トポロジー火曜セミナー

吉田純(伊藤昇氏¹との共同研究)

東京大学大学院数理科学研究科

October 27, 2020

1茨城工業高等専門学校

Introduction

Khovanov homology

[Khovanov, 2000] A bigraded chain complex $C^{*,\star}(D)$ (of abelian groups) for each link diagram D so that

$$Kh^{i,j}(D) \coloneqq H^i(C^{*,j}(D))$$

is **invariant under Reidemeister moves**. This is nowadays called **Khovanov homology**.

 \rightsquigarrow Relation to **TQFT** was pointed out.

Theorem 1.1 ([Kronheimer and Mrowka, 2011]) *Khovanov homology* **detects the unknot**.

[Lee, 2005] constructed a variant.

→ a **concordance invariant** [Rasmussen, 2010].

[Bar-Natan, 2005] Khovanov complex in terms of cobordisms.

 \rightsquigarrow Invariants for tangles instead of links.

→ Changing TQFT, we get variants including Lee homology and Bar-Natan homology.

→ "universal" Khovanov homology.

Vassiliev derivative

$\mathcal{X}^{(r)}$: the set of singular links with exactly r double points.

Definition ([Vassiliev, 1990] (implicit), [Birman, 1993], [Birman and Lin, 1993])

v: a knot invariant with values in A.

 $\rightsquigarrow v^{(r)}: \mathcal{X}^{(r)} \to A$ by $v^{(0)} \coloneqq v$ and Vassiliev skein relation:

$$v^{(r+1)}\left(\swarrow\right) = v^{(r)}\left(\swarrow\right) - v^{(r)}\left(\checkmark\right)$$

We call $v^{(r)}$ the *r*-th (Vassiliev) derivative of v.

Definition

v is called of finite type (or Vassiliev type) if $v^{(r)} \equiv 0$ for $r \gg 0$.

Slogan Finite-type invariants are **polynomials**.

cf. [Volić, 2006, Budney et al., 2017].

Theorem 1.2 ([Birman, 1993, Birman and Lin, 1993])

The **Taylor coefficients** of the Jones polynomial **at** t = 1 are of finite type.

Question

Any relations between Khovanov homology and finite type invariants?

First goal

To understand Khovanov homology in view of Vassiliev theory.

Vassiliev derivatives of knot homologies

Question

What are Vassiliev derivatives of knot homologies?

Strategy

1 Realize a crossing change as a morphism of chain complexes:

$$\widehat{\Phi}: C^*\left(\swarrow\right) \to C^*\left(\checkmark\right)$$

~ For singular diagrams, take **mapping cones** recursively:

$$C^*\left(\mathbf{\bigvee}\right) \coloneqq \operatorname{Cone}(\widehat{\Phi})$$

~~ A categorified Vassiliev skein relation:

Remark

The long exact sequence above yields the **ordinary Vassiliev skein relation** on the Euler characteristics.

2 Check invariance under moves of double points:

Main result I

Main Theorem I (Ito, Y.)

Khovanov homology Kh(-) extends to a singular link invariant so that

1 there is a morphism $\widehat{\Phi}$: $Kh^{i,j} (\searrow) \to Kh^{i,j} (\bigvee)$ together with a categorified Vassiliev skein relation

$$\cdots \to Kh^{i,j} \left(\swarrow \right) \xrightarrow{\widehat{\Phi}} Kh^{i,j} \left(\swarrow \right) \longrightarrow Kh^{i,j} \left(\swarrow \right)$$

 $\longrightarrow Kh^{i+1,j} \left(\swarrow \right) \stackrel{\widehat{\Phi}}{\rightarrow} Kh^{i+1,j} \left(\swarrow \right) \rightarrow Kh^{i+1,j} \left(\swarrow \right)$

2 the following categorified version of **FI** relation:

$$Kh^{*,\star}\left(\begin{array}{c} \\ \end{array} \right) \cong 0$$

Remark

The morphism $\widehat{\Phi}$, called the **genus-one morphism**, is different from the **concordance theoretic crossing-change** (e.g. see [Hedden and Watson, 2018]).

In fact, $\widehat{\Phi}$ is the **first concrete instance** of non-trivial maps of bidegree (0,0).

Meaning of FI relation

FI relation arises from comparison of the following two "paths:"

Main result II

Question

Can Vassiliev derivatives $Kh(\mathbf{X})$ be computed independently of the resolutions?

Motivation

• $\operatorname{Cone}(\widehat{\Phi})$ is large.

 \rightsquigarrow Difficult to compute examples.

• If two of the three homologies

$$Kh\left(\swarrow\right)$$
, $Kh\left(\swarrow\right)$, and $Kh\left(\swarrow\right)$

are computed, the other may also be determined thanks to the **categorified Vassiliev skein relation**.

Main Theorem II (Y. arXiv:2007.15867)

D: a singular link diagram with exactly one double point.

 \rightsquigarrow There is a chain complex $C^{*,\star}_{crx}(D)$, called the **crux complex**, together with a (graded) endomorphism

$$\Xi: C^{*-2,\star-2}_{\operatorname{crx}}(D) \to C^{*+2,\star+4}_{\operatorname{crx}}(D)$$

such that

$$C_{Kh}\left(\swarrow\right)\simeq\operatorname{Cone}(\Xi)$$

Slogan Main Theorem II computes the 1^{st} Vassiliev derivative of Kh(-).

Today's plan

Introduction

- Khovanov homology
- Vassiliev derivative
- Vassiliev derivatives of knot homologies
- Main result I
- Main result II

2 Khovanov homology

- The category $\mathcal{Cob}_2^\ell(Y_0,Y_1)$
- Singular link-like graph
- Smoothings of link-like graphs
- Multi-fold complexes
- The multi-fold complex of smoothings

- Universal Khovanov complexes
- Fundamental cofiber sequences
- Applying TQFTs
- Invariance
- 3 The first Vassiliev derivative
 - Overview
 - Twisted action
 - Crux complexes
 - Absolute exact sequences
 - Key exact sequence
 - Generalized 9-lemma
 - Proof of Main Theorem II
- Application
 - Reducible crossing
 - Homology of twist knots

Khovanov homology

The category ${\mathcal Coll}_2^\ell(Y_0,Y_1)$

 Y_0 , Y_1 : compact oriented 0-manifolds.

Definition

Define $\mathbf{Cob}_2(Y_0, Y_1)$ to be a category such that

- objects are (oriented) 1-cobordisms $W: Y_0 \to Y_1$;
- morphisms are (diffeo. classes of) 2-cobordisms with corners (aka. 2-bordisms).

• composition is given in terms of **gluing**.

<u>2-bordisms</u> $S: W_0 \to W_1 \in \mathbf{Cob}_2(Y_0, Y_1)$:

Definition

Define $Cob_2^{\ell}(Y_0, Y_1)$ to be the *k*-linear additive category generated by $Cob_2(Y_0, Y_1)$ subject to the following relations: *S*-relation $S \amalg S^2 \sim 0$ for $S : W_0 \to W_1$; *T*-relation $S \amalg T^2 \sim 2 \cdot S$ for $S : W_0 \to W_1$; 4Tu-relation

Remark

The morphisms of $Cob_2^{\ell}(Y_0, Y_1)$ are graded by **Euler** characteristics.

 $Cob_2^{\ell}(Y_0, Y_1)$: a graded k-linear category.

Singular link-like graph

Definition

A singular link-like graph is a planar graph $G = \{E(G) \rightrightarrows V(G)\}$, say $V^r(G)$ the set of r-valent vertices, together with data

- a subset c(G) ⊂ V⁴(G) of crossings with signs;
 → elements of c[‡](G) ≔ V(G) \ c(G): double points;
- a subset $E^{\mathsf{w}}(G) \subset E(G)$ of wide edges;

such that each vertex is locally depicted as follows:

In particular, a **singular link diagram** is nothing but a singular link-like graph without wide edges.

Convention

- Vertices of the left three types are omitted from pictures.
- Bivalent vertices are removed whenever possible.

Remark

If $V^4(G) = \emptyset$, then the union of non-wide edges is a smooth 1-manifold.

Smoothings of link-like graphs

Definition

A map $\alpha: V^4(G) \to \mathbb{Z}$ is said to lie in the effective range if

• $0 \le \alpha(v) \le 1$ for positive crossings v;

• $-1 \le \alpha(v) \le 0$ for negative crossings v;

• $-2 \le \alpha(v) \le 1$ for double points v.

In this case, define the α -smoothing G_{α} by replacing quadri-valent vertices as follows:

Definition

For each $\alpha : V^4(G) \to \mathbb{Z}$, define $|G_{\alpha}| \in Cob_2^{\ell}(\emptyset, \emptyset)$ as follows: α :eff. $|G_{\alpha}|$: the union of non-wide edges of G_{α} $\rightsquigarrow |G_{\alpha}|$ (+ orientation) is an object of $\mathbf{Cob}_2(\emptyset, \emptyset)$. α :non-eff. $|G_{\alpha}| = 0$.

Example

$$\left| \sum_{i=1}^{i} \left(i \right) \right| = \sum_{i=1}^{i} \left(i \right) = \sum_{i=1}^{i} \left($$

Remark

Precisely, we need a **checkerboard coloring** for G to determine the orientation on $|G_{\alpha}|$. Details are omitted in this talk.

Multi-fold complexes

Idea: construct **Khovanov complex** of G by **categorically** summing up all **states** (i.e. α in the effective range).

Khovanov discussed cubes of states.

 \rightsquigarrow We generalize them to consider **double points**.

 $\mathcal{A}:$ an additive category, $\quad S:$ a finite set.

Definition

- An S-fold complex in \mathcal{A} consists of
- a family of objects $\{X^{\alpha}\}_{\alpha}$ of \mathcal{A} indexed by elements α of the free abelian group generated by S;

• for each element $a \in S$, a morphism $d_a = d_a^{\alpha} : X^{\alpha} \to X^{\alpha+1}$; which satisfy the following relations:

$$d_a^2 = 0 , \quad d_a d_b = d_b d_a \quad (a \neq b)$$

Definition

 X^{\bullet} , Y^{\bullet} : S-fold complexes in \mathcal{A} .

→ a morph	ism $f:X$	$f^{\bullet} \to Y^{\bullet}$	of $S{\mbox{-}}{\rm fold}$	complexes	consists of
a morphism	$f^{\alpha}: X^{\alpha}$ –	$\rightarrow Y^{\alpha}$ for	$each\ \alpha \in \mathbb{Z}$	$\mathbb{Z}S$ with fd_{s}	$a = d_a f.$

 $\rightsquigarrow \mathbf{MCh}_{S}(\mathcal{A})$: the category of S-fold complexes.

Remark

If \mathcal{A} is additive (resp. abelian), then so is $\mathbf{MCh}_S(\mathcal{A})$.

Example

- 1 For $S = \{*\}$, $\mathbf{MCh}_{\{*\}}(\mathcal{A}) \cong \mathbf{Ch}(\mathcal{A})$.
- 2 If $S = \{H, V\}$, $\mathbf{MCh}_{\{H,V\}}(\mathcal{A})$ is identified with the category of **bicomplexes** in \mathcal{A} .

3 If $S = S_1 \amalg S_2$, then there is a canonical equivalence

 $\mathbf{MCh}_{S_1\amalg S_2}(\mathcal{A}) \simeq \mathbf{MCh}_{S_1}(\mathbf{MCh}_{S_2}(\mathcal{A}))$

The multi-fold complex of smoothings

Definition

Define three morphisms in $\mathcal{Cob}_2^\ell(-,-)$ as follows:

Lemma 2.1

$$\Phi\delta_{-}=0$$
 and $\delta_{+}\Phi=0$

Proof

Definition

Define a
$$V^4(G)$$
-fold complex $\operatorname{Sm}(G)^{\bullet}$ in $\operatorname{Cob}_2^{\ell}(\emptyset, \emptyset)$ by
 $\operatorname{Sm}(G)^{\alpha} \coloneqq |G_{\alpha}|$ with differentials given as follows:
• if v is a double point, d_v is given by

$$\cdots \to 0 \to \left| \overbrace{-\delta_{-}}^{\alpha(v)=-2} \xrightarrow{-\delta_{-}}^{\alpha(v)=-1} \left| \overbrace{-\delta_{+}}^{\alpha(v)=0} \xrightarrow{-\delta_{+}}^{\alpha(v)=1} \right| \to 0 \to \cdots$$

• if v is a negative crossing, d_v is given by

$$\cdots \to 0 \to \left| \overbrace{}^{\alpha(v)=-1} \xrightarrow{\delta_{-}} \left| \overbrace{}^{\delta_{-}} \right| \to 0 \to \cdots$$

• if v is a positive crossing, d_v is given by

$$\cdots \to 0 \to \left| \begin{array}{c} \alpha(v) = 0 \\ \hline & -\delta_+ \end{array} \right| \xrightarrow{\alpha(v) = 1} \\ \hline & \bullet \end{array} \to 0 \to \cdots$$

Universal Khovanov complexes

Total complexes of bicomplexes:

Definition

S: a totally ordered set.

 \rightsquigarrow For a **bounded** *S*-fold complex *X*, define Tot(X) as a complex given by

$$\operatorname{Tot}(X)^{n} \coloneqq \bigoplus_{|\alpha|=n} X^{\alpha} , \quad d_{\mathsf{tot}} \coloneqq \sum_{a \in S} (-1)^{\sum_{b < a} \alpha(b)} d_{a} \quad ,$$

here $|\alpha| \coloneqq \sum_{a} \alpha(a)$.

Remark

The isomorphism type of Tot(X) does not depend on total orders on S. In fact, there is a "universal" sign convention.

Definition

For a singular link-like graph G, we define the **universal Khovanov complex** as

$$\llbracket G \rrbracket \coloneqq \operatorname{Tot}(\operatorname{Sm}(G)^{\bullet})$$

Fundamental cofiber sequences

Definition

- X^{\bullet} : an S-fold complex.
- For $\alpha_0 \in \mathbb{Z}S$, we write $X[\alpha_0]^{\bullet}$ the S-fold complex with

$$X[\alpha_0]^{\alpha} \coloneqq X^{\alpha - \alpha_0} , \quad d_{X[\alpha_0],a} \coloneqq (-1)^{\alpha_0(a)} d_{X,a}$$

 $X[\alpha_0]$ is called the shift of X^{\bullet} by α_0 .

• For $a \in S$ and $r \in \mathbb{Z}$, we write $\sigma_a^{\leq r} X^{\bullet}$ (resp. $\sigma_a^{\geq r}$, etc...) the S-fold complex given by

$$\begin{split} \sigma_a^{\leq r} X^\alpha &\coloneqq \begin{cases} X^\alpha & \alpha(a) \leq r \,(\text{resp. } \alpha(a) \geq r, \text{etc...}), \\ 0 & \text{otherwise}, \end{cases} \\ d^\alpha_{\sigma_a^{\leq r} X, a} &\coloneqq \begin{cases} d^\alpha_{X, a} & \alpha(a) \leq r-1 \,(\text{resp. } \alpha(a) \geq r, \text{etc...}), \\ 0 & \text{otherwise}. \end{cases} \end{split}$$

 $\sigma_a^{\leq r} X^{\bullet}$ is called the **stupid truncation** of X^{\bullet} along a at r.

Proposition 2.2

 X^{\bullet} : a bounded *S*-fold complex, $a_0 \in S$, $r \in \mathbb{Z}$. \rightsquigarrow Define $\varphi : (\sigma_{a_0}^{\leq r-1}X)[a_0] \rightarrow \sigma_{a_0}^{\geq r}X \in \mathbf{MCh}_S^{\mathsf{b}}(\mathcal{A})$ by

$$\cdots \longrightarrow X^{\alpha+(r-2)a_0} \xrightarrow{d_{a_0}} X^{\alpha+(r-1)a_0} \longrightarrow 0 \longrightarrow \cdots$$
$$\downarrow \varphi^{\alpha+(r-1)a_0} \qquad \qquad \downarrow \varphi^{\alpha+ra_0} = d_{a_0} \qquad \qquad \downarrow \varphi^{\alpha+(r+1)a_0} \\ \cdots \longrightarrow 0 \longrightarrow X^{\alpha+ra_0} \xrightarrow{d_{a_0}} X^{\alpha+(r+1)a_0} \xrightarrow{d_{a_0}} \cdots$$

Then, for the induced morphism

 $\widehat{\varphi} : \operatorname{Tot}((\sigma_{a_0}^{\leq r-1}X)[a_0]^{\bullet}) \to \operatorname{Tot}(\sigma_{a_0}^{\geq r}X^{\bullet})$

we have an isomorphism $\operatorname{Tot}(X^{\bullet}) \cong \operatorname{Cone}(\widehat{\varphi})$.

Fundamental cofiber sequences

Proposition 2.3

For every singular link-like graph D, there are isomorphisms

$$\begin{bmatrix} & & \\ &$$

Proof

By direct computations, we obtain

$$\operatorname{Tot}\left(\sigma_{v_{-}}^{\leq -1}\operatorname{Sm}\left(\swarrow\right)[v_{-}]^{\bullet}\right)\cong\left[\fbox\right],$$
$$\operatorname{Tot}\left(\sigma_{v_{-}}^{\geq 0}\operatorname{Sm}\left(\swarrow\right)^{\bullet}\right)\cong\left[\rule{0.5ex}{2}\right],$$
$$\operatorname{Tot}\left(\left(\sigma_{v_{+}}^{\leq 0}\operatorname{Sm}\left(\swarrow\right)\right)[v_{+}]^{\bullet}\right)\cong\left[\rule{0.5ex}{2}\right]\left[1\right],$$
$$\operatorname{Tot}\left(\sigma_{v_{+}}^{\geq 1}\operatorname{Sm}\left(\swarrow\right)^{\bullet}\right)\cong\left[\rule{0.5ex}{2}\right]\left[1\right],$$
$$\operatorname{Tot}\left(\left(\sigma_{v_{\times}}^{\leq -1}\operatorname{Sm}\left(\swarrow\right)\right)[v_{\times}]^{\bullet}\right)\cong\left[\rule{0.5ex}{2}\right],$$
$$\operatorname{Tot}\left(\sigma_{v_{\times}}^{\geq 0}\operatorname{Sm}\left(\swarrow\right)^{\bullet}\right)\cong\left[\rule{0.5ex}{2}\right].$$

 \rightsquigarrow we get the result by Proposition 2.2.

Corollary 2.4

For every ordinary link diagram D, $\llbracket D \rrbracket$ agrees with the one defined in [Bar-Natan, 2005].

Applying TQFTs

<u>Recall</u> a 2-dim. TQFT is nothing but a Frobenius algebra.

Fact
For
$$h, t \in k$$
, endow a Frobenius algebra structure on
 $C_{h,t} = k[x]/(x^2 - hx - t)$ by
 $\Delta(1) = 1 \otimes x + x \otimes 1 - h1 \otimes 1$, $\Delta(x) = x \otimes x + t1 \otimes 1$
 $\varepsilon(1) = 0$, $\varepsilon(x) = 1$.
Then, it gives rise to a k-linear functor
 $Z_{h,t} : Cob_2^{\ell}(\emptyset, \emptyset) \to Mod_k$.
Example
For every link diagram D ,
 $HZ_{0,0}[D]] \cong Kh(D)$, $HZ_{1,0}[D]] \cong BN(D)$, $HZ_{0,1}[D]] \cong Lee(D)$
Remark
In the case $h = t = 0$, $C_{0,0}$ is graded so that
 $deg 1 = 1$, $deg x = -1$.
 \rightsquigarrow The TQFT $Z_{0,0}$ respects gradings.
cf. the Euler grading on $Cob_2^{\ell}(\emptyset, \emptyset)$.
 \Rightarrow Second grading on Kh called the *q*-grading.

Invariance

Theorem 2.5 (Ito, Y. 2020)

The universal Khovanov complex $\llbracket D \rrbracket$ is **invariant** under the **moves of singular link diagrams** up to chain homotopy equivalences.

- \rightsquigarrow Applying $Z_{h,t}$, we get extensions of
- Khovanov homology,
- Lee homology, and
- Bar-Natan homology

to singular links.

Approach: elementary moves of double points:

Since invariance under **Reidemeister moves** is known, the result essentially follows from Proposition 2.3 and the following.

Proposition 2.6

The **genus-one morphism** $\widehat{\Phi}$ is **invariant** under the moves above; i.e. there are homotopy commutative squares

The first Vassiliev derivative

Throughout the section, we fix

G: a singular link-like graph with a unique double point.

Overview

Problem

Compute Kh(G).

Approach

- Construct a complex $\llbracket G \rrbracket_{crx}$ in $Cob_2^{\ell}(\emptyset, \emptyset)$, called the crux complex;
 - $\rightsquigarrow C_{\mathsf{crx}}(G) \coloneqq Z_{0,0}\llbracket G \rrbracket_{\mathsf{crx}}.$
- Define $\Xi : \llbracket G \rrbracket_{\operatorname{crx}}[2] \to \llbracket G \rrbracket_{\operatorname{crx}}[-2].$
- Show $\llbracket G \rrbracket \simeq \operatorname{Cone}(\Xi)$. $\rightsquigarrow Kh(G) \cong H^* \operatorname{Cone}(Z_{0,0}(\Xi)).$

Remark

- Ξ has an **explicit description**.
- $\llbracket G \rrbracket_{crx}$ is at least four times smaller then $\llbracket G \rrbracket$.
 - \rightsquigarrow Reduce the size of complexes computing $\llbracket G \rrbracket$.

Remark

Regarding higher derivatives of Kh, for a general G with exactly r double points, we have a spectral sequence

 $E_1 \cong (1^{st} \text{-derivatives of } Kh) \Rightarrow Kh(G)$

Twisted action

<u>Recall</u> in the category of **cobordisms**, the interval I is a **module** and a **comodule** over the circle S^1 :

$$\mu \coloneqq \underbrace{I \otimes S^1 \to I}_{I \otimes I}, \quad \Delta \coloneqq \underbrace{I \otimes S^1}_{I \otimes I} \to I \otimes S^1$$

Proposition 3.1

The following also give other S^1 -module/comodule structures on I up to Bar-Natan's 4Tu-relation:

We call them twisted action/coaction of S^1 on I.

Example

 $C_{0,0} = k[x]/(x^2)$: The Frobenius algebra for Khovanov homology.

→ The twisted action/coaction are

$$\widetilde{\mu}: C_{0,0} \otimes C_{0,0} \to C_{0,0} , \quad \widetilde{\Delta}: C_{0,0} \mapsto C_{0,0} \otimes C_{0,0}$$
$$a \otimes 1 \quad \mapsto \quad a \qquad 1 \quad \mapsto \quad 1 \otimes x - x \otimes 1$$
$$a \otimes x \quad \mapsto \quad -ax \qquad x \quad \mapsto \quad x \otimes x$$

Remark

In the situation above, $\tilde{\mu}$ and $\tilde{\Delta}$ are homogeneous with respect to the **Euler degrees** and

$$\deg \widetilde{\mu} = \deg \widetilde{\Delta} = \deg \mu = \deg \Delta = -1$$

Crux complexes

Definition A map α : c(G) → Z is called a G-crux map if 1 α lies in the effective range (with α(double pt.) := 0); 2 the edges adjacent to the (unique!) double point lie in the same connected component in |G_α|.

Notation

$$|G_{\alpha}|_{\mathsf{crx}} \coloneqq \begin{cases} |G_{\alpha}| & lpha \colon G\operatorname{-crux} \mathsf{map}, \\ 0 & \mathsf{otherwise}. \end{cases}$$

Twisted arcs

The **"upper half"** of the component encircling the double point:

Definition

Define a c(G)-fold complex $Crx(G)^{\bullet}$ by

$$\operatorname{Crx}(G)^{\alpha} \coloneqq |G_{\alpha}|_{\operatorname{crx}}$$

with the differentials given in the same way as $Sm(G)^{\bullet}$ with **twisted actions/coactions** on **twisted arcs**:

$$\widetilde{\mu}: \bigvee \bigcirc \rightarrow \smile \bigcirc, \quad \widetilde{\Delta}: \smile \bigcirc \rightarrow \bigvee \bigcirc$$

Crux complexes

In order to verify ${\rm Crx}(G)^{\bullet}$ is actually an c(G)-fold complex, we have to check the following.

For $v \neq w \in c(G)$, the following commutes:

Proof

CASE $d_v, d_w \in \{\mu, \Delta\}$: same as $Sm(-)^{\bullet}$.

CASE $d_v, d_w \in \{\mu, \widetilde{\mu}\}$ or $d_v, d_w \in \{\Delta, \widetilde{\Delta}\}$: The result follows from the (co)associativity of $\widetilde{\mu}$ and $\widetilde{\Delta}$.

The other non-trivial cases: It remains to discuss

Crux complexes

Definition

Example

The complex $\llbracket G \rrbracket_{crx} := Tot(Crx(G)^{\bullet})$ is called the **crux complex** of G.

In particular, write

$$C_{\mathrm{crx}}(G)\coloneqq Z_{0,0}[\![G]\!]_{\mathrm{crx}}$$

 \rightsquigarrow We obtain $H^*C_{crx}(G) = 0$ except

$$\begin{split} H^{-2}C_{\mathrm{crx}}(G) &\cong \langle x \otimes x \rangle \cong \mathbb{Z} , \\ H^{-1}C_{\mathrm{crx}}(G) &\cong C_{0,0}^{\oplus 2} / \langle (1,-1), (x,x), (x,-x) \rangle \\ &\cong \mathbb{Z} \oplus \mathbb{Z} / 2\mathbb{Z} . \end{split}$$

Remark

In the example above, the summands in $H^*C_{crx}(G)$ are homogeneous with respect to the q-degree.

Absolute exact sequences

Strategy

To relate $\llbracket G \rrbracket_{crx}$ with $\llbracket G \rrbracket$, we want to place them in a single **exact sequence**.

YET, $Cob_2^{\ell}(\emptyset, \emptyset)$ is not abelian.

→ What is **exactness**?

Definition

A sequence

$$\cdots \xrightarrow{f^{i-1}} X^i \xrightarrow{f^i} X^{i+1} \xrightarrow{f^{i+1}} \cdots$$

in a (pre-)additive category \mathcal{A} is said to be **absolutely exact** if the following conditions are satisfied:

1 $f^{i+1}f^i = 0$ for every $i \in \mathbb{Z}$;

2 it is contractible as a chain complex.

Remark

TFAE:

• $\{X^i, f^i\}$ is absolutely exact;

• For every functor $F : \mathcal{A} \to \mathcal{V}$ with \mathcal{V} abelian, $\{FX^i, Ff^i\}$ is exact.

Example

- **1** Absolute exact sequence of length 1 = zero object
- **2** Absolute exact sequence of length 2 = isomorphism
- Absolute exact sequence of length 3 = split short exact sequence

Key exact sequence

Proposition 3.3 (cf. RI-moves by [Bar-Natan, 2005]) The following are **split short exact sequences**:

$$0 \to I \xrightarrow{\Delta} I \otimes S^1 \xrightarrow{\widetilde{\mu}} I \to 0 \quad ,$$
$$0 \to I \xrightarrow{\widetilde{\Delta}} I \otimes S^1 \xrightarrow{\mu} I \to \quad .$$

Proof

First, observe that the S-relation implies

$$\mu \circ (I \otimes \eta) = \widetilde{\mu} \circ (I \otimes \eta) = (I \otimes \varepsilon) \circ \Delta = (I \otimes \varepsilon) \circ \widetilde{\Delta} = \mathrm{id}_I$$

In addition, the 4Tu-relation yields

$$\Delta \circ (I \otimes \varepsilon) + (I \otimes \eta) \circ \widetilde{\mu} = \widetilde{\Delta} \circ (I \otimes \varepsilon) + (I \otimes \eta) \circ \mu = \mathrm{id}_{I \otimes S^1}$$

Corollary 3.4

The following are absolutely exact sequences:

Proof

The first one is obvious since $\Phi = 0$ in this case.

The second follows from the observation $\Phi = \widetilde{\Delta} \widetilde{\mu}$.

Key exact sequence

We obtain a sequence of complexes

$$0 \to \left[\swarrow \right]_{\mathsf{crx}}^{\iota} \xrightarrow{\iota} \left[\fbox \right]_{\mathsf{crx}}^{\delta_{-}} \left[\checkmark \right]_{\bullet}^{\delta_{-}} \left[\checkmark \right]_{\bullet}^{\Phi} \left[\checkmark \right]_{\bullet}^{\delta_{+}} \left[\checkmark \right]_{\bullet}^{\pi} \left[\checkmark \right]_{\mathsf{crx}}^{\pi} 0$$

which is degreewisely **absolutely exact**.

~ The "bulk" part should be determined by the "edge" part.

Generalized 9-lemma

Proposition 3.6 (Generalized 9-lemma (absolute version))

If $X^{i,j}$ is a bounded bicomplex which is absolutely exact on each fixed vertical degree, then $\forall p+1 < q$ there is a morphism

 $\Xi: \operatorname{Tot}(\sigma_{\mathsf{H}}^{\geq q}X) \to \operatorname{Tot}(\sigma_{\mathsf{H}}^{\leq p}X)[1]$

of chain complexes such that

 $\operatorname{Cone}(\Xi) \simeq \operatorname{Tot}(\sigma_{\mathsf{H}}^{\geq p+1} \sigma_{\mathsf{H}}^{\leq q-1} X) \quad .$

Sketch

We have an isomorphism

$$\operatorname{Tot}(X) \cong \operatorname{Cone}\left(\operatorname{Tot}(\sigma_{\mathsf{H}}^{\leq q-1}X)[1] \xrightarrow{\widehat{\varphi}_q} \operatorname{Tot}(\sigma_{\mathsf{H}}^{\geq q}X)\right)$$

with LHS contractible.

 $\rightsquigarrow \widehat{\varphi}_q$ is a homotopy equivalence.

2 We also have an isomorphism

$$\operatorname{Tot}(\sigma_{\mathsf{H}}^{\leq q-1}) \cong \operatorname{Cone}\left(\operatorname{Tot}(\sigma_{\mathsf{H}}^{\leq p}X)[1] \xrightarrow{\widehat{\varphi}_{p}} \operatorname{Tot}(\sigma_{\mathsf{H}}^{\geq p+1}\sigma_{\mathsf{H}}^{\leq q-1}X)\right)$$

Combining 1 and 2, we obtain the following distinguished triangle in the homotopy category:

$$\operatorname{Tot}(\sigma_{\mathsf{H}}^{\leq p}X)[1] \xrightarrow{\widehat{\varphi}_{p}} \operatorname{Tot}(\sigma_{\mathsf{H}}^{\geq p+1}\sigma_{\mathsf{H}}^{\leq q-1}X) \xrightarrow{\widehat{\varphi}_{q} \circ i} \operatorname{Tot}(\sigma_{\mathsf{H}}^{\geq q}X)[-1]$$

 \rightsquigarrow required Ξ obtained by **rotating** the triangle.

Proof of Main Theorem II

Theorem 3.7

G: a singular link-like graph with a unique double point.

 \rightsquigarrow There is a morphism $\Xi : \llbracket G \rrbracket_{crx}[2] \rightarrow \llbracket G \rrbracket_{crx}[-2]$ such that

 $\llbracket G \rrbracket \cong \operatorname{Cone}(\Xi) \quad .$

Applying the TQFT $Z_{0,0}$, we finally obtain Main Theorem II.

Main Theorem II

D: a singular link diagram with exactly one double point.

 $\rightsquigarrow \exists$ chain complex $C^{*,\star}_{crx}(D)$ together with a (graded) endomorphism

$$\Xi: C^{*-2,\star-2}_{\operatorname{crx}}(D) \to C^{*+2,\star+4}_{\operatorname{crx}}(D)$$

such that

 $C_{Kh}\left(\swarrow\right)\simeq\operatorname{Cone}(\Xi)$.

Remark

Main Theorem II categorifies the equation

$$V_L(e^{\frac{2\pi}{3}\sqrt{-1}}) = (-1)^{\#L-1}$$

: Taking the Euler characteristics in Main Theorem II (cf. $q = -t^{1/2}$),

$$\chi\left(Kh\left(\swarrow\right)\right) - \chi\left(Kh\left(\swarrow\right)\right) = (q^4 - q^{-2})\chi\left(H^*C_{\mathsf{crx}}\right)_{\mathsf{crx}}$$

which belongs to the ideal generated by $(1-t^3)$.

 \rightsquigarrow Crossing change does not affect the value at $t = \sqrt[3]{1}$.

Application

Reducible crossing

Theorem 4.1

The **genus-one** morphism $\widehat{\Phi}$ is a homotopy-equivalence for **reducible** (aka. **nugatory**) crossing; i.e.

$$\widehat{\Phi}: \left[D' \swarrow D'' \right] \xrightarrow{\sim} \left[D' \swarrow D'' \right]$$

Proof

By the categorified Vassiliev skein relation,

Corollary 4.2

The universal Khovanov complex satisfies a homotopy FI relation:

Homology of twist knots

Theorem 4.3 (Y. arXiv:2007.15867)

There is a homotopy equivalence

here ${\cal C}(k)$ is the complex of the form

$$\cdots \to 0 \to S^1 \xrightarrow{\mu\Delta} S^1 \to \overset{-k-(-1)^k}{\check{0}} \to S^1 \xrightarrow{\mu\Delta} S^1 \to 0 \to \cdots$$

<u>Sketch</u>

Induction on
$$r$$
 using $G(r) := \underbrace{f(r)}_{r \text{ negative crossings}}$

- **2** Observe $\Xi = 0$ on G(r) for the degree reason.
- 3 G(r)-crux map α values -1 on the horizontal twists. $\sim [G(r)]_{crx}$ does not depend on r up to shifts.
- 4 Compute $\llbracket G(r) \rrbracket_{crx}$. \rightsquigarrow the half of C(k) appears.
- 5 Verify the splitting in each induction step.

Reference I

[Bar-Natan, 2005] Bar-Natan, D. (2005).

Khovanov's homology for tangles and cobordisms.

Geometry & Topology, 9(3):1443–1499.

[Birman, 1993] Birman, J. S. (1993).

New points of view in knot theory.

American Mathematical Society. Bulletin. New Series, 28(2):253–287.

[Birman and Lin, 1993] Birman, J. S. and Lin, X.-S. (1993).

Knot polynomials and Vassiliev's invariants.

Inventiones Mathematicae, 111(2):225–270.

[Budney et al., 2017] Budney, R., Conant, J., Koytcheff, R., and Sinha, D. (2017).

Embedding calculus knot invariants are of finite type.

Algebraic & Geometric Topology, 17(3):1701–1742.

[Hedden and Watson, 2018] Hedden, M. and Watson, L. (2018).

On the geography and botany of knot Floer homology.

Selecta Mathematica. New Series, 24(2):997–1037.

[Ito and Yoshida, 2020] Ito, N. and Yoshida, J. (2020).

Universal Khovanov homology for singular tangles and a categorified Vassiliev skein relation.

arXiv:2005.12664.

[Khovanov, 2000] Khovanov, M. (2000).

A categorification of the Jones polynomial.

Duke Mathematical Journal, 101(3):359-426.

Reference II

[Kronheimer and Mrowka, 2011] Kronheimer, P. B. and Mrowka, T. S. (2011).

Khovanov homology is an unknot-detector.

Publications Mathématiques. Institut de Hautes Études Scientifiques, 113:97–208.

[Lee, 2005] Lee, E. S. (2005).

An endomorphism of the Khovanov invariant.

Advances in Mathematics, 197(2):554–586.

[Rasmussen, 2010] Rasmussen, J. A. (2010).

Khovanov homology and the slice genus.

Inventiones Mathematicae, 182(2):419–447.

[Vassiliev, 1990] Vassiliev, V. A. (1990).

Cohomology of knot spaces.

In *Theory of singularities and its applications*, volume 1 of *Advances in Soviet Mathematics*, pages 23–69. American Mathematical Society, Providence, RI.

[Volić, 2006] Volić, I. (2006).

Finite type knot invariants and the calculus of functors.

Compositio Mathematica, 142(1):222–250.

[Yoshida, 2020] Yoshida, J. (2020).

Decomposition of the first Vassiliev derivative of Khovanov homology and its application.

arXiv:2007.15867.