トポロジー火曜セミナー
吉田純(伊藤昇氏́との共同研究)

東京大学大学院数理科学研究科
October 27， 2020

Introduction

Khovanov homology

[Khovanov, 2000] A bigraded chain complex $C^{*, \star}(D)$ (of abelian groups) for each link diagram D so that

$$
K h^{i, j}(D):=H^{i}\left(C^{*, j}(D)\right)
$$

is invariant under Reidemeister moves. This is nowadays called Khovanov homology.
\rightsquigarrow Relation to TQFT was pointed out.

Theorem 1.1 ([Kronheimer and Mrowka, 2011])

Khovanov homology detects the unknot.
[Lee, 2005] constructed a variant.
\rightsquigarrow a concordance invariant [Rasmussen, 2010].
[Bar-Natan, 2005] Khovanov complex in terms of cobordisms.
\rightsquigarrow Invariants for tangles instead of links.
\rightsquigarrow Changing TQFT, we get variants including Lee homology and Bar-Natan homology.
\rightsquigarrow "universal" Khovanov homology.

Vassiliev derivative

$\mathcal{X}^{(r)}$: the set of singular links with exactly r double points.

Definition ([Vassiliev, 1990] (implicit), [Birman, 1993],
 [Birman and Lin, 1993])

v : a knot invariant with values in A.
$\rightsquigarrow v^{(r)}: \mathcal{X}^{(r)} \rightarrow A$ by $v^{(0)}:=v$ and Vassiliev skein relation:

$$
v^{(r+1)}(\nearrow)=v^{(r)}(\nearrow)-v^{(r)}(\nearrow \nearrow)
$$

We call $v^{(r)}$ the r-th (Vassiliev) derivative of v.

Definition

v is called of finite type (or Vassiliev type) if $v^{(r)} \equiv 0$ for $r \gg 0$.

Slogan Finite-type invariants are polynomials. cf. [Volić, 2006, Budney et al., 2017].

Theorem 1.2 ([Birman, 1993, Birman and Lin, 1993])
The Taylor coefficients of the Jones polynomial at $t=1$ are of finite type.

Question

Any relations between Khovanov homology and finite type invariants?

First goal

To understand Khovanov homology in view of Vassiliev theory.

Vassiliev derivatives of knot homologies

Question

What are Vassiliev derivatives of knot homologies?

Strategy

1 Realize a crossing change as a morphism of chain complexes:

$$
\widehat{\Phi}: C^{*}(\nearrow \nearrow) \rightarrow C^{*}(/ /)
$$

\rightsquigarrow For singular diagrams, take mapping cones recursively:

$$
C^{*}(\nearrow):=\operatorname{Cone}(\widehat{\Phi})
$$

\rightsquigarrow A categorified Vassiliev skein relation:

$$
\begin{aligned}
& \cdots \rightarrow H^{i}(\lambda) \xrightarrow{\hat{\Phi}} H^{i}(\nearrow) \longrightarrow H^{i}(\nearrow) \\
& \longrightarrow H^{i+1}(\nearrow<) \xrightarrow{\widehat{\Phi}} H^{i+1}(\nearrow) \rightarrow H^{i+1}(\nearrow) \rightarrow \cdots
\end{aligned}
$$

Remark

The long exact sequence above yields the ordinary Vassiliev skein relation on the Euler characteristics.
2. Check invariance under moves of double points:

$\stackrel{\mathrm{R}_{\mathrm{IV}}}{\longleftrightarrow}$

Main result I

Main Theorem I (lto, Y.)

Khovanov homology $K h(-)$ extends to a singular link invariant so that
1 there is a morphism $\widehat{\Phi}: K h^{i, j}(\nearrow \nearrow) \rightarrow K h^{i, j}(/ /)$ together with a categorified Vassiliev skein relation
$\cdots \rightarrow K h^{i, j}(\nearrow \nearrow) \xrightarrow{\widehat{\Phi}} K h^{i, j}(\nearrow) \longrightarrow K h^{i, j}(\nearrow)$

$$
\longrightarrow K h^{i+1, j}(\nearrow) \stackrel{\widehat{\Phi}}{\boldsymbol{C}} K h^{i+1, j}(\nearrow) \rightarrow K h^{i+1, j}(\nearrow) \rightarrow \cdots
$$

2 the following categorified version of FI relation:

$$
K h^{*, \star}(\bigcap) \cong 0
$$

Remark

The morphism $\widehat{\Phi}$, called the genus-one morphism, is different from the concordance theoretic crossing-change (e.g. see [Hedden and Watson, 2018]).
In fact, $\widehat{\Phi}$ is the first concrete instance of non-trivial maps of bidegree $(0,0)$.

Meaning of FI relation

FI relation arises from comparison of the following two "paths:"

Main result II

Question

Can Vassiliev derivatives $K h(\chi)$ be computed independently of the resolutions?

Motivation

- Cone $(\widehat{\Phi})$ is large.
\rightsquigarrow Difficult to compute examples.
- If two of the three homologies

$$
\operatorname{Kh}(\nearrow), \quad \operatorname{Kh}(\nearrow), \quad \text { and } \quad \operatorname{Kh}(\nearrow)
$$

are computed, the other may also be determined thanks to the categorified Vassiliev skein relation.

Main Theorem II (Y. arXiv:2007.15867)

D : a singular link diagram with exactly one double point. \rightsquigarrow There is a chain complex $C_{\text {crx }}^{*, \star}(D)$, called the crux complex, together with a (graded) endomorphism

$$
\Xi: C_{\mathrm{crx}}^{*-2, \star-2}(D) \rightarrow C_{\mathrm{crx}}^{*+2, \star+4}(D)
$$

such that

$$
C_{K h}(\nearrow) \simeq \operatorname{Cone}(\Xi)
$$

Slogan Main Theorem II computes the $1^{\text {st }}$ Vassiliev derivative of $K h(-)$.

Today's plan

(1) Introduction

- Khovanov homology
- Vassiliev derivative
- Vassiliev derivatives of knot homologies
- Main result I
- Main result II
(2) Khovanov homology
- The category $\operatorname{Cob}_{2}^{\ell}\left(Y_{0}, Y_{1}\right)$
- Singular link-like graph
- Smoothings of link-like graphs
- Multi-fold complexes
- The multi-fold complex of smoothings
- Universal Khovanov complexes
- Fundamental cofiber sequences
- Applying TQFTs
- Invariance
(3) The first Vassiliev derivative
- Overview
- Twisted action
- Crux complexes
- Absolute exact sequences
- Key exact sequence
- Generalized 9-lemma
- Proof of Main Theorem II

4. Application

- Reducible crossing
- Homology of twist knots

Khovanov homology

Y_{0}, Y_{1} : compact oriented 0-manifolds.

Definition

Define $\mathbf{C o b}_{2}\left(Y_{0}, Y_{1}\right)$ to be a category such that

- objects are (oriented) 1-cobordisms $W: Y_{0} \rightarrow Y_{1}$;
- morphisms are (diffeo. classes of) 2-cobordisms with corners (aka. 2-bordisms).
- composition is given in terms of gluing.

2-bordisms $S: W_{0} \rightarrow W_{1} \in \mathbf{C o b}_{2}\left(Y_{0}, Y_{1}\right)$:

Definition

Define $\operatorname{Cob}_{2}^{\ell}\left(Y_{0}, Y_{1}\right)$ to be the k-linear additive category generated by $\mathbf{C o b}_{2}\left(Y_{0}, Y_{1}\right)$ subject to the following relations:
S-relation $S \amalg S^{2} \sim 0$ for $S: W_{0} \rightarrow W_{1}$;
T-relation $S \amalg T^{2} \sim 2 \cdot S$ for $S: W_{0} \rightarrow W_{1}$;
4Tu-relation

Remark

The morphisms of $\operatorname{Cob}_{2}^{\ell}\left(Y_{0}, Y_{1}\right)$ are graded by Euler characteristics.
$\operatorname{Cob}_{2}^{\ell}\left(Y_{0}, Y_{1}\right)$: a graded k-linear category.

Singular link-like graph

Definition

A singular link-like graph is a planar graph
$G=\{E(G) \rightrightarrows V(G)\}$, say $V^{r}(G)$ the set of r-valent vertices, together with data

- a subset $c(G) \subset V^{4}(G)$ of crossings with signs;
\rightsquigarrow elements of $c^{\sharp}(G):=V(G) \backslash c(G)$: double points;
- a subset $E^{\mathrm{w}}(G) \subset E(G)$ of wide edges;
such that each vertex is locally depicted as follows:

0				$\$	X
source of a wide edge	target of a wide edge	bivalent vertex	positive crossing	negative crossing	double point

In particular, a singular link diagram is nothing but a singular link-like graph without wide edges.

Convention

- Vertices of the left three types are omitted from pictures.
- Bivalent vertices are removed whenever possible.

Remark

If $V^{4}(G)=\varnothing$, then the union of non-wide edges is a smooth 1-manifold.

Smoothings of link-like graphs

Definition

A map $\alpha: V^{4}(G) \rightarrow \mathbb{Z}$ is said to lie in the effective range if

- $0 \leq \alpha(v) \leq 1$ for positive crossings v;
- $-1 \leq \alpha(v) \leq 0$ for negative crossings v;
- $-2 \leq \alpha(v) \leq 1$ for double points v.

In this case, define the α-smoothing G_{α} by replacing quadri-valent vertices as follows:

$v \in V^{4}(G)$	$\alpha(v)=-2$	$\alpha(v)=-1$	$\alpha(v)=0$	$\alpha(v)=1$

Definition

For each $\alpha: V^{4}(G) \rightarrow \mathbb{Z}$, define $\left|G_{\alpha}\right| \in \operatorname{Cob}_{2}^{\ell}(\varnothing, \varnothing)$ as follows:
α :eff. $\left|G_{\alpha}\right|$: the union of non-wide edges of G_{α}

$$
\rightsquigarrow\left|G_{\alpha}\right| \text { (+ orientation) is an object of } \mathbf{C o b}_{2}(\varnothing, \varnothing) .
$$

α :non-eff. $\left|G_{\alpha}\right|=0$.

Example

$$
\mid)\left(| = \rangle \left(, \quad\left|\begin{array}{c}
\pi \\
N
\end{array}\right|=\circlearrowright\right.\right.
$$

Remark

Precisely, we need a checkerboard coloring for G to determine the orientation on $\left|G_{\alpha}\right|$. Details are omitted in this talk.

Multi-fold complexes

Idea: construct Khovanov complex of G by categorically summing up all states (i.e. α in the effective range).

Khovanov discussed cubes of states.
\rightsquigarrow We generalize them to consider double points.
\mathcal{A} : an additive category, S : a finite set.

Definition

An S-fold complex in \mathcal{A} consists of

- a family of objects $\left\{X^{\alpha}\right\}_{\alpha}$ of \mathcal{A} indexed by elements α of the free abelian group generated by S;
- for each element $a \in S$, a morphism $d_{a}=d_{a}^{\alpha}: X^{\alpha} \rightarrow X^{\alpha+1}$; which satisfy the following relations:

$$
d_{a}^{2}=0, \quad d_{a} d_{b}=d_{b} d_{a} \quad(a \neq b)
$$

Definition

$X^{\bullet}, Y^{\bullet}: S$-fold complexes in \mathcal{A}.
\rightsquigarrow a morphism $f: X^{\bullet} \rightarrow Y^{\bullet}$ of S-fold complexes consists of a morphism $f^{\alpha}: X^{\alpha} \rightarrow Y^{\alpha}$ for each $\alpha \in \mathbb{Z} S$ with $f d_{a}=d_{a} f$.
$\rightsquigarrow \mathrm{MCh}_{S}(\mathcal{A})$: the category of S-fold complexes.

Remark

If \mathcal{A} is additive (resp. abelian), then so is $\operatorname{MCh}_{S}(\mathcal{A})$.

Example

1 For $S=\{*\}, \operatorname{MCh}_{\{*\}}(\mathcal{A}) \cong \mathbf{C h}(\mathcal{A})$.
2 If $S=\{\mathrm{H}, \mathrm{V}\}, \operatorname{MCh}_{\{\mathrm{H}, \mathrm{V}\}}(\mathcal{A})$ is identified with the category of bicomplexes in \mathcal{A}.
${ }_{3}$ If $S=S_{1} \amalg S_{2}$, then there is a canonical equivalence
$\operatorname{MCh}_{S_{1} \amalg S_{2}}(\mathcal{A}) \simeq \mathbf{M C h}_{S_{1}}\left(\mathbf{M C h}_{S_{2}}(\mathcal{A})\right)$

The multi-fold complex of smoothings

Definition

Define three morphisms in $\operatorname{Cob}_{2}^{l}(-,-)$ as follows:

$$
\begin{aligned}
& \Phi:=\bigcirc-\infty:| \rangle\langle\mid\rangle\langle
\end{aligned}
$$

Lemma 2.1

$\Phi \delta_{-}=0$ and $\delta_{+} \Phi=0$

Proof

$$
O \cong, 5,5
$$

Definition

Define a $V^{4}(G)$-fold complex $\operatorname{Sm}(G)^{\bullet}$ in $\operatorname{Cob}_{2}^{\ell}(\varnothing, \varnothing)$ by $\operatorname{Sm}(G)^{\alpha}:=\left|G_{\alpha}\right|$ with differentials given as follows:

- if v is a double point, d_{v} is given by

- if v is a negative crossing, d_{v} is given by

$$
\left.\cdots \rightarrow 0 \rightarrow|\stackrel{\alpha(v)=-1}{|c|}| \stackrel{\delta_{-}}{\rightarrow} \mid\right)(\mid \rightarrow 0 \rightarrow \cdots \quad ;
$$

- if v is a positive crossing, d_{v} is given by

$$
\cdots \rightarrow 0 \rightarrow \mid)\left(|\xrightarrow{\alpha(v)=0}| \stackrel{-\delta_{+}}{\alpha(v)=1} \mid \rightarrow 0 \rightarrow \cdots\right.
$$

Universal Khovanov complexes

Total complexes of bicomplexes:

$\{$ bicomplexes $\} \xrightarrow{\text { anti-comm. }\{\text { double complexes }\} \xrightarrow{\text { Tot }}\{\text { complexes }\}}$

$$
\begin{gathered}
X^{i, j} \longmapsto X^{i, j} \longmapsto \bigoplus_{i+j=n} X^{i, j} \\
d_{\mathrm{H}}, d_{\mathrm{V}} \longmapsto d_{\mathrm{H}},(-1)^{i} d_{\mathrm{V}} \longmapsto \sum d_{\mathrm{H}}+(-1)^{i} d_{\mathrm{V}}
\end{gathered}
$$

Definition

S : a totally ordered set.
\rightsquigarrow For a bounded S-fold complex X, define $\operatorname{Tot}(X)$ as a complex given by

$$
\operatorname{Tot}(X)^{n}:=\bigoplus_{|\alpha|=n} X^{\alpha}, \quad d_{\mathrm{tot}}:=\sum_{a \in S}(-1)^{\sum_{b<a} \alpha(b)} d_{a}
$$

here $|\alpha|:=\sum_{a} \alpha(a)$.

Remark

The isomorphism type of $\operatorname{Tot}(X)$ does not depend on total orders on S. In fact, there is a "universal" sign convention.

Definition

For a singular link-like graph G, we define the universal Khovanov complex as

$$
\llbracket G \rrbracket:=\operatorname{Tot}\left(\operatorname{Sm}(G)^{\bullet}\right)
$$

Fundamental cofiber sequences

Definition

X^{\bullet} : an S-fold complex.

- For $\alpha_{0} \in \mathbb{Z} S$, we write $X\left[\alpha_{0}\right]^{\bullet}$ the S-fold complex with

$$
X\left[\alpha_{0}\right]^{\alpha}:=X^{\alpha-\alpha_{0}}, \quad d_{X\left[\alpha_{0}\right], a}:=(-1)^{\alpha_{0}(a)} d_{X, a}
$$

$X\left[\alpha_{0}\right]$ is called the shift of X^{\bullet} by α_{0}.

- For $a \in S$ and $r \in \mathbb{Z}$, we write $\sigma_{a}^{\leq r} X^{\bullet}$ (resp. $\sigma_{a}^{\geq r}$, etc...) the S-fold complex given by

$$
\begin{gathered}
\sigma_{a}^{\leq r} X^{\alpha}:= \begin{cases}X^{\alpha} & \alpha(a) \leq r(\text { resp. } \alpha(a) \geq r, \text { etc...) }, \\
0 & \text { otherwise },\end{cases} \\
d_{\sigma_{\bar{a}}^{\leq} X, a}^{\alpha}:= \begin{cases}d_{X, a}^{\alpha} & \alpha(a) \leq r-1(\text { resp. } \alpha(a) \geq r, \text { etc...) } \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

$\sigma_{a}^{\leq r} X^{\bullet}$ is called the stupid truncation of X^{\bullet} along a at r.

Proposition 2.2

X^{\bullet} : a bounded S-fold complex, $\quad a_{0} \in S, \quad r \in \mathbb{Z}$.
\rightsquigarrow Define $\varphi:\left(\sigma_{a_{0}}^{\leq r-1} X\right)\left[a_{0}\right] \rightarrow \sigma_{a_{0}}^{\geq r} X \in \mathbf{M C h}_{S}^{\mathrm{b}}(\mathcal{A})$ by

$$
\begin{aligned}
& \cdots \longrightarrow X^{\alpha+(r-2) a_{0}} \xrightarrow{d_{a_{0}}} X^{\alpha+(r-1) a_{0}} \longrightarrow 0 \\
& \downarrow^{\alpha+(r-1) a_{0}} \quad \downarrow^{\alpha+r a_{0}}=d_{a_{0}} \quad \downarrow^{\alpha+(r+1) a_{0}} \\
& \cdots \longrightarrow 0 \longrightarrow X^{\alpha+r a_{0}} \xrightarrow[d_{a_{0}}]{\longrightarrow} X^{\alpha+(r+1) a_{0}} \underset{d_{a_{0}}}{\longrightarrow} \cdots
\end{aligned}
$$

Then, for the induced morphism

$$
\widehat{\varphi}: \operatorname{Tot}\left(\left(\sigma_{a_{0}}^{\leq r-1} X\right)\left[a_{0}\right]^{\bullet}\right) \rightarrow \operatorname{Tot}\left(\sigma_{a_{0}}^{\geq r} X^{\bullet}\right)
$$

we have an isomorphism $\operatorname{Tot}\left(X^{\bullet}\right) \cong \operatorname{Cone}(\widehat{\varphi})$.

Fundamental cofiber sequences

Proposition 2.3

For every singular link-like graph D, there are isomorphisms

$$
\begin{aligned}
& \llbracket \nearrow \| \cong \operatorname{Cone}\left(\llbracket / \backslash \|^{\widehat{\Phi}} \llbracket / \downarrow\right)
\end{aligned}
$$

Proof

By direct computations, we obtain

$$
\begin{aligned}
& \left.\operatorname{Tot}\left(\sigma_{v_{-}}^{\geq 0} \operatorname{Sm}\left(\lambda^{\prime}\right)^{\bullet}\right) \cong \llbracket\right)(\rrbracket \\
& \left.\operatorname{Tot}\left(\left(\sigma_{v_{+}}^{\leq 0} \operatorname{Sm}(/ \checkmark)\right)\left[v_{+}\right]^{\bullet}\right) \cong \llbracket\right)(\rrbracket[1] \quad, \\
& \operatorname{Tot}\left(\sigma_{v_{+}}^{\geq 1} \operatorname{Sm}(/ /)^{\bullet}\right) \cong[4][1] \text {, } \\
& \left.\operatorname{Tot}\left(\left(\sigma_{v_{\times}}^{\leq-1} \operatorname{Sm}(\nearrow)\right)\left[v_{\times}\right]^{\bullet}\right) \cong \llbracket \nearrow \not \subset\right], \\
& \left.\operatorname{Tot}\left(\sigma_{v_{\times}}^{\geq 0} \operatorname{Sm}(\nearrow)^{\bullet}\right) \cong \llbracket / \backslash\right]
\end{aligned}
$$

\rightsquigarrow we get the result by Proposition 2.2.

Corollary 2.4

For every ordinary link diagram $D, \llbracket D \rrbracket$ agrees with the one defined in [Bar-Natan, 2005].

Applying TQFTs

Recall a 2-dim. TQFT is nothing but a Frobenius algebra.

Fact

For $h, t \in k$, endow a Frobenius algebra structure on
$C_{h, t}=k[x] /\left(x^{2}-h x-t\right)$ by

$$
\begin{gathered}
\Delta(1)=1 \otimes x+x \otimes 1-h 1 \otimes 1, \quad \Delta(x)=x \otimes x+t 1 \otimes 1 \\
\varepsilon(1)=0, \quad \varepsilon(x)=1 .
\end{gathered}
$$

Then, it gives rise to a k-linear functor

$$
Z_{h, t}: \operatorname{Cob}_{2}^{\ell}(\varnothing, \varnothing) \rightarrow \operatorname{Mod}_{k}
$$

Example

For every link diagram D,
$H Z_{0,0} \llbracket D \rrbracket \cong K h(D), H Z_{1,0} \llbracket D \rrbracket \cong B N(D), H Z_{0,1} \llbracket D \rrbracket \cong \operatorname{Lee}(D)$

Remark

In the case $h=t=0, C_{0,0}$ is graded so that

$$
\operatorname{deg} 1=1, \quad \operatorname{deg} x=-1
$$

\rightsquigarrow The TQFT $Z_{0,0}$ respects gradings.
cf. the Euler grading on $\operatorname{Cob}_{2}^{\ell}(\varnothing, \varnothing)$.
\rightsquigarrow Second grading on $K h$, called the q-grading.

Invariance

Theorem 2.5 (Ito, Y. 2020)

The universal Khovanov complex $\llbracket D \rrbracket$ is invariant under the moves of singular link diagrams up to chain homotopy equivalences.
\rightsquigarrow Applying $Z_{h, t}$, we get extensions of

- Khovanov homology,
- Lee homology, and
- Bar-Natan homology to singular links.

Approach: elementary moves of double points:

Since invariance under Reidemeister moves is known, the result essentially follows from Proposition 2.3 and the following.

Proposition 2.6

The genus-one morphism $\widehat{\Phi}$ is invariant under the moves above; i.e. there are homotopy commutative squares

The first Vassiliev derivative

Overview

Throughout the section, we fix
G : a singular link-like graph with a unique double point.

Problem
 Compute $K h(G)$.

Approach

- Construct a complex $\llbracket G \rrbracket_{\text {crx }}$ in $\operatorname{Cob}_{2}^{\ell}(\varnothing, \varnothing)$, called the crux complex;

$$
\rightsquigarrow C_{\mathrm{crx}}(G):=Z_{0,0}[G]_{\mathrm{crx}} .
$$

- Define $\Xi: \llbracket G \rrbracket_{\text {crx }}[2] \rightarrow \llbracket G \rrbracket_{\text {crx }}[-2]$.
- Show $\llbracket G \rrbracket \simeq \operatorname{Cone}(\Xi)$.
$\leadsto K h(G) \cong H^{*} \operatorname{Cone}\left(Z_{0,0}(\Xi)\right)$.

Remark

- Ξ has an explicit description.
- $\llbracket G \rrbracket$ crx is at least four times smaller then $\llbracket G \rrbracket$.
\rightsquigarrow Reduce the size of complexes computing $\llbracket G \rrbracket$.

Remark

Regarding higher derivatives of $K h$, for a general G with exactly r double points, we have a spectral sequence

$$
E_{1} \cong\left(1^{\text {stt }} \text {-derivatives of } K h\right) \Rightarrow K h(G)
$$

Twisted action

Recall in the category of cobordisms, the interval I is a module and a comodule over the circle S^{1} :

$$
\mu:=\left\{: I \otimes S^{1} \rightarrow I, \quad \Delta:=\right\}: I \rightarrow I \otimes S^{1}
$$

Proposition 3.1

The following also give other S^{1}-module/comodule structures on I up to Bar-Natan's 4Tu-relation:

$$
\tilde{\mu}:=\{-10, \tilde{\Delta}:=\}
$$

We call them twisted action/coaction of S^{1} on I.

Example

$C_{0,0}=k[x] /\left(x^{2}\right)$: The Frobenius algebra for Khovanov homology.
\rightsquigarrow The twisted action/coaction are

$$
\begin{array}{rlrl}
\tilde{\mu}: C_{0,0} \otimes C_{0,0} & \rightarrow C_{0,0}, & \widetilde{\Delta}: C_{0,0} & \mapsto \\
a \otimes 1 & \mapsto & C_{0,0} \otimes C_{0,0} \\
a \otimes x & & 1 & \mapsto 1 \otimes x-x \otimes 1 \\
a \otimes x & \mapsto-a x & x & \mapsto
\end{array}
$$

Remark

In the situation above, $\widetilde{\mu}$ and $\widetilde{\Delta}$ are homogeneous with respect to the Euler degrees and

$$
\operatorname{deg} \widetilde{\mu}=\operatorname{deg} \widetilde{\Delta}=\operatorname{deg} \mu=\operatorname{deg} \Delta=-1
$$

Crux complexes

Definition

A map $\alpha: c(G) \rightarrow \mathbb{Z}$ is called a G-crux map if
1α lies in the effective range (with α (double pt.) :=0);
[the edges adjacent to the (unique!) double point lie in the same connected component in $\left|G_{\alpha}\right|$.

Notation

$$
\left|G_{\alpha}\right|_{\text {crx }}:= \begin{cases}\left|G_{\alpha}\right| & \alpha: G \text {-crux map } \\ 0 & \text { otherwise }\end{cases}
$$

Twisted arcs

The "upper half" of the component encircling the double point:

Definition

Define a $c(G)$-fold complex $\operatorname{Crx}(G)^{\bullet}$ by

$$
\operatorname{Crx}(G)^{\alpha}:=\left|G_{\alpha}\right|_{\mathrm{crx}}
$$

with the differentials given in the same way as $\operatorname{Sm}(G)^{\bullet}$ with twisted actions/coactions on twisted arcs:

Crux complexes

In order to verify $\operatorname{Crx}(G)^{\bullet}$ is actually an $c(G)$-fold complex, we have to check the following.

Lemma 3.2

For $v \neq w \in c(G)$, the following commutes:

$$
\begin{gathered}
\left|G_{\alpha}\right|_{\mathrm{crx}} \xrightarrow{d_{v}}\left|G_{\alpha+v}\right|_{\mathrm{crx}} \\
d_{w} \mid \\
\mid{ }^{2} d_{w} \\
\left|G_{\alpha+w}\right|_{\mathrm{crx}} \xrightarrow{d_{w}}\left|G_{\alpha+v+w}\right|_{\mathrm{crx}}
\end{gathered}
$$

Proof

CASE $d_{v}, d_{w} \in\{\mu, \Delta\}:$ same as $\operatorname{Sm}(-)^{\bullet}$.
CASE $d_{v}, d_{w} \in\{\mu, \widetilde{\mu}\}$ or $d_{v}, d_{w} \in\{\Delta, \widetilde{\Delta}\}$: The result follows from the (co) associativity of $\widetilde{\mu}$ and $\widetilde{\Delta}$.
The other non-trivial cases: It remains to discuss

They are verified egg. as

Crux complexes

Definition

The complex $\llbracket G \rrbracket_{\mathrm{crx}}:=\operatorname{Tot}\left(\operatorname{Crx}(G)^{\bullet}\right)$ is called the crux complex of G.

In particular, write

$$
C_{\mathrm{crx}}(G):=Z_{0,0} \llbracket G \rrbracket_{\mathrm{crx}} .
$$

Example

$$
\begin{aligned}
& \llbracket G \rrbracket_{c r x}:=
\end{aligned}
$$

\rightsquigarrow We obtain $H^{*} C_{\text {crx }}(G)=0$ except

$$
\begin{aligned}
H^{-2} & C_{\mathrm{crx}}(G) \cong\langle x \otimes x\rangle \cong \mathbb{Z} \\
H^{-1} C_{\mathrm{crx}}(G) & \cong C_{0,0}^{\oplus 2} /\langle(1,-1),(x, x),(x,-x)\rangle \\
& \cong \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}
\end{aligned}
$$

Remark

In the example above, the summand in $H^{*} C_{\mathrm{crx}}(G)$ are homogeneous with respect to the q-degree.

Absolute exact sequences

Strategy

To relate $\llbracket G \rrbracket_{\text {crx }}$ with $\llbracket G \rrbracket$, we want to place them in a single exact sequence.
YET, $\operatorname{Cob}_{2}^{\ell}(\varnothing, \varnothing)$ is not abelian.
\rightsquigarrow What is exactness?

Definition

A sequence

$$
\cdots \xrightarrow{f^{i-1}} X^{i} \xrightarrow{f^{i}} X^{i+1} \xrightarrow{f^{i+1}} \cdots
$$

in a (pre-)additive category \mathcal{A} is said to be absolutely exact if the following conditions are satisfied:
I $f^{i+1} f^{i}=0$ for every $i \in \mathbb{Z}$;
[it is contractible as a chain complex.

Remark

TFAE:

- $\left\{X^{i}, f^{i}\right\}$ is absolutely exact;
- For every functor $F: \mathcal{A} \rightarrow \mathcal{V}$ with \mathcal{V} abelian, $\left\{F X^{i}, F f^{i}\right\}$ is exact.

Example

1 Absolute exact sequence of length $1=$ zero object
(2) Absolute exact sequence of length $2=$ isomorphism

3 Absolute exact sequence of length $3=$ split short exact sequence

Key exact sequence

Proposition 3.3 (cf. RI-moves by [Bar-Natan, 2005])

The following are split short exact sequences:

$$
\begin{aligned}
& 0 \rightarrow I \xrightarrow{\Delta} I \otimes S^{1} \xrightarrow{\widetilde{\mu}} I \rightarrow 0, \\
& 0 \rightarrow I \xrightarrow{\widetilde{\Delta}} I \otimes S^{1} \xrightarrow{\mu} I \rightarrow
\end{aligned}
$$

Proof

First, observe that the S-relation implies
$\mu \circ(I \otimes \eta)=\widetilde{\mu} \circ(I \otimes \eta)=(I \otimes \varepsilon) \circ \Delta=(I \otimes \varepsilon) \circ \widetilde{\Delta}=\operatorname{id}_{I}$
In addition, the $4 T u$-relation yields
$\Delta \circ(I \otimes \varepsilon)+(I \otimes \eta) \circ \widetilde{\mu}=\widetilde{\Delta} \circ(I \otimes \varepsilon)+(I \otimes \eta) \circ \mu=\operatorname{id}_{I \otimes S^{1}}$.

Corollary 3.4

The following are absolutely exact sequences:

$$
\begin{aligned}
& \left.0 \longrightarrow 0 \longrightarrow \vee^{\wedge} \stackrel{\Delta}{\wedge}\right)(\stackrel{\Phi}{\rightarrow})\left({ }^{\mu}{ }^{\sim} \longrightarrow 0 \longrightarrow 0 .\right.
\end{aligned}
$$

Proof

The first one is obvious since $\Phi=0$ in this case.
The second follows from the observation $\Phi=\widetilde{\Delta} \widetilde{\mu}$.

Key exact sequence

Definition

For $\alpha: c(G) \rightarrow \mathbb{Z}$, define morphisms

$$
\iota^{\alpha}:\left|久_{\alpha}\right|_{c r x} \rightarrow\left|\widehat{\aleph}_{\alpha}\right|, \quad \pi^{\alpha}: \left.\left|\begin{array}{c}
\aleph_{\alpha} \\
\aleph_{\alpha}
\end{array}\right| \rightarrow \right\rvert\, \aleph_{c r x}
$$

by
$\frac{\iota^{\alpha}:=\left\{\begin{array}{l}\widetilde{\Delta}: \\ 0\end{array}\right.}{\text { Lemma 3.5 }}$
The families $\iota=\left\{\iota^{\alpha}\right\}_{\alpha}$ and $\pi=\left\{\pi^{\alpha}\right\}_{\alpha}$ form the following morphisms of $c(G)$-fold complexes respectively:

We obtain a sequence of complexes

which is degreewisely absolutely exact.
\rightsquigarrow The "bulk" part should be determined by the "edge" part.

Generalized 9-lemma

Proposition 3.6 (Generalized 9-lemma (absolute version))

If $X^{i, j}$ is a bounded bicomplex which is absolutely exact on each fixed vertical degree, then $\forall p+1<q$ there is a morphism

$$
\Xi: \operatorname{Tot}\left(\sigma_{\mathrm{H}}^{\geq q} X\right) \rightarrow \operatorname{Tot}\left(\sigma_{\mathrm{H}}^{\leq p} X\right)[1]
$$

of chain complexes such that

$$
\operatorname{Cone}(\Xi) \simeq \operatorname{Tot}\left(\sigma_{\mathrm{H}}^{\geq p+1} \sigma_{\mathrm{H}}^{\leq q-1} X\right)
$$

Sketch

1 We have an isomorphism

$$
\operatorname{Tot}(X) \cong \operatorname{Cone}\left(\operatorname{Tot}\left(\sigma_{\mathrm{H}}^{\leq q-1} X\right)[1] \xrightarrow{\widehat{\varphi}_{q}} \operatorname{Tot}\left(\sigma_{\mathrm{H}}^{\geq q} X\right)\right)
$$

with LHS contractible.
$\rightsquigarrow \widehat{\varphi}_{q}$ is a homotopy equivalence.
12 We also have an isomorphism

$$
\operatorname{Tot}\left(\sigma_{\mathrm{H}}^{\leq q-1}\right) \cong \operatorname{Cone}\left(\operatorname{Tot}\left(\sigma_{\mathrm{H}}^{\leq p} X\right)[1] \xrightarrow{\widehat{\varphi}_{p}} \operatorname{Tot}\left(\sigma_{\mathrm{H}}^{\geq p+1} \sigma_{\mathrm{H}}^{\leq q-1} X\right)\right)
$$

3 Combining 1 and $\mathbf{2}$, we obtain the following distinguished triangle in the homotopy category:

$$
\operatorname{Tot}\left(\sigma_{\mathrm{H}}^{\leq p} X\right)[1] \xrightarrow{\widehat{\varphi}_{p}} \operatorname{Tot}\left(\sigma_{\mathrm{H}}^{\geq p+1} \sigma_{\mathrm{H}}^{\leq q-1} X\right) \xrightarrow{\hat{\varphi}_{q} \circ i} \operatorname{Tot}\left(\sigma_{\mathrm{H}}^{\geq q} X\right)[-1]
$$

\rightsquigarrow required Ξ obtained by rotating the triangle.

Proof of Main Theorem II

Theorem 3.7

G: a singular link-like graph with a unique double point.
\rightsquigarrow There is a morphism $\Xi: \llbracket G \rrbracket_{c r x}[2] \rightarrow \llbracket G \rrbracket_{c r x}[-2]$ such that

$$
\llbracket G \rrbracket \cong \operatorname{Cone}(\Xi)
$$

Applying the TQFT $Z_{0,0}$, we finally obtain Main Theorem II.

Main Theorem II

D : a singular link diagram with exactly one double point.
$\rightsquigarrow \exists$ chain complex $C_{\text {crx }}^{*, \star}(D)$ together with a (graded) endomorphism

$$
\Xi: C_{\mathrm{crx}}^{*-2, \star-2}(D) \rightarrow C_{\mathrm{crx}}^{*+2, \star+4}(D)
$$

such that

$$
C_{K h}(\nearrow) \simeq \operatorname{Cone}(\Xi)
$$

Remark

Main Theorem II categorifies the equation

$$
V_{L}\left(e^{\frac{2 \pi}{3} \sqrt{-1}}\right)=(-1)^{\# L-1}
$$

\because Taking the Euler characteristics in Main Theorem II (cf. $q=-t^{1 / 2}$),

$$
\begin{aligned}
\chi(K h(\nearrow))-\chi(K h(\nearrow)) & \\
& =\left(q^{4}-q^{-2}\right) \chi\left(H^{*} C_{\mathrm{crx}} \chi_{\mathrm{crx}}\right)
\end{aligned}
$$

which belongs to the ideal generated by $\left(1-t^{3}\right)$.
\rightsquigarrow Crossing change does not affect the value at $t=\sqrt[3]{1}$.

Application

Reducible crossing

Theorem 4.1

The genus-one morphism $\widehat{\Phi}$ is a homotopy-equivalence for reducible (aka. nugatory) crossing; i.e.

Proof

By the categorified Vassiliev skein relation,

On the other hand, we have

(\because no crux map)

Corollary 4.2

The universal Khovanov complex satisfies a homotopy FI relation:

Homology of twist knots

Theorem 4.3 (Y. arXiv:2007.15867)

There is a homotopy equivalence

here $C(k)$ is the complex of the form

$$
\stackrel{-k-(-1)^{k}}{0} \rightarrow S^{1} \xrightarrow{\mu \Delta} S^{1} \rightarrow 0 \rightarrow \cdots
$$

Sketch

11 Induction on r using $G(r):=$

$\boxed{2}$ Observe $\Xi=0$ on $G(r)$ for the degree reason.
з $G(r)$-crux map α values -1 on the horizontal twists. $\rightsquigarrow \llbracket G(r) \rrbracket_{\text {crx }}$ does not depend on r up to shifts.
4 Compute $\llbracket G(r) \rrbracket_{\mathrm{crx}}$.
\rightsquigarrow the half of $C(k)$ appears.
5 Verify the splitting in each induction step.

Reference I

[Bar-Natan, 2005] Bar-Natan, D. (2005).
Khovanov's homology for tangles and cobordisms.
Geometry \& Topology, 9(3):1443-1499.
[Birman, 1993] Birman, J. S. (1993).
New points of view in knot theory.
American Mathematical Society. Bulletin. New Series, 28(2):253-287.
[Birman and Lin, 1993] Birman, J. S. and Lin, X.-S. (1993).
Knot polynomials and Vassiliev's invariants.
Inventiones Mathematicae, 111(2):225-270.
[Budney et al., 2017] Budney, R., Conant, J., Koytcheff, R., and Sinha, D. (2017).

Embedding calculus knot invariants are of finite type.
Algebraic \& Geometric Topology, 17(3):1701-1742.
[Hedden and Watson, 2018] Hedden, M. and Watson, L. (2018).
On the geography and botany of knot Floer homology. Selecta Mathematica. New Series, 24(2):997-1037.
[lto and Yoshida, 2020] Ito, N. and Yoshida, J. (2020).
Universal Khovanov homology for singular tangles and a categorified Vassiliev skein relation.
arXiv:2005.12664.
[Khovanov, 2000] Khovanov, M. (2000).
A categorification of the Jones polynomial.
Duke Mathematical Journal, 101(3):359-426.

Reference II

[Kronheimer and Mrowka, 2011] Kronheimer, P. B. and Mrowka, T. S. (2011).

Khovanov homology is an unknot-detector.
Publications Mathématiques. Institut de Hautes Études Scientifiques, 113:97-208.
[Lee, 2005] Lee, E. S. (2005).
An endomorphism of the Khovanov invariant.
Advances in Mathematics, 197(2):554-586.
[Rasmussen, 2010] Rasmussen, J. A. (2010).
Khovanov homology and the slice genus.
Inventiones Mathematicae, 182(2):419-447.
[Vassiliev, 1990] Vassiliev, V. A. (1990).
Cohomology of knot spaces.
In Theory of singularities and its applications, volume 1 of Advances in Soviet Mathematics, pages 23-69. American Mathematical Society, Providence, RI.
[Volić, 2006] Volić, I. (2006).
Finite type knot invariants and the calculus of functors.
Compositio Mathematica, 142(1):222-250.
[Yoshida, 2020] Yoshida, J. (2020).
Decomposition of the first Vassiliev derivative of Khovanov homology and its application.
arXiv:2007.15867.

