# On genus two Heegaard splittings of some non-simple 3-manifolds 

Yeonhee JANG<br>Osaka University

## 1. Main Theorem 1

Definition $M$ : an orientable closed 3-manifold.
$\left(V_{1}, V_{2} ; F\right),\left(W_{1}, W_{2} ; G\right)$ : two Heegaard splittings of the same genus
$\left(V_{1}, V_{2} ; F\right)$ and $\left(W_{1}, W_{2} ; G\right)$ are homeomorphic (isotopic resp.)
$\Longleftrightarrow \exists$ homeomorphism $f: M \longrightarrow M$ (isotopy $f_{t}: M \longrightarrow M$ resp.)
s.t. $f(F)=G\left(f_{1}(F)=G\right.$ resp. $)$.

Theorem 1 (Morimoto)
$S_{1}, S_{2}$ : Seifert fibered spaces over a disk with 2 exceptional fibers
$f: \partial S_{2} \longrightarrow \partial S_{1}$ homeomorphism
$\Longrightarrow M=S_{1} \cup_{f} S_{2}$ admits at most 4 non-isotopic Heegaard splittings of genus two.

Remark (1) Morimoto listed up all possible Heegaard splittings up to isotopy.
(2) If $M=S_{1} \cup_{f} S_{2}$ admits four non-isotopic Heegaard splittings of genus two, then

$$
\begin{equation*}
S_{i}=S^{3} \backslash T_{2,2 n_{i}+1} \text { and } f: h_{2} \longmapsto \varepsilon m_{1}, m_{2} \longmapsto \delta h_{1} \tag{*}
\end{equation*}
$$

,where $n_{i}>1, n_{i} \in \mathbb{N}, \varepsilon \delta= \pm 1$ and $T_{2,2 n_{i}+1}$ is a torus knot of type $\left(2,2 n_{i}+1\right)$.

## Main theorem 1

Any two Heegaard splittings on Morimoto's list are not isotopic.
In particular, if ( $*$ ) holds,
then $M=S_{1} \cup_{f} S_{2}$ admits exactly 4 non-isotopic Heegaard splittings.

The homeomorphism classification of Heegaard splittings of $M$ can be obtained from Main Theorem 1 and by calculating the mapping class group of $M$. For example, if $(*)$ holds, then
(1) $M$ admits exactly 4 Heegaard splittings up to homeomorphism when $n_{1} \neq n_{2}$,
(2) $M$ admits exactly 3 Heegaard splittings up to homeomorphism when $n_{1}=n_{2}$.

## 2. Generalization to Other Non-simple 3-manifolds

By arguments similar to those for Theorem 1 and Main Theorem 1, we can classify Heegaard splittings of some family of manifolds containing essential separating torus (cf. Kobayashi '84). We give an example.

## Main theorem 2

$M_{1}=S\left(D^{2} ; \beta_{1} / \alpha_{1}, \beta_{2} / \alpha_{2}\right)$
$M_{2}=S^{3} \backslash N(S(\alpha, \beta))$, where $S(\alpha, \beta)$ is a hyperbolic 2-bridge knot
Let $M=M_{1} \cup_{f} M_{2}$ (the regular fiber of $M_{1} \leftrightarrow$ the meridian loop of $M_{2}$ by $f$.
Then
(1) any Heegaard surface of $M$ is isotopic to the surface obtained from one of the following surfaces by applying Dehn twists $D_{l}$ along the attaching torus in the direction of a longitude $l$ of the 2 -bridge knot.
$F_{1}$ is the union of $A$ in $M_{1}$ and the twice-punctured torus in $M_{2}$ associated with $\left(\tau_{1}, \rho_{2}\right)$, $F_{2}$ is the union of $A$ in $M_{1}$ and the twice-punctured torus in $M_{2}$ associated with $\left(\tau_{1}, \rho_{2}^{\prime}\right)$, $F_{3}$ is the union of $A$ in $M_{1}$ and the twice-punctured torus in $M_{2}$ associated with ( $\tau_{2}, \rho_{1}$ ), $F_{4}$ is the union of $A$ in $M_{1}$ and the twice-punctured torus in $M_{2}$ associated with ( $\tau_{3}, \rho_{1}^{\prime}$ ), $F_{5}$ is the union of $A$ in $M_{1}$ and the twice-punctured torus in $M_{2}$ associated with $\left(\rho_{2}, \tau_{1}\right)$, $F_{6}$ is the union of $A$ in $M_{1}$ and the twice-punctured torus in $M_{2}$ associated with $\left(\rho_{2}^{\prime}, \tau_{1}\right)$, $F_{7}$ is the union of $A$ in $M_{1}$ and the twice-punctured torus in $M_{2}$ associated with $\left(\rho_{1}, \tau_{2}\right)$, $F_{8}$ is the union of $A$ in $M_{1}$ and the twice-punctured torus in $M_{2}$ associated with $\left(\rho_{1}^{\prime}, \tau_{2}\right)$, $F_{9}$ is the union of $A_{1}^{\prime}$ in $M_{1}$ and the two-bridge sphere of $M_{2}$,
$F_{10}$ is the union of $A_{2}^{\prime}$ in $M_{1}$ and the two-bridge sphere of $M_{2}$, $F_{11}$ is the union of $A_{3}^{\prime}$ in $M_{1}$ and the two-bridge sphere of $M_{2}$, $F_{12}$ is the union of $A_{4}^{\prime}$ in $M_{1}$ and the two-bridge sphere of $M_{2}$.

(2) The following tables give the isotopy and homeomorphism classification of the Heegaard surfaces in (1).

|  |  | $F_{1}$ | $F_{2}$ | $F_{3}$ | $F_{4}$ | $F_{5}$ | $F_{6}$ | $F_{7}$ | $F_{8}$ | $F_{9}$ | $F_{10}$ | $F_{11}$ | $F_{12}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\alpha=5$ |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| $\alpha \geq 7$ | $\beta \equiv \pm 2 \quad(\bmod \alpha)$ | $\bigcirc$ |  | $\bigcirc$ | $\bigcirc$ | O |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | $\beta \equiv \pm 2^{-1}(\bmod \alpha)$ | $\bigcirc$ | $\bigcirc$ |  |  | $\bigcirc$ | $\bigcirc$ |  |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | otherwise | $\bigcirc$ |

Table 1: isotopy classification
$\bigcirc \longleftrightarrow$ a family of infinitely many Heegaard surfaces obtained from $F_{i}$ for the corresponding $i$ by applying Dehn twist along the attaching torus in the direction of a longitude of the 2-bridge knot.

|  | $F_{1} \cong F_{2} \cong F_{3} \cong F_{4}$ | $F_{5} \cong F_{6} \cong F_{7} \cong F_{8}$ | $F_{9}$ | $F_{10}$ | $F_{11}$ | $F_{12}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\alpha=5$ | 1 |  | 1 | 1 | 1 | 1 |
| $\alpha \geq 7$ | 1 | 1 | 1 | 1 | 1 | 1 |

Table 2-1: homeomorphism classification when $\beta^{2} \equiv \pm 1(\bmod \alpha)$

|  | $F_{1} \cong F_{2}$ | $F_{5} \cong F_{6}$ | $F_{3} \cong F_{4}$ | $F_{7} \cong F_{8}$ | $F_{9}$ | $F_{10}$ | $F_{11}$ | $F_{12}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\beta \equiv \pm 2 \quad(\bmod \alpha)$ | 1 |  | 1 | 1 | 1 | 1 | 1 | 1 |
| $\beta \equiv \pm 2^{-1}(\bmod \alpha)$ | 1 | 1 |  | 1 | 1 | 1 | 1 | 1 |
| otherwise | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

Table 2-2: homeomorphism classification when $\beta^{2} \not \equiv \pm 1(\bmod \alpha)$

## 3. 3-bridge Presentations

By considering double branched covering, genus-two Heegaard splittings correspond to 3 -bridge presentations of 3 -bridge knots or links in $S^{3}$.

## Main theorem 3

There exist 3-bridge links each of which admits infinitely many 3-bridge presentations.

In fact, there exist infinitely many 3 -bridge links with this property. For example,
$M_{1}:=S\left(A ;\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{2}, \beta_{2}\right)\right)$, where $A$ is an annulus
$M_{2}$ : be the link exterior of a hyperbolic 2-bridge link $L=K_{1} \cup K_{2}$
$M:=M_{1} \cup_{f} M_{2}$, where $f$ is a homeomorphism from $\partial M_{1}=A_{1} \cup A_{2}$ to $\partial N\left(K_{1}\right) \cup \partial N\left(K_{2}\right)$ the regular fiber on $A_{i} \leftrightarrow$ the meridian of $K_{i}$ by $f(i=0,1)$
$\Rightarrow M$ admits infinitely many Heegaard splittings up to isotopy.
Moreover, from each of those Heegaard splittings, we obtain a 3-bridge link which admits infinitely many 3 -bridge presentations.

Example Let $M_{1}=S^{3} \backslash N\left(K_{4,10}\right)$ and $M_{2}=S^{3} \backslash N(S(3,10))$, then we obtain the following 3 -bridge link with infinitely many 3 -bridge presentations.


