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Introduction



This talk is based on a joint work

arXiv:1910.01987 (to appear in CMP)

of three mathematicians and three physicists:

• Mikio Furuta

• Mayuko Yamashita

• Shinichiroh Matsuo

• Hidenori Fukaya

• Tetsuya Onogi

• Satoshi Yamaguchi
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Main theorem

Theorem 1.1 (FFMOYY, arXiv:1910.01987, to appear in CMP)
For m ≫ 0, we have a formula

IndAPS(D|X+
) =

η(D+mκγ) − η(D−mγ)

2
.

• The Atiyah-Patodi-Singer index is expressed in terms of the η-invariant of domain-wall fermion
Dirac operators.

• The original motivation comes from the bulk-edge correspondence of topological insulators in
condensed matter physics.

• The proof is based on a Witten localisation argument.
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Plan of the talk

1. Reviews of the Atiyah-Singer index and the eta invariant

2. The Atiyah-Patodi-Singer index

3. Domain-wall fermion Dirac operators

4. Main theorem

5. The proof of a toy model

6. The proof of the main theorem: Witten localisation
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Index and Eta



Let X be a closed manifold and S → X a hermitian bundle. Assume dimX is even. Assume S is
Z/2-graded: there exists γ : Γ(S) → Γ(S) such that γ2 = idS.

γ =

(
1 0
0 −1

)
.

Let D : Γ(S) → Γ(S) be a 1st order elliptic differential operator. Assume D is odd and self-adjoint:

D =

(
0 D−

D+ 0

)
and D− = (D+)∗.

Definition 2.1 (Atiyah-Singer index)
We define the index IndD of a self-adjoint, odd, elliptic operator D by

IndD := dimKerD+ − dimKerD−

= dimKerD+ − dimCokerD+.
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Fix m ̸= 0 and consider

D+mγ =

(
m D−

D+ −m

)
: Γ(S) → Γ(S).

This is self-adjoint but no longer odd; thus, its spectrum is real but not symmetric around 0.

For s ∈ C, let
η(D+mγ)(s) :=

∑
λj

signλj

|λj|s
,

where {λj} = Spec(D+mγ). Note that λj ̸= 0 for any j.

• This series converges absolutely when Re(s) ≫ 0.

• We can extend η(D+mγ)(s) meromorphically to the whole complex plane C.

• It is a quite non-trivial result that 0 is not a pole of η(D+mγ)(s).

Definition 2.2
η(D+mγ) := η(D+mγ)(0).

The eta invariant describes the overall asymmetry of the spectrum of a self-adjoint operator.
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Proposition 2.3
For any m > 0, we have a formula

Ind(D) =
η(D+mγ) − η(D−mγ)

2
.

This formula might be unfamiliar; however, we can prove it easily, for example, by diagonalising D2

and γ simultaneously. We will explain another proof later.

We will generalise this formula to handle compact manifolds with boundary and the
Atiyah-Patodi-Singer index.
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Proposition 2.4
For any m > 0, we have a formula

Ind(D) =
η(D+mγ) − η(D−mγ)

2
.

We will generalise this formula to handle compact manifolds with boundary and the
Atiyah-Patodi-Singer index by using domain-wall fermion Dirac operators.

Theorem 2.5 (FFMOYY arXiv:1910.01987)
For m ≫ 0, we have a formula

IndAPS(D|X+
) =

η(D+mκγ) − η(D−mγ)

2
.

Next, we review the Atiyah-Patodi-Singer index.
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The Atiyah-Patodi-Singer index



Let Y ⊂ X be a separating submanifold that decomposes X into two compact manifolds X+ and X−

with common boundary Y. Assume Y has a collar neighbourhood isometric to (−4, 4)× Y.

(−4, 4)× Y ⊂ X = X−

⋃
Y

X+

X− Y X+
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Assume S → X and D : Γ(S) → Γ(S) are standard on (−4, 4)× Y in the sense that there exists a
hermitian bundle E → Y and a self-adjoint elliptic operator A : Γ(E) → Γ(E) such that S = C2 ⊗E

and

D =

(
0 D∗

+

D+ 0

)
=

(
0 ∂u +A

−∂u +A 0

)
on (−4, 4)× Y.

X− Y X+

Assume also A has no zero eigenvalues.
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Let X̂+ := (−∞, 0]× Y ∪X+.

(−∞, 0)× Y X+

We assumed D is translation invariant on (−4, 4)× Y:

D =

(
0 D∗

+

D+ 0

)
=

(
0 ∂u +A

−∂u +A 0

)
.

Thus, D|X+
naturally extends to X̂+, which is denoted by D̂.

This is Fredholm if A has no zero eigenvalues.

Definition 3.1 (Atiyah-Patodi-Singer index)
IndAPS(D|X+

) := Ind(D̂)
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Domain-wall fermion Dirac
operators



Let κ : X → R be a step function such that κ ≡ ±1 on X±.

X− Y X+

κ

Definition 4.1
For m > 0,

D+mκγ : Γ(S) → Γ(S)

is called a domain-wall fermion Dirac operator.
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D+mκγ is self-adjoint but not odd.

X− Y X+

κ

D =

(
0 ∂u +A

−∂u +A 0

)
on (−4, 4)× Y

Proposition 4.2
If KerA = {0}, then Ker(D+mκγ) = {0} for m ≫ 0.

Next we will define η(D+mκγ).
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The eta invariant of domain-wall fermion Dirac operators

Since Ker(D+mκγ) = {0}, there exists a constant Cm > 0 such that Ker(D+mκγ+ f) = {0} if
∥f∥2 < Cm.

Proposition 4.3 (Corollary of the variational formula of the eta invariant)
Assume both mκγ + f1 and mκγ + f2 are smooth and self-adjoint with ∥f1∥2 < Cm and
∥f2∥2 < Cm. Then, we have

η(D+mκγ+ f1) = η(D+mκγ+ f2).

Definition 4.4
For any f with ∥f∥2 < Cm and mκγ+ f smooth and self-adjoint, we set

η(D+mκγ) := η(D+mκγ+ f).
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Main theorem



Main theorem

Theorem 5.1 (FFMOYY arXiv:1910.01987)
For m ≫ 0, we have a formula

IndAPS(D|X+
) =

η(D+mκγ) − η(D−mγ)

2
.

X− Y X+

κ

• The Atiyah-Patodi-Singer index is expressed in terms of the η-invariant of domain-wall fermion
Dirac operators.

• The original motivation comes from physics.

• The proof is based on a Witten localisation argument.
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The proof of a toy model



Toy model

Proposition 6.1
For any m > 0, we have a formula

Ind(D) =
η(D+mγ) − η(D−mγ)

2
.

As a warm-up, we will prove this formula in the spirit of our proof of the main theorem.
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Let κ̂AS : R×X → R be a step function such that κ̂AS ≡ 1 on (0,∞)×X and κ̂AS ≡ −1 on
(−∞, 0)×X.

κ̂AS ≡ −1

κ̂AS ≡ +1

We consider D̂m : L2(R×X;S⊕ S) → L2(R×X;S⊕ S) defined by

D̂m :=

(
0 (D+mκ̂ASγ) + ∂t

(D+mκ̂ASγ) − ∂t 0

)
.

This is a Fredholm operator.
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Model case: the Jackiw-Rebbi solution on R

For any m > 0, we have
d

dt
e−m|t| = −m sgne−m|t|,

where sgn(±t) = ±1. As m → ∞, the solution concentrates at 0.

t
O

m sgne−m|t|

(
0 ∂t +m sgn

−∂t +m sgn 0

)(
0

e−m|t|

)
=

(
0
0

)
.
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κ̂AS ≡ −1

κ̂AS ≡ +1

D̂m :=

(
0 (D+mκ̂ASγ) + ∂t

(D+mκ̂ASγ) − ∂t 0

)
(e−m|t|) ′ = −m sgne−m|t|

Proposition 6.2 (Product formula)
Ind(D) = Ind(D̂m)

(Proof) Assume Dϕ = 0. Set ϕ± := (ϕ±γϕ)/2. Then, we have(
0 (D+mκ̂ASγ) + ∂t

(D+mκ̂ASγ) − ∂t 0

)(
e−m|t|ϕ−

e−m|t|ϕ+

)
= 0.

□
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κ̂AS ≡ −1

κ̂AS ≡ +1

D̂m :=

(
0 (D+mκ̂ASγ) + ∂t

(D+mκ̂ASγ) − ∂t 0

)

Proposition 6.3 (APS formula)

Ind(D̂m) =
η(D+mγ) − η(D−mγ)

2

(Proof)

• Note that D+mκ̂AS(±1, ·)γ = D±mγ.

• Perturb κ̂AS slightly near {0}×X to get a smooth operator.

• Use the Atiyah-Patodi-Singer index theorem on R×X.

• Since dimR×X is odd, the constant term in the asymptotic expansion of the heat kernel vanishes.

□
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κ̂AS ≡ −1

κ̂AS ≡ +1

D̂m :=

(
0 (D+mκ̂ASγ) + ∂t

(D+mκ̂ASγ) − ∂t 0

)

Proposition 6.4

Ind(D) =
η(D+mγ) − η(D−mγ)

2
.

(Proof) By the product formula, we have

Ind(D) = Ind(D̂m).

By the APS formula, we have

Ind(D̂m) =
η(D+mγ) − η(D−mγ)

2
.

□
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The proof of the main theorem



Outline of the proof

Theorem 7.1 (FFMOYY arXiv:1910.01987)
For m ≫ 0, we have a formula

IndAPS(D|X+
) =

η(D+mκγ) − η(D−mγ)

2
.

The proof is modelled on the original embedding proof of the Atiyah-Singer index theorem.

1. Embed X̂+ into R×X.

2. Extend both D̂ on X̂+ and D+mκγ on {10}×X to R×X.

3. Use the product formula, the APS formula, and a Witten localisation argument.
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Embedding of X̂+ into R× X

X̂+ := (−∞, 0]× Y ∪X+.

(−∞, 0)× Y X+

We can embed X̂+ into R×X as follows:

X̂+
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Extension of D̂ and D+mκγ to R× X

(R×X) \ X̂+ has two connected components. We denote by (R×X)− the one containing
{−10}×X+ and by (R×X)+ the other half. Let κ̂APS : R×X → [−1, 1] be a step function such
that κ̂APS ≡ ±1 on (R×X)±.

X̂+
κ̂APS ≡ −1

κ̂APS ≡ +1

We consider

D̂m :=

(
0 (D+mκ̂APSγ) + ∂t

(D+mκ̂APSγ) − ∂t 0

)
.
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X̂+
κ̂APS ≡ −1

κ̂APS ≡ +1

D̂m :=

(
0 (D+mκ̂APSγ) + ∂t

(D+mκ̂APSγ) − ∂t 0

)

κ̂APS ≡ κ on {10}×X.

Proposition 7.2 (APS formula)

Ind(D̂m) =
η(D+mκγ) − η(D−mγ)

2
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X̂+
κ̂APS ≡ −1

κ̂APS ≡ +1

D̂m :=

(
0 (D+mκ̂APSγ) + ∂t

(D+mκ̂APSγ) − ∂t 0

)
.

The restriction of D̂m to a tubular neighbourhood of X̂+ is isomorphic to(
0 (D̂+m sgnγ) + ∂t

(D̂+m sgnγ) − ∂t 0

)

on R× X̂+ near {0}× X̂+, where D̂ is the extension of D|X+
to X̂+.
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Witten localisation

Theorem 7.3 (Witten localisation)
For m ≫ 0, we have

Ind(D̂m) = Ind

(
0 (D̂+m sgnγ) + ∂t

(D̂+m sgnγ) − ∂t 0

)
.

The proof is too technical to state here, but the idea is simple.

t
O

m sgne−m|t|

(
0 ∂t +m sgn

−∂t +m sgn 0

)(
0

e−m|t|

)
=

(
0
0

)
.
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Proposition 7.4 (Product formula)

Ind

(
0 (D̂+m sgnγ) + ∂t

(D̂+m sgnγ) − ∂t 0

)
= Ind(D̂)
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Theorem 7.5 (FFMOYY arXiv:1910.01987)
For m ≫ 0, we have a formula

IndAPS(D|X+
) =

η(D+mκγ) − η(D−mγ)

2
.

(Proof) By definition, we have IndAPS(D|X+
) = Ind(D̂).

By the product formula, we have

Ind(D̂) = Ind

(
0 (D̂+m sgnγ) + ∂t

(D̂+m sgnγ) − ∂t 0

)
.

By the Witten localisation argument, for m ≫ 0, we have

Ind

(
0 (D̂+m sgnγ) + ∂t

(D̂+m sgnγ) − ∂t 0

)
= Ind(D̂m).

By the APS formula, we have

Ind(D̂m) =
η(D+mκγ) − η(D−mγ)

2
.

Thus, we have proved the formula. □
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