } t^{m_{k+1}} R_{(m_1,\cdots,m_k)}(t) + (-1)^{k+1} R_{(m_1,\cdots,m_k)_*}(t) \quad \Box$

proof of Thm. B (asymptotic behavior)

Thm B.(Asymptotic behavior)

$$\lim_{m_1,\cdots,m_{k+1}\to\infty}\lambda(\beta_{(m_1,\cdots,m_{k+1})})=1$$

Final Lemma.

$$\lim_{m_1 \to \infty} \lim_{m_2 \to \infty} \cdots \lim_{m_{k+1} \to \infty} \lambda(\beta_{(m_1, \cdots, m_{k+1})}) = 1$$

Once we prove the lemma, then our task is done, since the monotonicity of the dilatation holds:

if $m'_i \ge m_i$ for each *i*, then $\lambda(\beta_{(m_1, \cdots, m_{k+1})}) \ge \lambda(\beta_{(m'_1, \cdots, m'_{k+1})})$.

(Proof of the final lemma.)

For an integral poly. Q(t), let $\lambda(Q(t))$ be the largest absolute value of roots of Q(t).

Let us consider a family of polynomials

 $Q_n(t) = t^n R(t) \pm S(t),$

where R(t) is a monic integral poly. and S(t) is an integral poly. (catch phrase) "The roots of R(t) dominate those of $Q_n(t)$ asymptotically" (dominate: 支配する) **Key lemma.** Suppose that R(t) has a root outside the unit circle. Then,

$$\lambda(R(t)) = \lim_{n \to \infty} \lambda(Q_n(t)).$$

Key lemma together with the inductive formula [Thm A] to compute $R_{(m_1,\dots,m_i)}(t)$ gives us the proof of the final lemma. \Box

Example. (recipe to compute $\lambda(\beta_{4,m})$ for $m \ge 1$)

1. Consider the dominant tree map $\overline{r} = \overline{r}(4)$ for $\overline{\{q_{(4,m)}\}}$.

Compute the characteristic poly. of M(r̄)(t) = t⁶ − t⁵ − 2t.
Compute its reciprocal (t⁶ − t⁵ − 2t)_{*} = −2t⁵ − t + 1

⇒ For each $m \ge 1$, the dilatation $\lambda(\beta_{4,m})$ is the largest root of $t^m(t^6 - t^5 - 2t) + (-2t^5 - t + 1).$