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pseudo-Anosov braid1 Two invariants of pseudo-Anosov braids

[First of all, I would like to give you a background of my talk]
Dn; n-punctured disk
M(Dn); mapping class group of Dn

One can classify mapping classes φ ∈M(Dn) into 3 types [This
classification is very useful and significant]

1. the order of φ is finite

2. the order of φ is infinite and φ is reducible

3. the order of φ is infinite and φ is irreducible
[In this case, φ is called pseudo-Anosov]

In the 3rd case, φ contains a beautiful homeo. Φ : Dn → Dn (so
called pA homeo.) as a representative.

[To studyM(Dn), it is very handy to represent mapping classes
as geometric braids]

positive half twist ti
Γ : n-braid group Bn →M(Dn), σi #→ ti; surjective hom.
Using Γ, one can classify braids into 3 types.
[If the image Γ(b) is a pA mapping class, I say the braid b is of

pA type].

[We have two invariants of pA braids. First one,,,,Second one...]
Two primitive invariants of pA braids
(1) λ(b) := λ(Φb) > 1; dilatation
(2) vol(b) := vol(T(b)) > 0; volume
[How do you get the second invariant ”volume”?]

Choose any representative f : Dn → Dn of Γ(b) ∈M(Dn), and
form the mapping torus

T(b) := Dn × [0, 1]/ ∼,

where ∼ identifies (x, 0) with (f(x), 1).

Thm. The braid b is pA ⇐⇒ The mapping torus T(b) admits a
complete hyperbolic structure of finite volume.
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where ∼ identifies (x, 0) with (f(x), 1).

Thm. The braid b is pA ⇐⇒ The mapping torus T(b) admits a
complete hyperbolic structure of finite volume.

[If the braid b is pA, the we can talk about the volume of b.]

2 A family of pseudo-Anosov braids

We consider the following braid β(m1,m2,··· ,mk+1) for each integer k ≥
1 and each integer mi ≥ 1. These braids are all pA.

The family has interesting properties from view point of the two
invariants.

I would like to say the family of braids β(m1,m2,··· ,mk+1) is nice
because....

1. Our braids have a nice inductive formula to compute
their dilatation.

For an integral polynomial f(t) of degree d, the reciprocal of
f(t), denoted by f∗(t), is tdf(1/t).

Thm. A (Inductive formula) The dilatation of the pA braid
β(m1,··· ,mk+1) is the largest root of the polynomial

tmk+1R(m1,··· ,mk)(t) + (−1)k+1R(m1,··· ,mk)∗(t),

where R(m1,··· ,mi)(t) is given inductively as follows:

R(m1)(t) = tm1+1(t− 1)− 2t, and

R(m1,··· ,mi)(t) = tmi(t− 1)R(m1,··· ,mi−1)(t) + (−1)i2tR(m1,··· ,mi−1)∗(t) for 2 ≤ i ≤ k.

2. The dilatation of our braids can be arbitrarily small.
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If a braid is pA, we can think about its volume.
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Thm B.(Asymptotic behavior)

lim
m1,··· ,mk+1→∞

λ(β(m1,··· ,mk+1)) = 1

[The invariant ”dilatation” is an algebraic number which is greater
than 1. The dilatation measures some complexity of pA mapping
classes. Thm B. says that if all indices go to∞, then the complex-
ity of our braids go to 0, that is our braids are getting very simple
braids.]

[I will say an application of these results. Let us consider the
following question:]

Question. What happen for the volume of a family of pA braids
whose dilatation is arbitrarily small.

[We already know the following two families {bn} and {γn} of
braids with arbitrarily small dilatation:]

(Known two families {bn} and {γn} with arbitrarily small di-
latation)

1.
lim
n→∞λ(bn) = 1 and lim

n→∞ vol(bn) =∞
and the number of the cusps of the mapping torus T(bn) goes
to ∞ as n goes to ∞.

2.
lim
n→∞λ(γn) = 1 and lim

n→∞ vol(γn) <∞
and the number of the cusps of the mapping torus T(γn) is
bounded from above.

We can give another family of braids:

Theorem 2.1. Theorem C. There exist a family of pA braids βn

such that
lim
n→∞λ(βn) = 1 and lim

n→∞ vol(βn) =∞
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(Proof.) Note that β(m1,··· ,mk+1) is an alternating link (in fact 2
bridge link) with twist number k + 1. A result by Lackenby tells
us that

vol(β(m1,··· ,mk+1)) >
1

2
(k − 1)v3

[that is the volume of β(m1,··· ,mk+1) is proportional to k]
On the other hand, for any k, we can make the dilatation arbi-

trarily small:

lim
m1,··· ,mk+1→∞

λ(β(m1,··· ,mk+1)) = 1. !

3 Proof

3.1 Graph maps

[I would like to review graph maps and how do you get to the
transition matrix from the graph map quickly, because these are
very important ingredients for our study.]

G; graph, A continuous map g : G → G is called a graph map.

We assume the following “Markov” property of g:
g(V (G)) ⊂ V (G ′) and for each point x ∈ G such that g(x) /∈

V (G ′), the graph map g is locally injective at x.
One can define the transition matrix M(g) = (mi,j) as follows:
For the jth edge ej of G, consider the edge path g(ej).
mi,j := the number of times that the image g(ej) passes through

ei.

Notation
• M(g)(t) := |tI −M(g)|
= characteristic poly. of the transition matrix M(g)
• λ(M(g)) := the spectral radius of the matrix M(g)
= max{|λ| ; λ is an eigenvalue of M(g)}
= the largest absolute value among eigenvalues of M(g).

[This is a very important quantity of the graph map. It measures
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• λ(M(g)) := the spectral radius of the transition matrix M(g)
= max{|λ| ; λ is an eigenvalue of M(g)}
= the largest absolute value among eigenvalues of M(g).

4

10



combined tree maps

[This is a very important quantity of the graph map. It measures
a complexity of the graph map. In general, the dilatation of pA
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[How do you construct combined tree maps?]

• combined tree
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The combined tree Q(m1,··· ,mk+1) is the one obtained by gluing

k + 1 trees Gm1,+,Gm2,− · · · ,Gmk+1,(−1)k in the following way:
(m1,m2,m3) = (4, 2, 1)
Q(4,2,1)
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First, take the following tree map gn : Gn,± → Gn,±:
Suppose that the combined tree map (up to k) is defined:
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(m1,m2,m3) = (4, 2, 1)
Q(4,2,1)
• combined tree map
Let gn : Gn,± → Gn,± be the tree map.
Suppose that the combined tree map (up to k) is defined:

q(m1,··· ,mk) : Q(m1,··· ,mk) → Q(m1,··· ,mk).

Note that the two trees Q(m1,··· ,mk) and Gmk+1 can be thought as
the subtrees of Q(m1,··· ,mk+1).

Take an extension q̂ of q(m1,··· ,mk):

q̂ : Q(m1,··· ,mk+1) → Q(m1,··· ,mk+1)

Take an extension ĝ of gmk+1:

ĝ : Q(m1,··· ,mk+1) → Q(m1,··· ,mk+1)

Then we define

q(m1,··· ,mk+1) := ĝ ◦ q̂ : Q(m1,··· ,mk+1) → Q(m1,··· ,mk+1)

Lem.

λ(M(q(m1,··· ,mi,··· ,mk+1))) > λ(M(q(m1,··· ,mi+1,··· ,mk+1))).

[The linear algebra gives us a fruitful result. The above lemma
is one of the examples.. The lemma implies the the monotonicity
of the dilatation]

Cor.
λ(β(m1,··· ,mi,··· ,mk+1)) > λ(β(m1,··· ,mi+1,··· ,mk+1)).

3.3 Outline of Proof

(Proof of Thm. A [Inductive formula])
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ĝ : Q(m1,··· ,mk+1) → Q(m1,··· ,mk+1)

Then we define
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proof of Thm. A (inductive formula)

2 A family of pseudo-Anosov braids

We consider the following braid β(m1,m2,··· ,mk+1) for each integer k ≥
1 and each integer mi ≥ 1. These braids are all pA.

The family has interesting properties from view point of the two
invariants.

I would like to say the family of braids β(m1,m2,··· ,mk+1) is nice
because....

1. Our braids have a nice inductive formula to compute
their dilatation.

For an integral polynomial f(t) of degree d, the reciprocal of
f(t), denoted by f∗(t), is tdf(1/t).

Thm. A (Inductive formula) The dilatation of the pA braid
β(m1,··· ,mk+1) is the largest root of the polynomial

tmk+1R(m1,··· ,mk)(t) + (−1)k+1R(m1,··· ,mk)∗(t),

where R(m1,··· ,mi)(t) is given inductively as follows:

R(m1)(t) = tm1+1(t− 1)− 2t, and

R(m1,··· ,mi)(t) = tmi(t− 1)R(m1,··· ,mi−1)(t) + (−1)i2tR(m1,··· ,mi−1)∗(t) for 2 ≤ i ≤ k.

2. The dilatation of our braids can be arbitrarily small.

Thm B.(Asymptotic behavior)

lim
m1,··· ,mk+1→∞
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proof of Thm. A (inductive formula)
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(How to define the tree map r : R→ R)
The tree R is obtained grom the combined tree Q(m1,··· ,mk) to-

gether with the edge of Gmk+1.
For each e ∈ E(R), the edge path r(e) is given by the edge path

q(mk+1)(e) by eliminating edges which do not belong to E(R).

Note: The tree map r does not depend on the choice of mk+1.

Lem. (exercise of linear algebra) Let R(t) = R(m1,··· ,mk)(t) =
M(r)(t). Then there exists a poly. S(t) such that

M(q(mk+1))(t) = tmk+1R(t) + S(t)

[This is an ex. of linear algebra. What is mysterious here is the
the poly. R(t) = M(r)(t) knows the poly. S(t). In other words,
the dominant tree map r knows the poly. S(t).]

Mysterious Lem.

S(t) = (−1)k+1R∗(t).

Thanks to the mysterious lemma, we get the following equalities
which implies Thm A (Inductive formula).

λ(β(m1,··· ,mk+1)) (the dilatation of the braid)

= λ(M(q(m1,··· ,mk+1))) (the spectral radius of the matirx)

= the largest root of tmk+1R(m1,··· ,mk)(t) + (−1)k+1R(m1,··· ,mk)∗(t)

[M(q(m1,··· ,mk+1)) が PF condition をみたすことをいっておくと
親切]

[Now, let us use our recipe to compute the dilatation of a family
of braids β4,m]

Example. (recipe to compute λ(β4,m) for m ≥ 1)
Take any m0 ≥ 1, say m0 = 2.
Consider the combined tree map q(4,m0).
The tree map r = r(4) is given by
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(How to define the dominant tree map r : R→ R)
The tree R is obtained grom the combined tree Q(m1,··· ,mk) to-

gether with the edge of Gmk+1.
For each e ∈ E(R), the edge path r(e) is given by the edge path

q(mk+1)(e) by eliminating edges which do not belong to E(R).

Note: The tree map r does not depend on the choice of mk+1.

(example) dominant tree map r : R→ R for {q(4,m)}m≥1.
(combined tree map q(4,2))

Lem. Let
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Let S(t) be as in the previous lem. (i.e, M(q(mk+1))(t) = tmk+1R(t)+

S(t).) Then
S(t) = (−1)k+1R∗(t).

[R∗(t) とは何かを思い出しておく]
Thanks to the mysterious lemma, the proof of Thm. A is done:
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The tree map r = r(4) is given by
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(Proof of Thm. B [Asymptotic behavior])

Our task is to show

lim
m1,··· ,mk+1→∞

λ(β(m1,··· ,mk+1)) = 1.

Final Lemma.

lim
m1→∞

lim
m2→∞

· · · lim
mk+1→∞

λ(β(m1,··· ,mk+1)) = 1

[We choose the order to take the limits. First we make the last
index mk+1 go to infinity, second we make the second last index mk

make infinity, and finally we make the first index m1 go to infinity.
Then the lemma says that the dilatation goes to 1.]

Once we prove the lemma, then our task is done, since the mono-
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proof of Thm. B (asymptotic behavior)

2 A family of pseudo-Anosov braids

We consider the following braid β(m1,m2,··· ,mk+1) for each integer k ≥
1 and each integer mi ≥ 1. These braids are all pA.

The family has interesting properties from view point of the two
invariants.

I would like to say the family of braids β(m1,m2,··· ,mk+1) is nice
because....

1. Our braids have a nice inductive formula to compute
their dilatation.
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R(m1)(t) = tm1+1(t− 1)− 2t, and

R(m1,··· ,mi)(t) = tmi(t− 1)R(m1,··· ,mi−1)(t) + (−1)i2tR(m1,··· ,mi−1)∗(t) for 2 ≤ i ≤ k.

2. The dilatation of our braids can be arbitrarily small.

Thm B.(Asymptotic behavior)

lim
m1,··· ,mk+1→∞

λ(β(m1,··· ,mk+1)) = 1

[The invariant ”dilatation” is an algebraic number which is greater
than 1. The dilatation measures some complexity of pA mapping

2

λ(β(m1,··· ,mk+1)) (the dilatation of the braid)

= λ(M(q(m1,··· ,mk+1))) (the spectral radius of the matirx)

= the largest root of tmk+1R(m1,··· ,mk)(t) + (−1)k+1R(m1,··· ,mk)∗(t)

[M(q(m1,··· ,mk+1)) が PF condition をみたすことをいっておくと
親切]

[Now, let us use our recipe to compute the dilatation of a family
of braids β4,m]

Example. (recipe to compute λ(β4,m) for m ≥ 1)
1. Consider the dominant tree map r = r(4) for {q(4,m)}.
2. Compute the characteristic poly. of M(r)(t) = t6 − t5 − 2t.
3. Compute its reciprocal (t6 − t5 − 2t)∗ = −2t5 − t + 1
=⇒ For each m ≥ 1, the dilatation λ(β4,m) is the largest root of

tm(t6 − t5 − 2t) + (−2t5 − t + 1).

(Proof of Thm. B [Asymptotic behavior])

Our task is to show

lim
m1,··· ,mk+1→∞

λ(β(m1,··· ,mk+1)) = 1.

Final Lemma.

lim
m1→∞

lim
m2→∞

· · · lim
mk+1→∞

λ(β(m1,··· ,mk+1)) = 1

[We choose the order to take the limits. First we make the last
index mk+1 go to infinity, second we make the second last index mk

make infinity, and finally we make the first index m1 go to infinity.
Then the lemma says that the dilatation goes to 1.]

Once we prove the lemma, then our task is done, since the mono-
tonicity of the dilatation holds:

if m′
i ≥ mi for each i, then λ(β(m1,··· ,mk+1)) ≥ λ(β(m′

1,··· ,m′
k+1)).
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(Proof of the final lemma.)
For an integral poly. Q(t), let λ(Q(t)) be the largest absolute

value of roots of Q(t).
We call λ(Q(t)) the spectral radius of the poly. Q(t).
Let us consider a family of polynomials

Qn(t) = tnR(t) ± S(t),

where R(t) is a monic integral poly. and S(t) is an integral poly.
[This type of a family of polynomials is suitable for our family

of braids. Here is a catch phrase]

(catch phrase)
“The roots of R(t) dominate(支配) those of Qn(t) asymptoti-

cally”

Key lemma. Suppose that R(t) has a root outside the unit circle.
Then,

λ(R(t)) = lim
n→∞λ(Qn(t)).

絵をいれる
By the inductive formula (Thm A) together with Key lemma,

we have

lim
mk+1→∞

λ(β(m1,··· ,mk+1)) = λ(R(m1,··· ,mk)(t)).

Want to show:

lim
mk→∞

λ(R(m1,··· ,mk)(t)) = λ(R(m1,··· ,mk−1)(t)).

One can show that R(m1,··· ,mk)(t) can be computed inductively
as follows:

R(m1)(t) = tm1+1(t− 1)− 2t, and

R(m1,··· ,mi)(t) = tmi(t− 1)R(m1,··· ,mi−1)(t) + (−1)i2tR(m1,··· ,mi−1)∗(t) for 2 ≤ i ≤ k.

Moreover R(m1,··· ,mi)(t) = M(r(m1,··· ,mi))(t) has a root outsider
the unit circle, because M(r(m1,··· ,mi)) satisfies the PF condition.
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(dominate: 支配する)

Key lemma. Suppose that R(t) has a root outside the unit circle.
Then,

λ(R(t)) = lim
n→∞λ(Qn(t)).

Key lemma together with the inductive formula [Thm A] to
compute R(m1,··· ,mi)(t) gives us the proof of the final lemma. !
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λ(β(m1,··· ,mk+1)) (the dilatation of the braid)

= λ(M(q(m1,··· ,mk+1))) (the spectral radius of the matirx)

= the largest root of tmk+1R(m1,··· ,mk)(t) + (−1)k+1R(m1,··· ,mk)∗(t)

[M(q(m1,··· ,mk+1)) が PF condition をみたすことをいっておくと
親切]

[Now, let us use our recipe to compute the dilatation of a family
of braids β4,m]

Example. (recipe to compute λ(β4,m) for m ≥ 1)
Consider the dominant tree map r = r(4).
Compute the characteristic poly. of M(r)(t) = t6 − t5 − 2t.
Compute its reciprocal (t6 − t5 − 2t)∗ = −2t5 − t + 1
For each m ≥ 1, the dilatation λ(β4,m) is the largest root of

tm(t6 − t5 − 2t) + (−2t5 − t + 1).

(Proof of Thm. B [Asymptotic behavior])

Our task is to show

lim
m1,··· ,mk+1→∞

λ(β(m1,··· ,mk+1)) = 1.

Final Lemma.

lim
m1→∞

lim
m2→∞

· · · lim
mk+1→∞

λ(β(m1,··· ,mk+1)) = 1

[We choose the order to take the limits. First we make the last
index mk+1 go to infinity, second we make the second last index mk

make infinity, and finally we make the first index m1 go to infinity.
Then the lemma says that the dilatation goes to 1.]

Once we prove the lemma, then our task is done, since the mono-
tonicity of the dilatation holds:

if m′
i ≥ mi for each i, then λ(β(m1,··· ,mk+1)) ≥ λ(β(m′

1,··· ,m′
k+1)).
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