Braid ordering, Nielsen-Thurston classification and geometry of knot complements

Tetsuya Ito *

1 Introduction

 B_n : Braid group, $\hat{\beta}$: Closure of braid β .

 $\Delta = (\sigma_1 \sigma_2 \cdots \sigma_{n-1})(\sigma_1 \sigma_2 \cdots \sigma_{n-2}) \cdots (\sigma_1 \sigma_2)(\sigma_1):$ Garside's fundamental braid.

- Nielsen-Thurston theorem states braids $\beta \in B_n$ are classified into following three types by their dynamics:
 - 1. *periodic* : some powers of β is equal to Δ^m for some integer m.
 - 2. reducible: its representing homeomorphism is reducible.
 - 3. *pseudo-Anosov* : its representing homeomorphism is pseudo-Anosov.
- On the other hand, Thurston also shows knots are classified into following three types by the geometry of its complements.
 - 1. Torus knot: knots which can be positioned to canonically embedded torus.
 - 2. Satellite knot: its complement contains essential torus.
 - 3. *Hyperbolic knot*: its complement admits complete hyperbolic structure with finite volume.

Unfortunately, these classifications are not in one-to-one correspondence.

• When the Nielsen-Thurston classification determines the geometry of the complements of closed braids?

^{*}Graduate school of Mathematical Sciences, the University of Tokyo. $\mathit{Email:}$ tetitoh@ms.utokyo.ac.jp

2 Braid ordering, Dehornoy floor

Definition 1. (Dehornoy ordering)

For $\alpha, \beta \in B_n$, we say that $\alpha < \beta$ is true if $\alpha^{-1}\beta$ admits a braid word representative which contains σ_i , and does not contain $\sigma_1^{\pm 1}, \sigma_2^{\pm 1} \cdots, \sigma_{i-1}^{\pm 1}, \sigma_i^{-1}$ for some *i*. The relation < defines left-invariant total ordering on B_n . We call this ordering on B_n *Dehornoy ordering*.

Definition 2. (Dehornoy floor)

The Dehornoy floor $[\beta]_D$ of braid $\beta \in B_n$ is a positive integer such that:

 $\Delta^{2[\beta]_D} \leq \beta < \Delta^{2[\beta]_D+2} \text{ if } \beta > 1, \Delta^{-2[\beta]_D-2} < \beta \leq \Delta^{-2[\beta]_D} \text{ if } \beta \leq 1$

- The Dehornoy floor is a measure of complexity in terms of braid ordering.
- The Dehornoy floor is efficiently computable for each braid.

Proposition 1 (Properties of Dehornoy floor ([MN])). Let β be a braid. Then following holds.

- 1. If a braid $\beta \in B_n$ is represented by a braid word which contains s occurrence of σ_1 and k occurrence of σ_1^{-1} , then $[\beta]_D < \max\{s,k\}$.
- 2. $|[\beta]_D [\beta']_D| \leq 1$ if β and β' are conjugate.
- 3. For every n, there exists a positive integer r(n) such that for every braid $\beta \in B_n$, if $[\beta]_D > r(n)$ then $\widehat{\beta}$ is the unique closed representative of its closure in B_n . That means, if $\widehat{\beta} = \widehat{\beta}'$ is true for some $\beta' \in B_n$, then β and β' are conjugate.

3 Main results

Theorem 1 (Main Theorem). Let $\beta \in B_n$ be a braid whose closure is a knot. If $[\beta]_D \geq 3$, following holds:

- 1. β is periodic if and only if $\hat{\beta}$ is a torus knot.
- 2. β is reducible if and only if $\hat{\beta}$ is a satellite knot.
- 3. β is pseudo-Anosov if and only if $\hat{\beta}$ is a hyperbolic knot.
- When the number of strand are prime, the situation becomes much simpler.

Corollary 1. Let p be a prime and $\beta \in B_p$ be a braid whose closure is a knot and $[\beta]_D \geq 3$. Then $\hat{\beta}$ is hyperbolic if and only if β is non-periodic.

As a corollary, we obtain almost disjoint infinite family of hyperbolic knots for each pseudo-Anosov elements of mapping class group of punctured disc. Let π : $B_n \to MCG(D_n)$ be a natural projection between braid group and the mapping class group of *n*-punctured disc. **Corollary 2.** Suppose $[f] \in MCG(D_n)$ be a pseudo-Anosov element and let $P([f]) = \{\widehat{\beta} | \beta \in \pi^{-1}([f]), [\beta]_D \ge 3\}.$

Then P([f]) consists of infinite number of distinct hyperbolic knots. Moreover for another pseudo-Anosov element $[g] \in MCG(D_n)$, if [g] is not conjugate to [f], then the intersection of P([f]) and P([g]) are finite.

4 Idea of proof

- Torus knots and reducible braids are well-understood ([Me]), we can easily prove equivalence of them.
- Closure of reducible braids are satellite knots. To prove the converse, we investigate essential torus T.
- Birman-Menasco's braid foliation theory ([BM]) and our assumption shows T can be positioned to "standard position".
- By seeing how T interferes braidings of braid strands, we see only possible position of T is type 0: That is, the core of T is a closed braid, hence satellite knot is represented by reducible braid.
- Both classifications are exclusive, we obtain equivalence of hyperbolic knots and pseudo-Anosov braids.

References

- [BM] J.Birman, W.Menasco, Special positions for essential tori in link complements, Topology, 33, No.3 (1994), 525-556.
- [DDRW] P. Dehornoy, I. Dynnkov, D. Rolfsen and B. Wiest, *WHY ARE THE BRAIDS ORDERABLE ?*, Panoramas et Synthéses **14**, Soc. Math. France. 2002.
- [I1] T.Ito, Application of braid ordering to knot theory I: Essential surface in link complement, In preparation.
- [I2] T.Ito, Application of braid ordering to knot theory II: Braid dynamics and the geometry of closed braid complements, In preparation.
- [Me] W.Menasco, On iterated torus knots and transversal knots, Geometry & Topology, 5, (2001), 651-682.
- [MN] A.Malyutin, N.Netsvetaev, *Dehornoy's ordering on the braid group and braid moves*, St.Peterburg Math. J. **15**, No.3 (2004), 437-448.