Isometries on $\mathrm{SU}(2)$-representation spaces of knot groups and twisted Alexander functions

Takahiro Kitayama *

We study two sorts of actions on the space of conjugacy classes of irreducible $S U(2)$ representations of a knot group and describe a symmetry of the twisted Alexander function on the space.

Notation and Facts.

$K \subset S^{3}$: a tame knot,
$E_{K}:=S^{3} \backslash N(K) ; N(K)$: an open tubular neighborhood,
$G_{K}:=\pi_{1} E_{K}, \quad \mu, \lambda \in G_{K}:$ a meridian-longitude pair,
$\alpha: G_{K} \rightarrow\langle t\rangle:$ an abelianization map,
$\mathcal{R}(K)$: the space of conjugacy classes of irreducible $S U(2)$-representations,
$\mathcal{S}(K)$: the set of conjugacy classes of irreducible metabelian $S U(2)$-representations.

- $\operatorname{Hom}\left(G_{K}, S U(2)\right)$ is a topological space via the compact open topology where G_{K} carries the discrete topology.
- We call $\rho \in \operatorname{Hom}\left(G_{K}, S U(2)\right)$ a metabelian representation if $\rho\left(\left[G_{K}, G_{K}\right]\right)$ is abelian. From the result of Lin [L], we have

$$
\begin{equation*}
\sharp \mathcal{S}(K)=\frac{1}{2}\left(\left|\Delta_{K}(-1)\right|-1\right), \tag{岏}
\end{equation*}
$$

where $\Delta_{K}(t)$ is the Alexander polynomial of K.

Definition 0.1.

An irreducible representation $\rho \in \operatorname{Hom}\left(G_{K}, S U(2)\right)$ is called regular if $\operatorname{dim} H^{1}\left(E_{K} ; \mathfrak{s u}(2)_{\text {Ad } \rho \rho}\right)=1$. We denote by $\operatorname{Reg}(K) \subset \mathcal{R}(K)$ the space of conjugacy classes of regular representations.

- $\operatorname{Reg}(K)$ is an open 1-dimensional manifold in $\mathcal{R}(K)$ (by Heusener and Klassen [HK]).
- Dubois constructed a canonical volume form τ_{K} on $\operatorname{Reg}(K)$ via non-acyclic Reidemeister torsion in [D], which induces a canonical orientation and Riemannian metric on $\operatorname{Reg}(K)$. Explicitly, we define an inner product $g: T \operatorname{Reg}(K) \otimes T \operatorname{Reg}(K) \rightarrow \mathbb{R}$ by $g(v, w):=\tau_{K}(v) \tau_{K}(w)$, where $(v, w) \in T \operatorname{Reg}(K) \otimes T \operatorname{Reg}(K)$.

[^0]
1 (-1)-involution

There is an involution on $\operatorname{Hom}\left(G_{K}, S U(2)\right)$ defined by

$$
\rho \mapsto\left(\left.\gamma \mapsto \alpha(\gamma)\right|_{t=-1} \rho(\gamma)\right),
$$

where $\gamma \in G_{K}$, which naturally induces an involution ι on $\mathcal{R}(K)$ and $\operatorname{Reg}(K)$.

Theorem 1.1.

$\iota: \operatorname{Reg}(K) \rightarrow \operatorname{Reg}(K)$ is an orientation reversing isometry.

From this theorem and the fact proved by Nagasato and Yamaguchi [NY] that $[\rho] \in$ $\mathcal{R}(K)$ is a fixed point of ι if and only if $[\rho] \in \mathcal{S}(K)$, we can detect the distribution of $\mathcal{S}(K)$ in $\operatorname{Reg}(K)$.

Theorem 1.2.

(i)If $[\rho] \in \mathcal{S}(K)$ is a point on an arc component A of $\operatorname{Reg}(K)$, $[\rho]$ is a unique point on $\mathcal{S}(K) \cap A$ and $[\rho]$ is at the center of A.
(ii)If $[\rho] \in \mathcal{S}(K)$ is a point on a circle component C of $\operatorname{Reg}(K)$, there are exactly two points on $\mathcal{S}(K) \cap C$ and they are antipodal to each other.

Moreover, from this theorem and (is), we obtain the following corollary.

Corollary 1.3.

If $\sharp \mathcal{S}(K) \cap \operatorname{Reg}(K)$ is odd, then there is an arc component $A \subset \operatorname{Reg}(K)$. In particular, if $\mathcal{S}(K) \subset \operatorname{Reg}(K)$ and $\left|\Delta_{K}(-1)\right| \equiv-1 \bmod 4$, then there is an arc component $A \subset \operatorname{Reg}(K)$.

Since all the metabelian representations are explicitly computable, $\sharp \mathcal{S}(K) \cap \operatorname{Reg}(K)$ is also computable for any knot K.

2 Actions by automorphism groups of knot groups

The automorphism group $\operatorname{Aut}\left(G_{K}\right)$ acts on the representation space $\operatorname{Hom}\left(G_{K}, S U(2)\right)$ via pullback, namely we define

$$
\varphi^{*} \rho:=\rho \circ \varphi,
$$

where $\varphi \in \operatorname{Aut}\left(G_{K}\right)$. It can be checked that this action naturally induces the action on $\mathcal{R}(K)$ and $\operatorname{Reg}(K)$ by $\operatorname{Out}\left(G_{K}\right)$, $\operatorname{Out}_{p}\left(G_{K}\right)$ and $\operatorname{Out}_{p}^{ \pm}\left(G_{K}\right)$, where

$$
\begin{aligned}
\operatorname{Out}_{p}\left(G_{K}\right) & \left.:=\left\{[\varphi] \in \operatorname{Out}\left(G_{K}\right) \mid \varphi(\langle\mu, \lambda\rangle)\right)=\langle\mu, \lambda\rangle\right\}, \\
\operatorname{Out}_{p}^{ \pm}\left(G_{K}\right) & \left.:=\left\{[\varphi] \in \operatorname{Out}\left(G_{K}\right) \mid \varphi(\langle\mu, \lambda\rangle)\right)=\langle\mu, \lambda\rangle,\left.\operatorname{det} \varphi\right|_{\langle\mu, \lambda\rangle}= \pm 1\right\} .
\end{aligned}
$$

Theorem 2.1.

(i)For any class $[\varphi] \in \operatorname{Out}_{p}\left(G_{K}\right),[\varphi]^{*}: \operatorname{Reg}(K) \rightarrow \operatorname{Reg}(K)$ is an isometry.
(ii)For any class $[\varphi] \in \operatorname{Out}_{p}^{+}\left(G_{K}\right)$ with finite order, $[\varphi]^{*}: \operatorname{Reg}(K) \rightarrow \operatorname{Reg}(K)$ preserves the orientation.
(iii)For any class $[\varphi] \in \operatorname{Out}_{p}^{+}\left(G_{K}\right)$ (resp. $\mathrm{Out}_{p}^{-}\left(G_{K}\right)$) and a component D which have a class $[\rho]$ such that $\rho(\lambda)=1,\left.[\varphi]^{*}\right|_{D}$ preserves (resp. reverses) the orientation.

From this theorem, we can obtain a following necessary condition for a knot to be amphicheiral.

Theorem 2.2.

Let K be an amphicheiral knot. If $\sharp\{[\rho] \in \operatorname{Reg}(K) \mid \operatorname{tr} \rho(\mu)=0\}$ is finite, then $\sharp \mathcal{S}(K) \cap \operatorname{Reg}(K)$ is even. Moreover, if $\mathcal{S}(K) \subset \operatorname{Reg}(K)$, then $\left|\Delta_{K}(-1)\right| \equiv 1 \bmod 4$.

For instance, if K is small, namely E_{K} contains no essential surface, then $\sharp\{[\rho] \in$ $\operatorname{Reg}(K) \mid \operatorname{tr} \rho(\mu)=0\}$ is finite.

Example 2.3. $K=$ the figure eight knot 4_{1}.
Direct computation gives $\operatorname{Reg}(K)=\mathcal{R}(K) \approx S^{1}, \sharp \mathcal{S}(K)=2$ and

$$
\operatorname{Out}\left(G_{K}\right)=\left\langle\left[\varphi_{1}\right],\left[\varphi_{2}\right] \mid\left[\varphi_{1}\right]^{4}=1,\left[\varphi_{2}\right]^{2}=1,\left[\varphi_{2}\right]\left[\varphi_{1}\right]\left[\varphi_{2}\right]=\left[\varphi_{1}\right]^{-1}\right\rangle \cong D_{4},
$$

where φ_{1} is an amphicheiral map and φ_{2} is an inversion map. Moreover, $\left[\varphi_{1}\right]^{*}$ is the orientation reversing isometry whose symmetric axis is orthogonal to that of ι as the following figure and $\left[\varphi_{2}\right]^{*}$ is the identity map.

3 Symmetry of twisted Alexander functions

We denote by $\Delta_{K, \rho}(t)$ the twisted Alexander invariant associated to α and $\rho \in$ $\operatorname{Hom}\left(G_{K}, S U(2)\right)$. (See for instance [W].)

On an arc component $A \subset \operatorname{Reg}(K)$ (resp. a circle component $C \subset \operatorname{Reg}(K)$), we fix a point $\left[\rho_{0}\right] \in A($ resp. $C)$. For any point $[\rho] \in A$ (resp. C), we choose a smooth path $\gamma_{[\rho]}$ from $\left[\rho_{0}\right]$ to $[\rho]$ and define a map $\phi_{A}: A \rightarrow \mathbb{R}\left(\right.$ resp. $\left.\phi_{C}: C \rightarrow \mathbb{R} /(\operatorname{Vol} C) \mathbb{Z}\right)$ by

$$
\phi_{A}([\rho]):=\int_{\gamma_{[\rho]}} \tau_{K}\left(\operatorname{resp} . \phi_{C}([\rho]):=\left[\int_{\gamma_{[\rho]}} \tau_{K}\right]\right) .
$$

Definition 3.1.

We write $\operatorname{Reg}(K)=\left(\coprod_{i=1}^{m} A_{i}\right) \amalg\left(\coprod_{j=1}^{n} C_{j}\right)$, where A_{i} is an arc component and C_{j} a circle component. Taking $\phi_{A_{i}}$ and $\phi_{C_{j}}$ as above, we set

$$
\begin{aligned}
& \Delta_{A_{i}}(s, t):=\Delta_{K, \rho_{s}}(t), \quad \inf \phi_{A_{i}}<s<\sup \phi_{A_{i}} \\
& \Delta_{C_{j}}(s, t):=\Delta_{K, \rho_{[s]}}(t), \quad[s] \in \mathbb{R} /(\operatorname{Vol} C) \mathbb{Z},
\end{aligned}
$$

where $\left[\rho_{s}\right]=\phi_{A_{i}}^{-1}(s)$ and $\left[\rho_{[s]}\right]=\phi_{C_{j}}^{-1}([s])$.

For any component $D \subset \operatorname{Reg}(k), \Delta_{D}$ is well-defined up to translation of the coordinate s and multiplication of $t^{2 n}$ for any $n \in \mathbb{Z}$.

Theorem 3.2.

(i)For any function $\Delta_{D}(s, t)$,

$$
\Delta_{\iota(D)}(s, t) \doteq \Delta_{D}(-s,-t)
$$

(ii)If there exists a class $[\varphi] \in \operatorname{Out}\left(G_{K}\right)$ such that $[\varphi]^{*}: \operatorname{Reg}(K) \rightarrow \operatorname{Reg}(K)$ is an orientation preserving (resp. reversing) isometry, then for any function $\Delta_{D}(s, t)$,

$$
\Delta_{[\varphi]^{*}(D)}(s, t) \doteq \Delta_{D}(s, t) \quad\left(r e s p . \Delta_{[\varphi]^{*}(D)}(s, t) \doteq \Delta_{D}(-s, t)\right) .
$$

"シ" means that the invariants equal to each other up to above ambiguity.

References

[D] J. Dubois, Non abelian Reidemeister torsion and volume form on the $S U(2)$ representation space of knot groups, Ann. Inst. Fourier 55 (2005) 1685-1734.
[HK] M. Heusener and E. P. Klassen, Deformations of dihedral representations, Proc. Amer. Math. Soc. 125 (1997) 3039-3047.
[L] X. S. Lin, Representations of knot groups and twisted Alexander polynomials, Acta Math. Sin. (Engle. Ser.) 17 (2001) 361-380.
[NY] F. Nagasato and Y. Yamaguchi, On the geometry of certain slice of the character variety of a knot group, in preparation.
[W] M. Wada, Twisted Alexander polynomial for finitely presentable groups, Topology 33 (1994) 241-256.

[^0]: *Graduate School of Mathematical Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan, E-mail address: kitayama@ms.u-tokyo.ac.jp

