An asymptotic behavior of the dilatation for a family of pseudoAnosov braids

Eiko Kin* and Mitsuhiko Takasawa (Tokyo Institute of Technology)
\{kin,takasawa\}@is.titech.ac.jp

The fourth East Asian school of knots and related topics (January 21-24, 2008)

```
\(D_{n} ; n\)-punctured disk \(\mathcal{M}\left(D_{n}\right)\); mapping class group of \(D_{n}\)
```

One can classify mapping classes $\phi \in \mathcal{M}\left(D_{n}\right)$ into 3 types

1. the order of ϕ is finite
2. the order of ϕ is infinite and ϕ is reducible
3. (pseudo-Anosov) the order of ϕ is infinite and ϕ is irreducible

In case $3, \phi$ contains a beautiful homeo. $\Phi: D_{n} \rightarrow D_{n}$ (so called pA homeo.) as a representative.
[To study $\mathcal{M}\left(D_{n}\right)$, it is very handy to represent mapping classes as geometric braids]
$B_{n} ; n$-braid group
${ }^{\exists} \Gamma: B_{n} \rightarrow \mathcal{M}\left(D_{n}\right) ;$ surjective homomorphism $\sigma_{i} \mapsto t_{i}\left(t_{i}\right.$ is the positive half twist)

Using Γ, one can classify braids into 3 types.
pA braids have two invariants.

$$
\begin{aligned}
& \text { 1. } \lambda(b):=\lambda\left(\Phi_{b}\right)>1 ; \underline{\text { dilatation }} \\
& \text { 2. } \operatorname{vol}(b):=\operatorname{vol}(\mathbb{T}(b))>0 ; \underline{\text { volume }}
\end{aligned}
$$

Choose any representative $f: D_{n} \rightarrow D_{n}$ of $\Gamma(b) \in \mathcal{M}\left(D_{n}\right)$, and form the mapping torus

$$
\mathbb{T}(b):=D_{n} \times[0,1] / \sim,
$$

where \sim identifies $(x, 0)$ with $(f(x), 1)$.

Thm. The braid b is $\mathrm{pA} \Longleftrightarrow$ The mapping torus $\mathbb{T}(b)$ admits a complete hyperbolic structure of finite volume.

If a braid is PA , we can think about its volume.

A family of braids

We consider the following braid $\beta_{\left(m_{1}, m_{2}, \cdots, m_{k+1}\right)}$ for each integer $k \geq$ 1 and each integer $m_{i} \geq 1$. These braids are all pA.

$\beta_{(2,2,3)}$

We would like to say this family is nice, because it has interesting properties on the two invariant.

1. Our braids have a nice inductive formula to compute their dilatation.

For an integral polynomial $f(t)$ of degree d, the reciprocal of $f(t)$, denoted by $f_{*}(t)$, is $t^{d} f(1 / t)$.

Thm. A (Inductive formula) The dilatation of the pA braid $\beta_{\left(m_{1}, \cdots, m_{k+1}\right)}$ is the largest root of the polynomial

$$
t^{m_{k+1}} R_{\left(m_{1}, \cdots, m_{k}\right)}(t)+(-1)^{k+1} R_{\left(m_{1}, \cdots, m_{k}\right)_{*}}(t),
$$

where $R_{\left(m_{1}, \cdots, m_{i}\right)}(t)$ is given inductively as follows:

$$
\begin{aligned}
R_{\left(m_{1}\right)}(t) & =t^{m_{1}+1}(t-1)-2 t, \text { and } \\
R_{\left(m_{1}, \cdots, m_{i}\right)}(t) & =t^{m_{i}}(t-1) R_{\left(m_{1}, \cdots, m_{i-1}\right)}(t)+(-1)^{i} 2 t R_{\left(m_{1}, \cdots, m_{i-1}\right)_{*}}(t) \text { for } 2 \leq i \leq k .
\end{aligned}
$$

2. The dilatation of our braids can be arbitrarily small.

Thm B.(Asymptotic behavior)

$$
\lim _{m_{1}, \cdots, m_{k+1} \rightarrow \infty} \lambda\left(\beta_{\left(m_{1}, \cdots, m_{k+1}\right)}\right)=1
$$

The dilatation measures some complexity of pA mapping classes. Thm B. says that if all indices go to ∞, then the complexity of our braids goes to 0 .

Question. What happen for the volume of a family of pA braids whose dilatation is arbitrarily small.
(Known two families $\left\{b_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ with arbitrarily small dilatation)

1. $\lim _{n \rightarrow \infty} \operatorname{vol}\left(b_{n}\right)=\infty$ and the number of the cusps of the mapping torus $\mathbb{T}\left(b_{n}\right)$ goes to ∞ as n goes to ∞.
2. $\lim _{n \rightarrow \infty} \operatorname{vol}\left(\gamma_{n}\right)<\infty$ and the number of the cusps of the mapping torus $\mathbb{T}\left(\gamma_{n}\right)$ is bounded from above.

We can give another family of braids:
Thm. There exist a family of pA braids β_{n} such that

$$
\lim _{n \rightarrow \infty} \lambda\left(\beta_{n}\right)=1 \text { and } \lim _{n \rightarrow \infty} \operatorname{vol}\left(\beta_{n}\right)=\infty
$$

and such that the number of the cusps of the mapping torus $\mathbb{T}\left(\beta_{n}\right)$ is 2 for each n.
(Proof.) Note that the braided link $\overline{\beta_{\left(m_{1}, \cdots, m_{k+1}\right)}}$ is an alternating link (in fact 2 bridge link) with twist number $k+1$. A result by Lackenby tells us that

$$
\operatorname{vol}\left(\beta_{\left(m_{1}, \cdots, m_{k+1}\right)}\right)>\frac{1}{2}(k-1) v_{3}
$$

On the other hand, for any k, we can make the dilatation arbitrarily small:

$$
\lim _{m_{1}, \cdots, m_{k+1} \rightarrow \infty} \lambda\left(\beta_{\left(m_{1}, \cdots, m_{k+1}\right)}\right)=1 . \square
$$

graph maps, transition matrices

\mathcal{G}; graph,
A continuous map $g: \mathcal{G} \rightarrow \mathcal{G}$ is called a graph map.
We suppose that g is "tight".

tight; OK

loose; NG

One can define the transition matrix $M(g)=\left(m_{i, j}\right)$ as follows: $m_{i, j}:=$ the number of times that $g\left(e_{j}\right)$ passes through e_{i}.

Notation

For the transition matrix $M(g)$,

- $M(g)(t):=|t I-M(g)|$
$=$ characteristic poly. of the transition matrix $M(g)$
- $\lambda(M(g)):=$ the spectral radius of the transition matrix $M(g)$ $=\max \{|\lambda| ; \lambda$ is an eigenvalue of $M(g)\}$

In general, the dilatation of a pA braid is given by the spectral radius of the transition matrix for some graph maps.

combined tree maps

Inductively, we will define the combined tree $\mathcal{Q}_{\left(m_{1}, \cdots, m_{k+1}\right)}$ and the combined tree map $q_{\left(m_{1}, \cdots, m_{k+1}\right)}: \mathcal{Q}_{\left(m_{1}, \cdots, m_{k+1}\right)} \rightarrow \mathcal{Q}_{\left(m_{1}, \cdots, m_{k+1}\right)}$

Prop. (combined tree maps know the dilatation of $\beta_{\left(m_{1}, \cdots, m_{k+1}\right)}$)

$$
\lambda\left(\beta_{\left(m_{1}, \cdots, m_{k+1}\right)}\right)=\lambda\left(M\left(q_{\left(m_{1}, \cdots, m_{k+1}\right)}\right)\right) .
$$

(combined trees)

Let $\mathcal{G}_{n,+}$ and $\mathcal{G}_{n,-}$ be trees of star type having one vertex of valence $n+1$.

The combined tree $\mathcal{Q}_{\left(m_{1}, \cdots, m_{k+1}\right)}$ is the one obtained by gluing $k+1$ trees $\mathcal{G}_{m_{1},+}, \mathcal{G}_{m_{2},-} \cdots, \mathcal{G}_{m_{k+1},(-1)^{k}}$ in the following way:

(combined tree maps)

First, take the following tree map $g_{n}: \mathcal{G}_{n, \pm} \rightarrow \mathcal{G}_{n, \pm}$:

Suppose that the combined tree map (up to k) is defined:

$$
q_{\left(m_{1}, \cdots, m_{k}\right)}: \mathcal{Q}_{\left(m_{1}, \cdots, m_{k}\right)} \rightarrow \mathcal{Q}_{\left(m_{1}, \cdots, m_{k}\right)} .
$$

Note that the two trees $\mathcal{Q}_{\left(m_{1}, \cdots, m_{k}\right)}$ and $\mathcal{G}_{m_{k+1}}$ can be thought as the subtrees of $\mathcal{Q}_{\left(m_{1}, \cdots, m_{k+1}\right)}$.

Take the extension \widehat{q} of $q_{\left(m_{1}, \cdots, m_{k}\right)}: \mathcal{Q}_{\left(m_{1}, \cdots, m_{k}\right)} \circlearrowright$:

$$
\widehat{q}: \mathcal{Q}_{\left(m_{1}, \cdots, m_{k+1}\right)} \rightarrow \mathcal{Q}_{\left(m_{1}, \cdots, m_{k+1}\right)}
$$

Take the extension \widehat{g} of $g_{m_{k+1}}: \mathcal{G}_{m_{k+1}} \circlearrowright$:

$$
\widehat{g}: \mathcal{Q}_{\left(m_{1}, \cdots, m_{k+1}\right)} \rightarrow \mathcal{Q}_{\left(m_{1}, \cdots, m_{k+1}\right)}
$$

Then we define

$$
q_{\left(m_{1}, \cdots, m_{k+1}\right)}:=\widehat{g} \circ \widehat{q}: \mathcal{Q}_{\left(m_{1}, \cdots, m_{k+1}\right)} \rightarrow \mathcal{Q}_{\left(m_{1}, \cdots, m_{k+1}\right)}
$$

(example)

Lem.

$$
\lambda\left(M\left(q_{\left(m_{1}, \cdots, m_{i}, \cdots, m_{k+1}\right)}\right)\right)>\lambda\left(M\left(q_{\left(m_{1}, \cdots, m_{i}+1, \cdots, m_{k+1}\right)}\right)\right) .
$$

Cor. (Monotonicity)

$$
\lambda\left(\beta_{\left(m_{1}, \cdots, m_{i}, \cdots, m_{k+1}\right)}\right)>\lambda\left(\beta_{\left(m_{1}, \cdots, m_{i}+1, \cdots, m_{k+1}\right)}\right) .
$$

proof of Thm. A (inductive formula)

Thm. A (Inductive formula) The dilatation of the pA braid $\beta_{\left(m_{1}, \cdots, m_{k+1}\right)}$ is the largest root of the polynomial

$$
t^{m_{k+1}} R_{\left(m_{1}, \cdots, m_{k}\right)}(t)+(-1)^{k+1} R_{\left(m_{1}, \cdots, m_{k}\right)_{*}}(t),
$$

where $R_{\left(m_{1}, \cdots, m_{i}\right)}(t)$ is given inductively as follows:

$$
\begin{aligned}
R_{\left(m_{1}\right)}(t) & =t^{m_{1}+1}(t-1)-2 t, \text { and } \\
R_{\left(m_{1}, \cdots, m_{i}\right)}(t) & =t^{m_{i}}(t-1) R_{\left(m_{1}, \cdots, m_{i-1}\right)}(t)+(-1)^{i} 2 t R_{\left(m_{1}, \cdots, m_{i-1}\right)_{*}}(t) \text { for }
\end{aligned}
$$

proof of Thm. A (inductive formula)

Fixing $m_{1}, \cdots, m_{k} \geq 1$, consider the family of combined tree map

$$
\left\{q_{\left(m_{k+1}\right)}=q_{\left(m_{1}, \cdots, m_{k+1}\right)}\right\}_{m_{k+1} \geq 1} .
$$

One can define the dominant tree map

$$
\bar{r}=\bar{r}_{\left(m_{1}, \cdots, m_{k}\right)}: \mathcal{R}=\mathcal{R}_{\left(m_{1}, \cdots, m_{k}\right)} \rightarrow \mathcal{R}
$$

whose transition matrix $M(\bar{r})$ equals the upper-left submatrix of $M\left(q_{\left(m_{k+1}\right)}\right)$:

(How to define the dominant tree $\operatorname{map} \bar{r}: \mathcal{R} \rightarrow \mathcal{R}$)
The tree \mathcal{R} is obtained from the combined tree $\mathcal{Q}_{\left(m_{1}, \cdots, m_{k}\right)}$ together with the edge of $\mathcal{G}_{m_{k+1}}$.

For each $e \in E(\mathcal{R})$, the edge path $\bar{r}(e)$ is given by the edge path $q_{\left(m_{k+1}\right)}(e)$ by eliminating edges which do not belong to the edge set $E(\mathcal{R})$.

Note: The tree map \bar{r} does not depend on the choice of m_{k+1}.
(example) dominant tree map $\bar{r}: \mathcal{R} \rightarrow \mathcal{R}$ for $\left\{q_{(4, m)}\right\}_{m \geq 1}$.

(combined tree map $q_{(4,2)}$)

Lem. Let

$$
R(t)=R_{\left(m_{1}, \cdots, m_{k}\right)}(t)=M(\bar{r})(t) .
$$

Then there exists a poly. $S(t)$ such that

$$
M\left(q_{\left(m_{1}, \cdots, m_{k+1}\right)}\right)(t)=t^{m_{k+1}} R(t)+S(t)
$$

(Proof.) Use this form

Mysterious Lem. (the poly. $R(t)$ knows the poly. $S(t)$.)
Let $S(t)$ be as in the previous lem. (i.e, $M\left(q_{\left(m_{k+1}\right)}\right)(t)=t^{m_{k+1}} R(t)+$ $S(t)$.) Then

$$
S(t)=(-1)^{k+1} R_{*}(t)
$$

Thanks to the mysterious lemma, the proof of Thm. A is done:

$$
\begin{aligned}
& \lambda\left(\beta_{\left(m_{1}, \cdots, m_{k+1}\right)}\right) \quad \text { (the dilatation of the braid) } \\
= & \lambda\left(M\left(q_{\left(m_{1}, \cdots, m_{k+1}\right)}\right)\right) \quad \text { (the spectral radius of the matirx) }
\end{aligned}
$$

$=$ the largest root of $t^{m_{k+1}} R_{\left(m_{1}, \cdots, m_{k}\right)}(t)+(-1)^{k+1} R_{\left(m_{1}, \cdots, m_{k}\right)_{*}}(t) \quad \square$

proof of Thm. B (asymptotic behavior)

Thm B.(Asymptotic behavior)

$$
\lim _{m_{1}, \cdots, m_{k+1} \rightarrow \infty} \lambda\left(\beta_{\left(m_{1}, \cdots, m_{k+1}\right)}\right)=1
$$

Final Lemma.

$$
\lim _{m_{1} \rightarrow \infty} \lim _{m_{2} \rightarrow \infty} \cdots \lim _{m_{k+1} \rightarrow \infty} \lambda\left(\beta_{\left(m_{1}, \cdots, m_{k+1}\right)}\right)=1
$$

Once we prove the lemma, then our task is done, since the monotonicity of the dilatation holds:

$$
\text { if } m_{i}^{\prime} \geq m_{i} \text { for each } i \text {, then } \lambda\left(\beta_{\left(m_{1}, \cdots, m_{k+1}\right)}\right) \geq \lambda\left(\beta_{\left(m_{1}^{\prime}, \cdots, m_{k+1}^{\prime}\right)}\right) \text {. }
$$

（Proof of the final lemma．）

For an integral poly．$Q(t)$ ，let $\lambda(Q(t))$ be the largest absolute value of roots of $Q(t)$ ．

Let us consider a family of polynomials

$$
Q_{n}(t)=t^{n} R(t) \pm S(t)
$$

where $R(t)$ is a monic integral poly．and $S(t)$ is an integral poly．
（catch phrase）
＂The roots of $R(t)$ dominate those of $Q_{n}(t)$ asymptotically＂ （dominate：支配する）

Key lemma. Suppose that $R(t)$ has a root outside the unit circle. Then,

$$
\lambda(R(t))=\lim _{n \rightarrow \infty} \lambda\left(Q_{n}(t)\right) .
$$

Key lemma together with the inductive formula [Thm A] to compute $R_{\left(m_{1}, \cdots, m_{i}\right)}(t)$ gives us the proof of the final lemma. \square

Example. (recipe to compute $\lambda\left(\beta_{4, m}\right)$ for $m \geq 1$)

1. Consider the dominant tree map $\bar{r}=\bar{r}(4)$ for $\left\{q_{(4, m)}\right\}$.

2. Compute the characteristic poly. of $M(\bar{r})(t)=t^{6}-t^{5}-2 t$.
3. Compute its reciprocal $\left(t^{6}-t^{5}-2 t\right)_{*}=-2 t^{5}-t+1$
\Longrightarrow For each $m \geq 1$, the dilatation $\lambda\left(\beta_{4, m}\right)$ is the largest root of

$$
t^{m}\left(t^{6}-t^{5}-2 t\right)+\left(-2 t^{5}-t+1\right)
$$

