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1. Main Theorem 1

Definition M : an orientable closed 3-manifold.

(V1, V2; F ), (W1,W2; G) : two Heegaard splittings of the same genus

(V1, V2; F ) and (W1,W2; G) are homeomorphic (isotopic resp.)

⇐⇒ ∃ homeomorphism f : M −→ M (isotopy ft : M −→ M resp.)

s.t. f(F ) = G (f1(F ) = G resp.).

Theorem 1 (Morimoto)

S1, S2 : Seifert fibered spaces over a disk with 2 exceptional fibers

f : ∂S2 −→ ∂S1 homeomorphism

=⇒ M = S1 ∪f S2 admits at most 4 non-isotopic Heegaard splittings of genus two.

Remark (1) Morimoto listed up all possible Heegaard splittings up to isotopy.

(2) If M = S1 ∪f S2 admits four non-isotopic Heegaard splittings of genus two, then

Si = S3 \ T2,2ni+1 and f : h2 7−→ εm1,m2 7−→ δh1 (∗)
,where ni > 1, ni ∈ N, εδ = ±1 and T2,2ni+1 is a torus knot of type (2, 2ni + 1).

Main theorem 1

Any two Heegaard splittings on Morimoto’s list are not isotopic.

In particular, if (∗) holds,

then M = S1 ∪f S2 admits exactly 4 non-isotopic Heegaard splittings.

The homeomorphism classification of Heegaard splittings of M can be obtained from

Main Theorem 1 and by calculating the mapping class group of M . For example, if (∗)
holds, then

(1) M admits exactly 4 Heegaard splittings up to homeomorphism when n1 6= n2,

(2) M admits exactly 3 Heegaard splittings up to homeomorphism when n1 = n2.

2. Generalization to Other Non-simple 3-manifolds

By arguments similar to those for Theorem 1 and Main Theorem 1, we can classify

Heegaard splittings of some family of manifolds containing essential separating torus (cf.

Kobayashi ’84). We give an example.



Main theorem 2

M1 = S(D2; β1/α1, β2/α2)

M2 = S3 \N(S(α, β)), where S(α, β) is a hyperbolic 2-bridge knot

Let M = M1 ∪f M2 (the regular fiber of M1 ↔ the meridian loop of M2 by f .

Then

(1) any Heegaard surface of M is isotopic to the surface obtained from one of the

following surfaces by applying Dehn twists Dl along the attaching torus in the direction

of a longitude l of the 2-bridge knot.

F1 is the union of A in M1 and the twice-punctured torus in M2 associated with (τ1, ρ2),

F2 is the union of A in M1 and the twice-punctured torus in M2 associated with (τ1, ρ
′
2),

F3 is the union of A in M1 and the twice-punctured torus in M2 associated with (τ2, ρ1),

F4 is the union of A in M1 and the twice-punctured torus in M2 associated with (τ3, ρ
′
1),

F5 is the union of A in M1 and the twice-punctured torus in M2 associated with (ρ2, τ1),

F6 is the union of A in M1 and the twice-punctured torus in M2 associated with (ρ′2, τ1),

F7 is the union of A in M1 and the twice-punctured torus in M2 associated with (ρ1, τ2),

F8 is the union of A in M1 and the twice-punctured torus in M2 associated with (ρ′1, τ2),

F9 is the union of A′
1 in M1 and the two-bridge sphere of M2,

F10 is the union of A′
2 in M1 and the two-bridge sphere of M2,

F11 is the union of A′
3 in M1 and the two-bridge sphere of M2,

F12 is the union of A′
4 in M1 and the two-bridge sphere of M2.

A A′1 A′2 A′3 A′4

(2) The following tables give the isotopy and homeomorphism classification of the Hee-

gaard surfaces in (1).

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

α = 5 © © © © © © © ©
β ≡ ±2 (mod α) © © © © © © © © © ©

α ≥ 7 β ≡ ±2−1 (mod α) © © © © © © © © © ©
otherwise © © © © © © © © © © © ©

Table 1: isotopy classification

© ←→ a family of infinitely many Heegaard surfaces obtained from Fi for the corre-

sponding i by applying Dehn twist along the attaching torus in the direction of a longitude

of the 2-bridge knot.



F1
∼= F2

∼= F3
∼= F4 F5

∼= F6
∼= F7

∼= F8 F9 F10 F11 F12

α = 5 1 1 1 1 1

α ≥ 7 1 1 1 1 1 1

Table 2-1: homeomorphism classification when β2 ≡ ±1 (mod α)

F1
∼= F2 F5

∼= F6 F3
∼= F4 F7

∼= F8 F9 F10 F11 F12

β ≡ ±2 (mod α) 1 1 1 1 1 1 1

β ≡ ±2−1 (mod α) 1 1 1 1 1 1 1

otherwise 1 1 1 1 1 1 1 1

Table 2-2: homeomorphism classification when β2 ≡/± 1 (mod α)

3. 3-bridge Presentations

By considering double branched covering, genus-two Heegaard splittings correspond to

3-bridge presentations of 3-bridge knots or links in S3.

Main theorem 3

There exist 3-bridge links each of which admits infinitely many 3-bridge presentations.

In fact, there exist infinitely many 3-bridge links with this property. For example,

M1 := S(A; (α1, β1), (α2, β2)), where A is an annulus

M2 : be the link exterior of a hyperbolic 2-bridge link L = K1 ∪K2

M := M1∪f M2, where f is a homeomorphism from ∂M1 = A1∪A2 to ∂N(K1)∪∂N(K2)

the regular fiber on Ai ↔ the meridian of Ki by f (i = 0, 1)

⇒ M admits infinitely many Heegaard splittings up to isotopy.

Moreover, from each of those Heegaard splittings, we obtain a 3-bridge link which

admits infinitely many 3-bridge presentations.

Example Let M1 = S3 \ N(K4,10) and M2 = S3 \ N(S(3, 10)), then we obtain the

following 3-bridge link with infinitely many 3-bridge presentations.


