Isometries on SU(2)-representation spaces of knot groups and twisted Alexander functions

Takahiro Kitayama *

We study two sorts of actions on the space of conjugacy classes of irreducible SU(2)representations of a knot group and describe a symmetry of the twisted Alexander function
on the space.

Notation and Facts.

 $K \subset S^3$: a tame knot, $E_K := S^3 \setminus N(K)$; N(K): an open tubular neighborhood, $G_K := \pi_1 E_K, \ \mu, \lambda \in G_K$: a meridian-longitude pair, $\alpha : G_K \to \langle t \rangle$: an abelianization map, $\mathcal{R}(K)$: the space of conjugacy classes of irreducible SU(2)-representations, $\mathcal{S}(K)$: the set of conjugacy classes of irreducible metabelian SU(2)-representations.

- Hom $(G_K, SU(2))$ is a topological space via the compact open topology where G_K carries the discrete topology.
- We call $\rho \in \text{Hom}(G_K, SU(2))$ a metabelian representation if $\rho([G_K, G_K])$ is abelian. From the result of Lin [L], we have

$$\sharp \mathcal{S}(K) = \frac{1}{2} (|\Delta_K(-1)| - 1), \qquad ()$$

where $\Delta_K(t)$ is the Alexander polynomial of K.

\sim Definition 0.1.

An irreducible representation $\rho \in \text{Hom}(G_K, SU(2))$ is called *regular* if $\dim H^1(E_K; \mathfrak{su}(2)_{\text{Ad} \circ \rho}) = 1$. We denote by $\text{Reg}(K) \subset \mathcal{R}(K)$ the space of conjugacy classes of regular representations.

- $\operatorname{Reg}(K)$ is an open 1-dimensional manifold in $\mathcal{R}(K)$ (by Heusener and Klassen [HK]).
- Dubois constructed a canonical volume form τ_K on $\operatorname{Reg}(K)$ via non-acyclic Reidemeister torsion in [D], which induces a canonical orientation and Riemannian metric on $\operatorname{Reg}(K)$. Explicitly, we define an inner product $g: T\operatorname{Reg}(K) \otimes T\operatorname{Reg}(K) \to \mathbb{R}$ by $g(v, w) := \tau_K(v)\tau_K(w)$, where $(v, w) \in T\operatorname{Reg}(K) \otimes T\operatorname{Reg}(K)$.

^{*}Graduate School of Mathematical Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan, *E-mail address*: kitayama@ms.u-tokyo.ac.jp

1 (-1)-involution

There is an involution on $Hom(G_K, SU(2))$ defined by

$$\rho \mapsto (\gamma \mapsto \alpha(\gamma)|_{t=-1}\rho(\gamma)),$$

where $\gamma \in G_K$, which naturally induces an involution ι on $\mathcal{R}(K)$ and $\operatorname{Reg}(K)$.

← Theorem 1.1. $\iota: \operatorname{Reg}(K) \to \operatorname{Reg}(K)$ is an orientation reversing isometry.

From this theorem and the fact proved by Nagasato and Yamaguchi [NY] that $[\rho] \in \mathcal{R}(K)$ is a fixed point of ι if and only if $[\rho] \in \mathcal{S}(K)$, we can detect the distribution of $\mathcal{S}(K)$ in $\operatorname{Reg}(K)$.

 \sim Theorem 1.2. \cdot

(i) If $[\rho] \in \mathcal{S}(K)$ is a point on an arc component A of $\operatorname{Reg}(K)$, $[\rho]$ is a unique point on $\mathcal{S}(K) \cap A$ and $[\rho]$ is at the center of A.

(ii) If $[\rho] \in \mathcal{S}(K)$ is a point on a circle component C of $\operatorname{Reg}(K)$, there are exactly two points on $\mathcal{S}(K) \cap C$ and they are antipodal to each other.

Moreover, from this theorem and (), we obtain the following corollary.

- Corollary 1.3. -

If $\sharp S(K) \cap \operatorname{Reg}(K)$ is odd, then there is an arc component $A \subset \operatorname{Reg}(K)$. In particular, if $S(K) \subset \operatorname{Reg}(K)$ and $|\Delta_K(-1)| \equiv -1 \mod 4$, then there is an arc component $A \subset \operatorname{Reg}(K)$.

Since all the metabelian representations are explicitly computable, $\sharp \mathcal{S}(K) \cap \operatorname{Reg}(K)$ is also computable for any knot K.

2 Actions by automorphism groups of knot groups

The automorphism group $\operatorname{Aut}(G_K)$ acts on the representation space $\operatorname{Hom}(G_K, SU(2))$ via pullback, namely we define

$$\varphi^*\rho := \rho \circ \varphi,$$

where $\varphi \in \operatorname{Aut}(G_K)$. It can be checked that this action naturally induces the action on $\mathcal{R}(K)$ and $\operatorname{Reg}(K)$ by $\operatorname{Out}(G_K)$, $\operatorname{Out}_p(G_K)$ and $\operatorname{Out}_p^{\pm}(G_K)$, where

 $\operatorname{Out}_p(G_K) := \{ [\varphi] \in \operatorname{Out}(G_K) \mid \varphi(\langle \mu, \lambda \rangle)) = \langle \mu, \lambda \rangle \}, \\ \operatorname{Out}_p^{\pm}(G_K) := \{ [\varphi] \in \operatorname{Out}(G_K) \mid \varphi(\langle \mu, \lambda \rangle)) = \langle \mu, \lambda \rangle, \det \varphi|_{\langle \mu, \lambda \rangle} = \pm 1 \}.$

 \sim Theorem 2.1. —

(i)For any class $[\varphi] \in \operatorname{Out}_p(G_K)$, $[\varphi]^* : \operatorname{Reg}(K) \to \operatorname{Reg}(K)$ is an isometry. (ii)For any class $[\varphi] \in \operatorname{Out}_p^+(G_K)$ with finite order, $[\varphi]^* : \operatorname{Reg}(K) \to \operatorname{Reg}(K)$ preserves the orientation. (iii)For any class $[\varphi] \in \operatorname{Out}_p^+(G_K)$ (resp. $\operatorname{Out}_p^-(G_K)$) and a component D which have a class $[\rho]$ such that $\rho(\lambda) = 1$, $[\varphi]^*|_D$ preserves (resp. reverses) the orientation.

From this theorem, we can obtain a following necessary condition for a knot to be amphicheiral.

 \sim Theorem 2.2. –

Let K be an amphicheiral knot. If $\sharp\{[\rho] \in \operatorname{Reg}(K) \mid \operatorname{tr} \rho(\mu) = 0\}$ is finite, then $\sharp \mathcal{S}(K) \cap \operatorname{Reg}(K)$ is even. Moreover, if $\mathcal{S}(K) \subset \operatorname{Reg}(K)$, then $|\Delta_K(-1)| \equiv 1 \mod 4$.

For instance, if K is small, namely E_K contains no essential surface, then $\sharp\{[\rho] \in \text{Reg}(K) \mid \text{tr} \rho(\mu) = 0\}$ is finite.

Example 2.3. K = the figure eight knot 4_1 . Direct computation gives $\operatorname{Reg}(K) = \mathcal{R}(K) \approx S^1$, $\sharp \mathcal{S}(K) = 2$ and

 $\operatorname{Out}(G_K) = \langle \ [\varphi_1], [\varphi_2] \ | \ [\varphi_1]^4 = 1, [\varphi_2]^2 = 1, [\varphi_2][\varphi_1][\varphi_2] = [\varphi_1]^{-1} \ \rangle \cong D_4,$

where φ_1 is an amphicheiral map and φ_2 is an inversion map. Moreover, $[\varphi_1]^*$ is the orientation reversing isometry whose symmetric axis is orthogonal to that of ι as the following figure and $[\varphi_2]^*$ is the identity map.

3 Symmetry of twisted Alexander functions

We denote by $\Delta_{K,\rho}(t)$ the twisted Alexander invariant associated to α and $\rho \in \text{Hom}(G_K, SU(2))$. (See for instance [W].)

On an arc component $A \subset \operatorname{Reg}(K)$ (resp. a circle component $C \subset \operatorname{Reg}(K)$), we fix a point $[\rho_0] \in A$ (resp. C). For any point $[\rho] \in A$ (resp. C), we choose a smooth path $\gamma_{[\rho]}$ from $[\rho_0]$ to $[\rho]$ and define a map $\phi_A \colon A \to \mathbb{R}$ (resp. $\phi_C \colon C \to \mathbb{R}/(\operatorname{Vol} C)\mathbb{Z})$ by

$$\phi_A([\rho]) := \int_{\gamma_{[\rho]}} \tau_K \left(\text{resp. } \phi_C([\rho]) := \left[\int_{\gamma_{[\rho]}} \tau_K \right] \right).$$

\sim Definition 3.1. -

We write $\operatorname{Reg}(K) = (\coprod_{i=1}^{m} A_i) \amalg (\coprod_{j=1}^{n} C_j)$, where A_i is an arc component and C_j a circle component. Taking ϕ_{A_i} and ϕ_{C_j} as above, we set

$$\Delta_{A_i}(s,t) := \Delta_{K,\rho_s}(t) , \quad \inf \phi_{A_i} < s < \sup \phi_{A_i}$$
$$\Delta_{C_i}(s,t) := \Delta_{K,\rho_{[s]}}(t) , \quad [s] \in \mathbb{R}/(\operatorname{Vol} C)\mathbb{Z},$$

where $[\rho_s] = \phi_{A_i}^{-1}(s)$ and $[\rho_{[s]}] = \phi_{C_j}^{-1}([s])$.

For any component $D \subset \operatorname{Reg}(k)$, Δ_D is well-defined up to translation of the coordinate s and multiplication of t^{2n} for any $n \in \mathbb{Z}$.

 \sim Theorem 3.2. -

(i)For any function $\Delta_D(s,t)$,

$$\Delta_{\iota(D)}(s,t) \doteq \Delta_D(-s,-t).$$

(ii) If there exists a class $[\varphi] \in \text{Out}(G_K)$ such that $[\varphi]^* \colon \text{Reg}(K) \to \text{Reg}(K)$ is an orientation preserving (resp. reversing) isometry, then for any function $\Delta_D(s, t)$,

$$\Delta_{[\varphi]^*(D)}(s,t) \doteq \Delta_D(s,t) \quad (resp. \ \Delta_{[\varphi]^*(D)}(s,t) \doteq \Delta_D(-s,t)).$$

"=" means that the invariants equal to each other up to above ambiguity.

References

- [D] J. Dubois, Non abelian Reidemeister torsion and volume form on the SU(2)representation space of knot groups, Ann. Inst. Fourier **55** (2005) 1685–1734.
- [HK] M. Heusener and E. P. Klassen, Deformations of dihedral representations, Proc. Amer. Math. Soc. 125 (1997) 3039–3047.
- [L] X. S. Lin, Representations of knot groups and twisted Alexander polynomials, Acta Math. Sin. (Engle. Ser.) 17 (2001) 361–380.
- [NY] F. Nagasato and Y. Yamaguchi, On the geometry of certain slice of the character variety of a knot group, in preparation.
- [W] M. Wada, Twisted Alexander polynomial for finitely presentable groups, Topology 33 (1994) 241–256.