On genus two Heegaard splittings of some non-simple 3-manifolds

Yeonhee JANG Osaka University

1. Main Theorem 1

Definition M: an orientable closed 3-manifold. $(V_1, V_2; F), (W_1, W_2; G)$: two Heegaard splittings of the same genus $(V_1, V_2; F)$ and $(W_1, W_2; G)$ are **homeomorphic** (**isotopic** resp.) $\iff \exists$ homeomorphism $f : M \longrightarrow M$ (isotopy $f_t : M \longrightarrow M$ resp.) s.t. $f(F) = G \ (f_1(F) = G \text{ resp.}).$

Theorem 1 (Morimoto) S_1, S_2 : Seifert fibered spaces over a disk with 2 exceptional fibers $f: \partial S_2 \longrightarrow \partial S_1$ homeomorphism $\implies M = S_1 \cup_f S_2$ admits at most 4 non-isotopic Heegaard splittings of genus two.

Remark (1) Morimoto listed up all possible Heegaard splittings up to isotopy. (2) If $M = S_1 \cup_f S_2$ admits four non-isotopic Heegaard splittings of genus two, then

$$S_i = S^3 \setminus T_{2,2n_i+1} \text{ and } f : h_2 \longmapsto \varepsilon m_1, m_2 \longmapsto \delta h_1$$
 (*)

,where $n_i > 1, n_i \in \mathbb{N}$, $\varepsilon \delta = \pm 1$ and $T_{2,2n_i+1}$ is a torus knot of type $(2, 2n_i + 1)$.

Main theorem 1

Any two Heegaard splittings on Morimoto's list are not isotopic. In particular, if (*) holds, then $M = S_1 \cup_f S_2$ admits exactly 4 non-isotopic Heegaard splittings.

The homeomorphism classification of Heegaard splittings of M can be obtained from Main Theorem 1 and by calculating the mapping class group of M. For example, if (*) holds, then

(1) M admits exactly 4 Heegaard splittings up to homeomorphism when $n_1 \neq n_2$,

(2) M admits exactly 3 Heegaard splittings up to homeomorphism when $n_1 = n_2$.

2. Generalization to Other Non-simple 3-manifolds

By arguments similar to those for Theorem 1 and Main Theorem 1, we can classify Heegaard splittings of some family of manifolds containing essential separating torus (cf. Kobayashi '84). We give an example.

Main theorem 2

 $M_1 = S(D^2; \beta_1/\alpha_1, \beta_2/\alpha_2)$ $M_2 = S^3 \setminus N(S(\alpha, \beta))$, where $S(\alpha, \beta)$ is a hyperbolic 2-bridge knot Let $M = M_1 \cup_f M_2$ (the regular fiber of $M_1 \leftrightarrow$ the meridian loop of M_2 by f. Then

(1) any Heegaard surface of M is isotopic to the surface obtained from one of the following surfaces by applying Dehn twists D_l along the attaching torus in the direction of a longitude l of the 2-bridge knot.

 F_1 is the union of A in M_1 and the twice-punctured torus in M_2 associated with (τ_1, ρ_2) , F_2 is the union of A in M_1 and the twice-punctured torus in M_2 associated with (τ_1, ρ'_2) , F_3 is the union of A in M_1 and the twice-punctured torus in M_2 associated with (τ_2, ρ_1) , F_4 is the union of A in M_1 and the twice-punctured torus in M_2 associated with (τ_3, ρ'_1) , F_5 is the union of A in M_1 and the twice-punctured torus in M_2 associated with (ρ_2, τ_1) , F_6 is the union of A in M_1 and the twice-punctured torus in M_2 associated with (ρ'_2, τ_1) , F_7 is the union of A in M_1 and the twice-punctured torus in M_2 associated with (ρ'_1, τ_2) , F_8 is the union of A in M_1 and the twice-punctured torus in M_2 associated with (ρ'_1, τ_2) , F_8 is the union of A in M_1 and the twice-punctured torus in M_2 associated with (ρ'_1, τ_2) , F_9 is the union of A'_1 in M_1 and the twice-punctured torus in M_2 associated with (ρ'_1, τ_2) , F_9 is the union of A'_1 in M_1 and the two-bridge sphere of M_2 ,

- F_{10} is the union of A'_2 in M_1 and the two-bridge sphere of M_2 ,
- F_{11} is the union of A'_3 in M_1 and the two-bridge sphere of M_2 ,
- F_{12} is the union of A'_4 in M_1 and the two-bridge sphere of M_2 .

(2) The following tables give the isotopy and homeomorphism classification of the Heegaard surfaces in (1).

		F_1	F_2	F_3	F_4	F_5	F_6	F_7	F_8	F_9	F_{10}	F_{11}	F_{12}
$\alpha = 5$		\bigcirc		\bigcirc		0		\bigcirc		0	0	0	0
	$\beta \equiv \pm 2 \pmod{\alpha}$		\supset	\bigcirc	\bigcirc		\supset	\bigcirc	0	0	0	0	\bigcirc
$\alpha \ge 7$	$\beta \equiv \pm 2^{-1} \pmod{\alpha}$	0	0	\bigcirc		0	\bigcirc	\bigcirc		0	0	0	0
	otherwise	0	0	\bigcirc	0	0	0	\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc

Table 1: isotopy classification

 $\bigcirc \longleftrightarrow$ a family of infinitely many Heegaard surfaces obtained from F_i for the corresponding *i* by applying Dehn twist along the attaching torus in the direction of a longitude of the 2-bridge knot.

	$F_1 \cong F_2 \cong F_3 \cong F_4$	$F_5 \cong F_6 \cong F_7 \cong F_8$	F_9	F_{10}	F_{11}	F_{12}
$\alpha = 5$	-	1	1	1	1	
$\alpha \geq 7$	1	1	1	1	1	1

Table 2-1: homeomorphism classification when $\beta^2 \equiv \pm 1 \pmod{\alpha}$

	$F_1 \cong F_2$	$F_5 \cong F_6$	$F_3 \cong F_4$	$F_7 \cong F_8$	F_9	F_{10}	F_{11}	F_{12}
$\beta \equiv \pm 2 \pmod{\alpha}$	-	L	1	1	1	1	1	1
$\beta \equiv \pm 2^{-1} \pmod{\alpha}$	1	1	-	1	1	1	1	
otherwise	1	1	1	1	1	1	1	1

Table 2-2: homeomorphism classification when $\beta^2 \not\equiv \pm 1 \pmod{\alpha}$

3. 3-bridge Presentations

By considering double branched covering, genus-two Heegaard splittings correspond to 3-bridge presentations of 3-bridge knots or links in S^3 .

Main theorem 3

There exist 3-bridge links each of which admits infinitely many 3-bridge presentations.

In fact, there exist infinitely many 3-bridge links with this property. For example,

$$\begin{split} M_1 &:= S(A; (\alpha_1, \beta_1), (\alpha_2, \beta_2)), \text{ where } A \text{ is an annulus} \\ M_2 &: \text{ be the link exterior of a hyperbolic 2-bridge link } L = K_1 \cup K_2 \\ M &:= M_1 \cup_f M_2, \text{ where } f \text{ is a homeomorphism from } \partial M_1 = A_1 \cup A_2 \text{ to } \partial N(K_1) \cup \partial N(K_2) \\ & \text{ the regular fiber on } A_i \leftrightarrow \text{ the meridian of } K_i \text{ by } f \ (i = 0, 1) \end{split}$$

 $\Rightarrow M$ admits infinitely many Heegaard splittings up to isotopy.

Moreover, from each of those Heegaard splittings, we obtain a 3-bridge link which admits infinitely many 3-bridge presentations.

Example Let $M_1 = S^3 \setminus N(K_{4,10})$ and $M_2 = S^3 \setminus N(S(3,10))$, then we obtain the following 3-bridge link with infinitely many 3-bridge presentations.

