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Khovanov homology

[Khovanov, 2000] A bigraded chain complex C**(D) (of
abelian groups) for each link diagram D so that

Kh" (D) = H(C*/(D))

is invariant under Reidemeister moves. This is nowadays
called Khovanov homology.

~+ Relation to TQFT was pointed out.

Theorem 1.1 ([Kronheimer and Mrowka, 2011])
Khovanov homology detects the unknot.

[Lee, 2005] constructed a variant.

~» a concordance invariant [Rasmussen, 2010].

[Bar-Natan, 2005] Khovanov complex in terms of
cobordisms.

~> |nvariants for tangles instead of links.

~» Changing TQFT, we get variants including Lee homology
and Bar-Natan homology.

~ “universal” Khovanov homology.
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Vassiliev derivative

X "): the set of singular links with exactly » double points.

Definition ([Vassiliev, 1990] (implicit), [Birman, 1993],

[Birman and Lin, 1993])

v: a knot invariant with values in A.

v o) X1 5 A by v ==y and Vassiliev skein relation:

() =1 () - ()

We call v{") the 7-th (Vassiliev) derivative of v.

Definition

v is called of finite type (or Vassiliev type) if v(") = 0 for
r > 0.

Slogan Finite-type invariants are polynomials.
cf. [Voli¢, 2006, Budney et al., 2017].

Theorem 1.2 ([Birman, 1993, Birman and Lin, 1993])

The Taylor coefficients of the Jones polynomial at t = 1 are of
finite type.

Any relations between Khovanov homology and finite type
invariants?

First goal

To understand Khovanov homology in view of Vassiliev theory.
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Vassiliev derivatives of knot homologies

What are Vassiliev derivatives of knot homologies?

Strategy

Realize a crossing change as a morphism of chain complexes:

b0 (X) = (X)

~+ For singular diagrams, take mapping cones recursively:

C* (><> = Cone@)

~+ A categorified Vassiliev skein relation:

o () B () = (X) —
= () 17 (00) + 1 () -

The long exact sequence above yields the ordinary Vassiliev
skein relation on the Euler characteristics.

Check invariance under moves of double points:
KEX Ke=X- 99
/ \ \ / N
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Main result |
Main Theorem | (lto, Y.)

Khovanov homology Kh(—) extends to a singular link invariant
so that

: B wnid (NS g (\ )
there is a morp/.n..sm D Kh (V/\) — Kh. ( /\' together
with a categorified Vassiliev skein relation

8 () 5 w7 (0) — 1 () —
L netts () a1 (M) 5 kit () » -

the following categorified version of Fl relation:

()

The morphism ®, called the genus-one morphism, is different

from the concordance theoretic crossing-change (e.g. see
[Hedden and Watson, 2018]).

Remark

In fact, ® is the first concrete instance of non-trivial maps of
bidegree (0, 0).

Meaning of Fl relation

F| relation arises from comparison of the following two “paths:”
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Main result |l

Can Vassiliev derivatives Kh(>-<) be computed independently of
the resolutions?

Motivation

o Cone(®) is large.
~= Difficult to compute examples.
@ If two of the three homologies

i () KR () - and KR (OX)

are computed, the other may also be determined thanks to the
categorified Vassiliev skein relation.

Main Theorem Il (Y. arXiv:2007.15867)

D: a singular link diagram with exactly one double point.

~+ There is a chain complex C':*(D), called the crux complex,

Crx

together with a (graded) endomorphism

= C«>|<—2,*—2<D) N O*+2,*+4(D>

Crx

Ckn <><) ~ Cone(Z)

Slogan Main Theorem Il computes the 1°' Vassiliev derivative
of Kh(—).

such that
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Today's plan

@ Universal Khovanov

© Introduction complexes
@ Khovanov homology @ Fundamental cofiber
@ Vassiliev derivative sequences
@ Vassiliev derivatives of @ Applying TQFTs
knot homologies @ Invariance
@ Main result | © The first Vassiliev derivative
@ Main result |l @ Overview
@ Twisted action
© Khovanov homology @ Crux complexes
@ The category Coﬁg(YO, Y1) @ Absolute exact sequences
@ Singular link-like graph @ Key exact sequence
@ Smoothings of link-like @ Generalized 9-lemma
graphs @ Proof of Main Theorem I
@ Multi-fold complexes @ Application
@ The multi-fold complex of @ Reducible crossing
smoothings @ Homology of twist knots
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Khovanov homology
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The category Coby(Yp, Y3)

Yy, Yi: compact oriented O-manifolds.

Definition
Define Coby(Y), Y1) to be a category such that
@ objects are (oriented) 1-cobordisms W : Yy — Y7;

@ morphisms are (diffeo. classes of ) 2-cobordisms with
corners (aka. 2-bordisms).

@ composition is given in terms of gluing.

2-bordisms S : W, — W; € Cobsy(Y), Y1):

Define Coﬁg(YO, Y1) to be the k-linear additive category
generated by Coby(Y), Y1) subject to the following relations:

S-relation S1I.5% ~ 0 for S : Wy — Wr;
T-relation SIIT? ~2- S for S : Wy — Wry;

AT u-relation

The morphisms of Coﬁg(YO, Y1) are graded by Euler
characteristics.

Coﬁg(Yo, Y1): a graded k-linear category.
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Singular link-like graph

Definition
A singular link-like graph is a planar graph
G ={F(G) =2 V(G)}, say V'((G) the set of r-valent vertices,
together with data
@ asubset ¢(G) C V4(G) of crossings with signs;
~ elements of ¢*(G) = V(G) \ ¢(G): double points;
@ asubset E¥(G) C E(G) of wide edges;
such that each vertex is locally depicted as follows:

LY [ XXX
4N\ | i N | /N

source of | target of |p. -1ant | positive | negative | double
a wide edge | a wide edge | vertex |crossing | crossing | point

In particular, a singular link diagram is nothing but a singular
link-like graph without wide edges.

@ Vertices of the left three types are omitted from pictures.

@ Bivalent vertices are removed whenever possible.

If V4(G) = 2, then the union of non-wide edges is a smooth
1-manifold.
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Smoothings of link-like graphs

Definition

A map o : V4G) — Z is said to lie in the effective range if
e 0 < a(v) <1 for positive crossings v;

o —1 < a(v) <0 for negative crossings v;

o —2 < a(v) <1 for double points v.

In this case, define the a-smoothing G, by replacing
quadri-valent vertices as follows:

v e VHG) | al) = -2|a(v) = —1|alv) =0
X | X | OO ) X
X X | X

X (| X

For each o : V*(G) — Z, define |G| € Coﬁé(@, @) as follows:
aeff. |G,|: the union of non-wide edges of G,
~ |G| (+ orientation) is an object of Coby (9, &).
a:non-eff. |G,| = 0.

(=) X=X

Precisely, we need a checkerboard coloring for G to determine
the orientation on |G,|. Details are omitted in this talk.
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Multi-fold complexes

Idea: construct Khovanov complex of GG by categorically
summing up all states (i.e. v in the effective range).

Khovanov discussed cubes of states.

~> We generalize them to consider double points.

A: an additive category, S: a finite set.

Definition
An S-fold complex in A consists of

@ a family of objects { X“}, of A indexed by elements « of the
free abelian group generated by S;

e for each element a € S, a morphism d, = d% : X — X'

which satisfy the following relations:

=0, dd,=dyd, (a#Db)

a

Definition
X°, Y*: S-fold complexes in A.

~» a morphism f : X* — Y* of S-fold complexes consists of
a morphism f“: X% — Y for each a € ZS with fd, =d,f.

~~ MChg(A): the category of S-fold complexes.

If A is additive (resp. abelian), then so is MChg(.A).

Example

For S = {x}, MChy,(A) = Ch(A).

If S = {H,V}, MChy vy (A) is identified with the category
of bicomplexes in A.

If S = 57105y, then there is a canonical equivalence

MCh51H52 (.A) =~ 1\/1(3}151 (MCh52 (.A))
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The multi-fold complex of smoothings

Define three morphisms in Coﬁg(—, —) as follows:

I
|><\ N

®)_=0and 0, P =0

Proof

Define a V*4(G)-fold complex Sm(G)* in Coﬁé(@, ) by
Sm(G)* = |G| with differentials given as follows:
@ if v is a double point, d, is given by

av—— av——l

~oo ] 5P

@ if v is a negative crossing, d, is given by

_5+

v)=
I‘l—>0—>m

av——l av =0

R (R

@ if v is a positive crossing, d,, is given by

a(v)=0 a(v)=1

(=[x o0

o= 00—
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Universal Khovanov complexes

Total complexes of bicomplexes:

{bicomplexes} 2™ fdouble complexes} — 23 {complexes}

Zaj } s Z?] } s 27]
X1 X D,y X

dy, dy » dp, (—1>idv — ZdH + (-1)Zdv

Definition
S: a totally ordered set.

~» For a bounded S-fold complex X, define Tot(X) as a
complex given by

Tot(X)" = P X, die = Y (—1)Z==Od,

la|=n acsS

here |a| = > al(a).

The isomorphism type of Tot(X) does not depend on total orders
on S. In fact, there is a “universal” sign convention.

Definition
For a singular link-like graph (G, we define the universal
Khovanov complex as

|G] = Tot(Sm(G)*)
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Fundamental cofiber sequences

X*: an S-fold complex.
@ For ag € ZS, we write X [ag|® the S-fold complex with

X[@O]& = X" ) dX[ao],a = (_1)a0(a)dX,a

X |ay) is called the shift of X* by «y.

@ Fora € S and r € Z, we write 0="X* (resp. 0=", etc...) the
S-fold complex given by

o= XY = {Xa afa) < r(resp. afa) > r,etc...),

0 otherwise,
o Yo ala) <r—1(resp. ala) > r,etc...),
oa" X,0 0 otherwise.

=" X* is called the stupid truncation of X* along a at r.

| q
=)

Proposition 2.2

X°®: a bounded S-fold complex, ay € S, r € Z.
~ Define ¢ : (027" 1X )[ag] — 02" X € MCh(A) by

L s Xotr—2a Y yat(r-La > 0
lgpajt(r—l)ao \Lgpa—i_rao:dao \Lgpa+(r+1)a0

— () N XOH’TCLO H on+(7“+1)a0 7 e
ao o)

Then, for the induced morphism
O : Tot((ai)r_lX)[ao]') o Tot(aaZOTX') :

we have an isomorphism Tot(X*®) = Cone(®).
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Fundamental cofiber sequences

Proposition 2.3

For every singular link-like graph D, there are isomorphisms

D] = (015 D) -
DA] = cone (D = [] )
[X] = e (DX] 5 [A]) -

Proof

By direct computations, we obtain

Tot (" sm () 1) = [
ot (225m (X)) = (]
Tot (ot sm () ) ) = D J 01
tot (21 sm () ) = [
Tot (o sm (X)) o) = X

ot (22 5m (X)) = A1

~+ we get the result by Proposition 2.2. []

Corollary 2.4

For every ordinary link diagram D, [ D] agrees with the one
defined in [Bar-Natan, 2005].
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Applying TQFTs

Recall a 2-dim. TQFT is nothing but a Frobenius algebra.

Fact
For h,t € k, endow a Frobenius algebra structure on

Chi = klz]/(x* — hx —t) by

AD)=10z+z®1-hl®l, Ax)=2R0z+tl®1
e(l)=0, elx)=1

Then, it gives rise to a k-linear functor

Zh,,t ; COEg(@, @) — Mod;.

For every link diagram D,

HZyo[D] = Kh(D), HZ,o[D] = BN(D), HZy,[D] = Lee(D

Remark
In the case h =t =0, Cyp is graded so that

degl=1, degx=-—1

~+ The TQFT Z;, respects gradings.
cf. the Euler grading on Coby (2, @).

~+ Second grading on K/, called the ¢g-grading.
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Invariance

Theorem 2.5 (lto, Y. 2020)

The universal Khovanov complex [ D] is invariant under the
moves of singular link diagrams up to chain homotopy
equivalences.

~+ Applying Z}, +, we get extensions of
@ Khovanov homology,

@ Lee homology, and

e Bar-Natan homology

to singular links.

Approach: elementary moves of double points:

AN R / / R/ \ R D
KX KXo X 05
/ \ \ / N

Since invariance under Reidemeister moves is known, the result
essentially follows from Proposition 2.3 and the following.

|

Proposition 2.6

The genus-one morphism @ js invariant under the moves
above; i.e. there are homotopy commutative squares

kel = Lke] [0 0]
R R

DA 16 10
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The first Vassiliev derivative
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Overview

Throughout the section, we fix

G: a singular link-like graph with a unique double point.

Problem
Compute Kh(G).

Approach

@ Construct a complex |G in Coﬁé(@, ), called the crux
complex;

2 C1crx(G(> = ZO,O[[G]]crx-
@ Define = : [G]cx|2] — [Glex|—2].
@ Show [G] ~ Cone(Z).

~» Kh(G) = H* Cone(Zyo(=2)).

@ = has an explicit description.
@ [G]ux is at least four times smaller then [G].

~~ Reduce the size of complexes computing [G].

Regarding higher derivatives of Kh, for a general G with
exactly » double points, we have a spectral sequence

B = (1°'-derivatives of Kh) = Kh(G)

20/ 32



The first Vassiliev derivative
[ ]

Twisted action

Recall in the category of cobordisms, the interval [ is a
module and a comodule over the circle S

M:::[®51—>[, A = ‘;1—>1®51

Proposition 3.1
The following also give other S*-module/comodule
structures on I up to Bar-Natan’s 4 Tu-relation:

We call them twisted action/coaction of S on I.

DEINE
Co0 = k[z]/(x*): The Frobenius algebra for Khovanov

homology.

~+ The twisted action/coaction are

~

p: Coo®@Coo — Coo , A: Coo— Coho®Cyp
a® 1 = a I » 1IQzrz—2z®1

a X x — —ax xr r X x

In the situation above, 1z and A are homogeneous with respect to
the Euler degrees and

deg 11 = degﬁ = degpu =deg A = —1
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Crux complexes

A map a: ¢(G) — Zis called a G-crux map if
« lies in the effective range (with o/(double pt.) = 0);

the edges adjacent to the (unique!) double point lie in the
same connected component in |G,|.

Gl = |Go| @ G-crux map,
e 0 otherwise.

Twisted arcs

The “upper half” of the component encircling the double point:

X a-smoothing > <
f 7

Definition
Define a ¢(G)-fold complex Crx(()*® by

Crx(G)* = |Galex

with the differentials given in the same way as Sm(G)® with
twisted actions/coactions on twisted arcs:

(= 3
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Crux complexes

In order to verify Crx(G)® is actually an ¢(G)-fold complex, we
have to check the following.

For v # w € ¢(G), the following commutes:

d
|Goz|crx —U> ‘Goz+v|crx

.l Ju

d
‘Goz—l—w ‘crx —w> |Goz—|—v+w |crx

Proof
CASE d,,d, € {u, A}: same as Sm(—)°.

CASE d,.d, € {u.Ji} or d,,d, € {A,A}: The result follows
from the (co)associativity of 11 and A.

The other non-trivial cases: It remains to discuss

&j) c% C%AC%
o%& 0—>é%>

They are verified e.g. as
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Crux complexes

Definition
The complex |G|« = Tot(Crx((G)*®) is called the crux complex

of GG.

In particular, write

Ccrx (G) = ZO,O [[G]]crx

Example

[ A
] | DT

[Gle = @ =~ Tot ul l
It W ¢ \ &) ) )

~+ We obtain H*C¢x(G) = 0 except
HChn(G) Xz @1) =7,

H_lcCFX<G> = C(%g/«l? _1>7 <£C, Cl?), (ZIZ, —ZC>>
~ 7. & 7/27 .

In the example above, the summands in H*C¢(G) are
homogeneous with respect to the ¢-degree.
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Absolute exact sequences

Strategy

To relate |G« with [G], we want to place them in a single
exact sequence.

YET, Coﬁé(@,@) is not abelian.

~~ What is exactness?

Definition
A sequence

fi—l _ fz ) fi—i—l
.. ___>)(Z_+_X7+1___+...

in a (pre-)additive category A is said to be absolutely exact if
the following conditions are satisfied:

firLf1 = 0 for every i € Z;
it is contractible as a chain complex.

Remark
TFAE:

o {X' f'}is absolutely exact;
o For every functor F': A — V with V abelian, {FX", F'f'} is

exact.

Example
Absolute exact sequence of length 1 = zero object

Absolute exact sequence of length 2 = isomorphism

Absolute exact sequence of length 3 = split short exact
sequence
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Key exact sequence

Proposition 3.3 (cf. Rl-moves by [Bar-Natan, 2005])

The following are split short exact sequences:

. .
0TS Tes S T150

A
VP N Y Sy N

Proof

First, observe that the S-relation implies
po(l@n) =folan=(I®ec)oA=Ixe)oA=id
In addition, the 4T u-relation yields

Ao(Ige)+(I@n)ofi=Ao(I®e)+ (I ®n)op=idgs

[]
Corollary 3.4

The following are absolutely exact sequences:
O%SQA ...... —>><—>><H><M><%O
Proof

The first one is obvious since ® = ( in this case.

The second follows from the observation & = zﬁ []
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Key exact sequence

Definition
For o : ¢(G) — 7Z, define morphisms

X | D) P X
a1Crx (07 a 0%

---------------

A > < L\ _ (,Tj : >< — > < «: G-crux map,

0 0 otherwise,

The families . = {1*}, and © = {n“},, form the following
morphisms of ¢(GG)-fold complexes respectively:

o () () s () e ()"

We obtain a sequence of complexes

[X]
N R R R

which is degreewisely absolutely exact.

Crx

~

~» The “bulk” part should be determined by the “edge” part.
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Generalized 9-lemma

Proposition 3.6 (Generalized 9-lemma (absolute version))

If X" is a bounded bicomplex which is absolutely exact on
each fixed vertical degree, then Vp+ 1 < q there is a morphism

= : Tot(o59X) — Tot(o57X)[1]

of chain complexes such that

Cone(Z) ~ Tot(o? o' X)

Sketch

We have an isomorphism
Tot(X) = Cone (Tm:(a,qu)()m o, Tot(aqu))

with LHS contractible.
~ {, is a homotopy equivalence.

We also have an isomorphism
Tot(o3" ") = Cone (Tot(aﬁpX)[l] N Tot(aﬁpﬂaﬁq_lX))

Combining @ and @, we obtain the following distinguished
triangle in the homotopy category:

~

Tot(05”X)[1] 5 Tot(e2" o501 X) 25 Tot(029X)[~1]

~~ required = obtained by rotating the triangle. []
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Proof of Main Theorem ||

Theorem 3.7
G': a singular link-like graph with a unique double point.

~ There is a morphism = : [G]cx|2] = [G]ex|—2] such that

|G] = Cone(Z)
Applying the TQFT Z;, we finally obtain Main Theorem II.

Main Theorem Il
D: a singular link diagram with exactly one double point.

~+ 3 chain complex C}x(D) together with a (graded)
endomorphism

= . C*—Z,*—2<D) s C*+2,*+4(D>

Crx Crx

Ckn <><) ~ Cone(Z)
Remark

Main Theorem |l categorifies the equation

such that

Vi(e$YTT) = (—1#!

*.* Taking the Euler characteristics in Main Theorem I
(cf. ¢ = —t1/?),

(1 () = x (0 (X))
= (¢" = q%)x (H *Ccrx><crx) ,

which belongs to the ideal generated by (1 — ¢3).

~~ Crossing change does not affect the value at t = /1.
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Application
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Reducible crossing

Theorem 4.1

The genus-one morphism O is a homotopy-equivalence for
reducible (aka. nugatory) crossing; i.e.

(B:|[D/XD//}]:>|[D/XD//}]

Proof

By the categorified Vassiliev skein relation,

AN

® : homotopy equivalence <= |[ D’ >-< D”ﬂ ~ ()

On the other hand, we have |[ D! >-< D" ﬂ = 0.

(*." no crux map) []

Corollary 4.2
The universal Khovanov complex satisfies a homotopy FI

T
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Homology of twist knots

Theorem 4.3 (Y. arXiv:2007.15867)

There is a homotopy equivalence

- T i r/2

T negative crossings .
s L L —

here C'(k) is the complex of the form

—h—(=1)F

A 0 A
S G ) IR e O L Y, P

\ [unknot] & EB C'(2¢ — 1) ifr is even,
- i=1
6.‘:.:."/ = (r—1)/2

~——— [trefoil] & @ C'(21) if r is odd,
1=1

Sketch

Induction on r using G(r) =

r negative crossings

Observe = = 0 on G(r) for the degree reason.
G(r)-crux map « values —1 on the horizontal twists.
~ [G(r)]ax does not depend on 7 up to shifts.

Compute [G(7)]erx-
~~ the half of C'(k) appears.
Verify the splitting in each induction step.
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