The Atiyah-Patodi-Singer index and domain-wall fermion Dirac operators

松尾信一郎 名古屋大学大学院多元数理科学研究科 2020 年 10 月 6 日@東大数理トポロジー火曜セミナー

Introduction

This talk is based on a joint work

arXiv:1910.01987 (to appear in CMP)

of three mathematicians and three physicists:

- Mikio Furuta
- Mayuko Yamashita
- Shinichiroh Matsuo

- Hidenori Fukaya
- Tetsuya Onogi
- Satoshi Yamaguchi

Main theorem

Theorem 1.1 (FFMOYY, arXiv:1910.01987, to appear in CMP) For $\mathfrak{m} \gg 0$, we have a formula

$$\mathsf{Ind}_{\mathsf{APS}}(\left.\mathsf{D}\right|_{X_{+}}) = \frac{\eta(\mathsf{D} + \mathfrak{m}\kappa\gamma) - \eta(\mathsf{D} - \mathfrak{m}\gamma)}{2}$$

- The Atiyah-Patodi-Singer index is expressed in terms of the η -invariant of domain-wall fermion Dirac operators.
- The original motivation comes from the bulk-edge correspondence of topological insulators in condensed matter physics.
- The proof is based on a Witten localisation argument.

- 1. Reviews of the Atiyah-Singer index and the eta invariant
- 2. The Atiyah-Patodi-Singer index
- 3. Domain-wall fermion Dirac operators
- 4. Main theorem
- 5. The proof of a toy model
- 6. The proof of the main theorem: Witten localisation

Index and Eta

Let X be a closed manifold and $S \to X$ a hermitian bundle. Assume dim X is even. Assume S is $\mathbb{Z}/2$ -graded: there exists $\gamma \colon \Gamma(S) \to \Gamma(S)$ such that $\gamma^2 = id_S$.

$$\gamma = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Let $D: \Gamma(S) \to \Gamma(S)$ be a 1st order elliptic differential operator. Assume D is odd and self-adjoint:

$$D = \begin{pmatrix} 0 & D_- \\ D_+ & 0 \end{pmatrix}$$
 and $D_- = (D_+)^*$.

Definition 2.1 (Atiyah-Singer index)

We define the index Ind D of a self-adjoint, odd, elliptic operator D by

 $\operatorname{Ind} D := \dim \operatorname{Ker} D_{+} - \dim \operatorname{Ker} D_{-}$

= dim Ker D₊ - dim Coker D₊.

Fix $m \neq 0$ and consider

$$D+\mathfrak{m}\gamma = \begin{pmatrix} \mathfrak{m} & D_- \\ D_+ & -\mathfrak{m} \end{pmatrix} \colon \Gamma(S) \to \Gamma(S).$$

This is self-adjoint but no longer odd; thus, its spectrum is real but not symmetric around 0. For $s \in \mathbb{C}$, let

$$\eta(\mathsf{D} + \mathfrak{m}\gamma)(s) := \sum_{\lambda_j} \frac{\operatorname{sign} \lambda_j}{|\lambda_j|^s},$$

where $\{\lambda_j\} = \text{Spec}(D + m\gamma)$. Note that $\lambda_j \neq 0$ for any j.

- This series converges absolutely when $\operatorname{Re}(s) \gg 0$.
- We can extend $\eta(D + m\gamma)(s)$ meromorphically to the whole complex plane \mathbb{C} .
- It is a quite non-trivial result that 0 is not a pole of $\eta(D + m\gamma)(s)$.

Definition 2.2

$$\eta(\mathbf{D} + \mathfrak{m}\gamma) := \eta(\mathbf{D} + \mathfrak{m}\gamma)(0).$$

The eta invariant describes the overall asymmetry of the spectrum of a self-adjoint operator.

Proposition 2.3 For any m > 0, we have a formula

$$\operatorname{Ind}(D) = \frac{\eta(D + \mathfrak{m}\gamma) - \eta(D - \mathfrak{m}\gamma)}{2}.$$

This formula might be unfamiliar; however, we can prove it easily, for example, by diagonalising D^2 and γ simultaneously. We will explain another proof later.

We will generalise this formula to handle compact manifolds with boundary and the Atiyah-Patodi-Singer index.

Proposition 2.4 For any m > 0, we have a formula

$$\mathsf{Ind}(D) = \frac{\eta(D + \mathfrak{m}\gamma) - \eta(D - \mathfrak{m}\gamma)}{2}$$

We will generalise this formula to handle compact manifolds with boundary and the Atiyah-Patodi-Singer index by using domain-wall fermion Dirac operators.

Theorem 2.5 (FFMOYY arXiv:1910.01987) For $m \gg 0$, we have a formula

$$\mathsf{Ind}_{\mathsf{APS}}(\mathsf{D}|_{\mathsf{X}_+}) = \frac{\eta(\mathsf{D} + \mathfrak{m} \kappa \gamma) - \eta(\mathsf{D} - \mathfrak{m} \gamma)}{2}$$

Next, we review the Atiyah-Patodi-Singer index.

The Atiyah-Patodi-Singer index

Let $Y \subset X$ be a separating submanifold that decomposes X into two compact manifolds X_+ and X_- with common boundary Y. Assume Y has a collar neighbourhood isometric to $(-4, 4) \times Y$.

$$(-4,4) \times Y \subset X = X_{-} \bigcup_{Y} X_{+}$$

Assume $S \to X$ and $D: \Gamma(S) \to \Gamma(S)$ are standard on $(-4, 4) \times Y$ in the sense that there exists a hermitian bundle $E \to Y$ and a self-adjoint elliptic operator $A: \Gamma(E) \to \Gamma(E)$ such that $S = \mathbb{C}^2 \otimes E$ and

$$\mathbf{D} = \begin{pmatrix} \mathbf{0} & \mathbf{D}_{+}^{*} \\ \mathbf{D}_{+} & \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{0} & \mathbf{\partial}_{\mathbf{u}} + \mathbf{A} \\ -\mathbf{\partial}_{\mathbf{u}} + \mathbf{A} & \mathbf{0} \end{pmatrix}$$

on $(-4, 4) \times Y$.

Assume also A has no zero eigenvalues.

Let
$$\widehat{X_+} := (-\infty, 0] \times Y \cup X_+$$
.

We assumed D is translation invariant on $(-4, 4) \times Y$:

$$\mathbf{D} = \begin{pmatrix} \mathbf{0} & \mathbf{D}_+^* \\ \mathbf{D}_+ & \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{0} & \mathbf{\partial}_{\mathbf{u}} + \mathbf{A} \\ -\mathbf{\partial}_{\mathbf{u}} + \mathbf{A} & \mathbf{0} \end{pmatrix}.$$

Thus, $D|_{X_+}$ naturally extends to $\widehat{X_+}$, which is denoted by \widehat{D} . This is Fredholm if A has no zero eigenvalues.

Definition 3.1 (Atiyah-Patodi-Singer index)

 $\mathsf{Ind}_{\mathsf{APS}}(\left.\mathsf{D}\right|_{X_+}):=\mathsf{Ind}(\widehat{\mathsf{D}})$

Domain-wall fermion Dirac operators

Let $\kappa \colon X \to \mathbb{R}$ be a step function such that $\kappa \equiv \pm 1$ on X_{\pm} .

Definition 4.1

For m > 0,

 $\mathsf{D} + \mathfrak{m} \boldsymbol{\kappa} \boldsymbol{\gamma} \colon \Gamma(\mathsf{S}) \to \Gamma(\mathsf{S})$

is called a domain-wall fermion Dirac operator.

 $D + m\kappa\gamma$ is self-adjoint but not odd.

$$D = \begin{pmatrix} 0 & \partial_{u} + A \\ -\partial_{u} + A & 0 \end{pmatrix} \text{ on } (-4, 4) \times Y$$

Proposition 4.2

If Ker $A = \{0\}$, then Ker $(D + \mathfrak{m}\kappa\gamma) = \{0\}$ for $\mathfrak{m} \gg 0$.

Next we will define $\eta(D + m\kappa\gamma)$.

The eta invariant of domain-wall fermion Dirac operators

Since $\text{Ker}(D + \mathfrak{m}\kappa\gamma) = \{0\}$, there exists a constant $C_{\mathfrak{m}} > 0$ such that $\text{Ker}(D + \mathfrak{m}\kappa\gamma + f) = \{0\}$ if $\|f\|_2 < C_{\mathfrak{m}}$.

Proposition 4.3 (Corollary of the variational formula of the eta invariant) Assume both $\mathfrak{m}\kappa\gamma + f_1$ and $\mathfrak{m}\kappa\gamma + f_2$ are smooth and self-adjoint with $\|f_1\|_2 < C_{\mathfrak{m}}$ and $\|f_2\|_2 < C_{\mathfrak{m}}$. Then, we have

 $\eta(D+\mathfrak{m}\kappa\gamma+f_1)=\eta(D+\mathfrak{m}\kappa\gamma+f_2).$

Definition 4.4

For any f with $\|f\|_2 < C_m$ and $m\kappa\gamma + f$ smooth and self-adjoint, we set

 $\eta(D + \mathfrak{m}\kappa\gamma) := \eta(D + \mathfrak{m}\kappa\gamma + f).$

Main theorem

Main theorem

Theorem 5.1 (FFMOYY arXiv:1910.01987) For $\mathfrak{m} \gg 0$, we have a formula $\operatorname{Ind}_{APS}(D|_{X_{+}}) = \frac{\eta(D + \mathfrak{m}\kappa\gamma) - \eta(D - \mathfrak{m}\gamma)}{2}.$

- The Atiyah-Patodi-Singer index is expressed in terms of the η -invariant of domain-wall fermion Dirac operators.
- The original motivation comes from physics.
- The proof is based on a Witten localisation argument.

The proof of a toy model

Proposition 6.1 For any m > 0, we have a formula $Ind(D) = \frac{\eta(D + m\gamma) - \eta(D - m\gamma)}{2}.$

As a warm-up, we will prove this formula in the spirit of our proof of the main theorem.

Let $\hat{\kappa}_{AS} : \mathbb{R} \times X \to \mathbb{R}$ be a step function such that $\hat{\kappa}_{AS} \equiv 1$ on $(0, \infty) \times X$ and $\hat{\kappa}_{AS} \equiv -1$ on $(-\infty, 0) \times X$.

We consider $\widehat{D}_m \colon L^2(\mathbb{R} \times X; S \oplus S) \to L^2(\mathbb{R} \times X; S \oplus S)$ defined by

$$\widehat{D}_{\mathfrak{m}} := \begin{pmatrix} 0 & (D + \mathfrak{m}\widehat{\kappa}_{\mathsf{AS}}\gamma) + \mathfrak{d}_{\mathsf{t}} \\ (D + \mathfrak{m}\widehat{\kappa}_{\mathsf{AS}}\gamma) - \mathfrak{d}_{\mathsf{t}} & 0 \end{pmatrix}.$$

This is a Fredholm operator.

Model case: the Jackiw-Rebbi solution on R

For any m > 0, we have

$$\frac{\mathrm{d}}{\mathrm{lt}}e^{-\mathrm{m}|\mathrm{t}|} = -\mathrm{m}\operatorname{sgn} e^{-\mathrm{m}|\mathrm{t}|},$$

where $sgn(\pm t) = \pm 1$. As $m \to \infty$, the solution concentrates at 0.

$$\widehat{\kappa}_{AS} \equiv -1$$

$$\begin{split} \widehat{D}_{\mathfrak{m}} &:= \begin{pmatrix} 0 & (D + \mathfrak{m}\widehat{\kappa}_{\mathsf{AS}}\gamma) + \mathfrak{d}_{\mathsf{t}} \\ (D + \mathfrak{m}\widehat{\kappa}_{\mathsf{AS}}\gamma) - \mathfrak{d}_{\mathsf{t}} & 0 \end{pmatrix} \\ & (e^{-\mathfrak{m}|\mathsf{t}|})' = -\mathfrak{m}\operatorname{sgn} e^{-\mathfrak{m}|\mathsf{t}|} \end{split}$$

Proposition 6.2 (Product formula)

 $\mathsf{Ind}(D) = \mathsf{Ind}(\widehat{D}_{\mathfrak{m}})$

(Proof) Assume $D\varphi = 0$. Set $\varphi_{\pm} := (\varphi \pm \gamma \varphi)/2$. Then, we have

$$\begin{pmatrix} 0 & (D+m\widehat{\kappa}_{AS}\gamma)+\vartheta_t \\ (D+m\widehat{\kappa}_{AS}\gamma)-\vartheta_t & 0 \end{pmatrix} \begin{pmatrix} e^{-m|t|}\varphi_- \\ e^{-m|t|}\varphi_+ \end{pmatrix} = 0.$$

18/28

$$\widehat{R}_{AS} \equiv -1$$

$$\widehat{D}_{\mathfrak{m}} := \begin{pmatrix} 0 & (D + \mathfrak{m}\widehat{\kappa}_{AS}\gamma) + \vartheta_{t} \\ (D + \mathfrak{m}\widehat{\kappa}_{AS}\gamma) - \vartheta_{t} & 0 \end{pmatrix}$$

Proposition 6.3 (APS formula)

$$\mathsf{Ind}(\widehat{D}_{\mathfrak{m}}) = \frac{\eta(D + \mathfrak{m}\gamma) - \eta(D - \mathfrak{m}\gamma)}{2}$$

(Proof)

- Note that $D + \mathfrak{m}\hat{\kappa}_{AS}(\pm 1, \cdot)\gamma = D \pm \mathfrak{m}\gamma$.
- Perturb $\hat{\kappa}_{AS}$ slightly near $\{0\} \times X$ to get a smooth operator.
- Use the Atiyah-Patodi-Singer index theorem on $\mathbb{R} \times X$.
- Since dim $\mathbb{R} \times X$ is odd, the constant term in the asymptotic expansion of the heat kernel vanishes.

19/28

$$\widehat{\mathbf{k}}_{AS} \equiv -1$$

$$\widehat{\mathbf{D}}_{\mathfrak{m}} := \begin{pmatrix} \mathbf{0} & (\mathbf{D} + \mathbf{m}\widehat{\mathbf{k}}_{AS}\gamma) + \mathbf{\partial}_{t} \\ (\mathbf{D} + \mathbf{m}\widehat{\mathbf{k}}_{AS}\gamma) - \mathbf{\partial}_{t} & \mathbf{0} \end{pmatrix}$$

Proposition 6.4

$$Ind(D) = \frac{\eta(D + m\gamma) - \eta(D - m\gamma)}{2}$$

(Proof) By the product formula, we have

$$\operatorname{Ind}(D) = \operatorname{Ind}(\widehat{D}_{\mathfrak{m}}).$$

By the APS formula, we have

$$\mathsf{Ind}(\widehat{D}_\mathfrak{m}) = \frac{\eta(D+\mathfrak{m}\gamma) - \eta(D-\mathfrak{m}\gamma)}{2}$$

20/28

The proof of the main theorem

Outline of the proof

Theorem 7.1 (FFMOYY arXiv:1910.01987)

For $\mathfrak{m} \gg 0$, we have a formula

$$\mathsf{nd}_{\mathsf{APS}}(\mathsf{D}|_{\mathsf{X}_{+}}) = \frac{\eta(\mathsf{D} + \mathfrak{m}\kappa\gamma) - \eta(\mathsf{D} - \mathfrak{m}\gamma)}{2}$$

The proof is modelled on the original embedding proof of the Atiyah-Singer index theorem.

- 1. Embed $\widehat{X_+}$ into $\mathbb{R} \times X$.
- 2. Extend both \widehat{D} on $\widehat{X_+}$ and $D + \mathfrak{m}\kappa\gamma$ on $\{10\} \times X$ to $\mathbb{R} \times X$.
- 3. Use the product formula, the APS formula, and a Witten localisation argument.

Embedding of $\widehat{X_+}$ into $\mathbb{R} \times X$

 $\widehat{X_+}:=(-\infty,0]\times Y\cup X_+.$

We can embed $\widehat{X_+}$ into $\mathbb{R} \times X$ as follows:

Extension of \widehat{D} **and** $D + \mathfrak{m}\kappa\gamma$ **to** $\mathbb{R} \times X$

 $(\mathbb{R} \times X) \setminus \widehat{X_+}$ has two connected components. We denote by $(\mathbb{R} \times X)_-$ the one containing $\{-10\} \times X_+$ and by $(\mathbb{R} \times X)_+$ the other half. Let $\widehat{\kappa}_{APS} : \mathbb{R} \times X \to [-1, 1]$ be a step function such that $\widehat{\kappa}_{APS} \equiv \pm 1$ on $(\mathbb{R} \times X)_{\pm}$.

We consider

$$\widehat{\mathcal{D}}_{\mathfrak{m}} := \begin{pmatrix} 0 & (\mathbf{D} + \mathfrak{m}\widehat{\kappa}_{APS}\gamma) + \mathfrak{d}_{\mathfrak{t}} \\ (\mathbf{D} + \mathfrak{m}\widehat{\kappa}_{APS}\gamma) - \mathfrak{d}_{\mathfrak{t}} & 0 \end{pmatrix}.$$

$$\widehat{\kappa}_{APS} \equiv - \begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & &$$

$$\widehat{\mathcal{D}}_{\mathfrak{m}} := \begin{pmatrix} 0 & (\mathsf{D} + \mathfrak{m}\widehat{\kappa}_{\mathsf{APS}}\gamma) + \mathfrak{d}_{\mathsf{t}} \\ (\mathsf{D} + \mathfrak{m}\widehat{\kappa}_{\mathsf{APS}}\gamma) - \mathfrak{d}_{\mathsf{t}} & 0 \end{pmatrix}$$

 $\hat{\kappa}_{APS} \equiv \kappa \text{ on } \{10\} \times X.$

Proposition 7.2 (APS formula)

$$\operatorname{Ind}(\widehat{\mathcal{D}}_{\mathfrak{m}}) = \frac{\eta(\mathsf{D} + \mathfrak{m}\kappa\gamma) - \eta(\mathsf{D} - \mathfrak{m}\gamma)}{2}$$

$$\widehat{\mathcal{D}}_{\mathfrak{m}} := \begin{pmatrix} 0 & (\mathbf{D} + \mathfrak{m}\widehat{\kappa}_{APS}\gamma) + \mathfrak{d}_{t} \\ (\mathbf{D} + \mathfrak{m}\widehat{\kappa}_{APS}\gamma) - \mathfrak{d}_{t} & 0 \end{pmatrix}.$$

The restriction of $\widehat{\mathcal{D}}_m$ to a tubular neighbourhood of $\widehat{X_+}$ is isomorphic to

$$\begin{pmatrix} 0 & (\widehat{D} + \mathfrak{m}\operatorname{sgn}\gamma) + \mathfrak{d}_t \\ (\widehat{D} + \mathfrak{m}\operatorname{sgn}\gamma) - \mathfrak{d}_t & 0 \end{pmatrix}$$

on $\mathbb{R} \times \widehat{X_+}$ near $\{0\} \times \widehat{X_+}$, where \widehat{D} is the extension of $\left. D \right|_{X_+}$ to $\widehat{X_+}$.

Witten localisation

Theorem 7.3 (Witten localisation For $m \gg 0$, we have

$$\operatorname{Ind}(\widehat{\mathcal{D}}_{\mathfrak{m}}) = \operatorname{Ind}\begin{pmatrix} 0 & (\widehat{D} + \mathfrak{m}\operatorname{sgn}\gamma) + \mathfrak{d}_{\mathfrak{t}} \\ (\widehat{D} + \mathfrak{m}\operatorname{sgn}\gamma) - \mathfrak{d}_{\mathfrak{t}} & 0 \end{pmatrix}$$

The proof is too technical to state here, but the idea is simple.

Proposition 7.4 (Product formula)

$$\operatorname{Ind} \begin{pmatrix} 0 & (\widehat{D} + \mathfrak{m}\operatorname{sgn}\gamma) + \vartheta_{t} \\ (\widehat{D} + \mathfrak{m}\operatorname{sgn}\gamma) - \vartheta_{t} & 0 \end{pmatrix} = \operatorname{Ind}(\widehat{D})$$

Theorem 7.5 (FFMOYY arXiv:1910.01987) For $m \gg 0$, we have a formula

$$\mathsf{Ind}_{\mathsf{APS}}(\left.\mathsf{D}\right|_{X_{+}}) = rac{\eta(\mathsf{D} + \mathfrak{m}\kappa\gamma) - \eta(\mathsf{D} - \mathfrak{m}\gamma)}{2}$$

(Proof) By definition, we have $Ind_{APS}(D|_{X_+}) = Ind(\widehat{D})$. By the product formula, we have

$$\mathsf{Ind}(\widehat{D}) = \mathsf{Ind} \begin{pmatrix} 0 & (\widehat{D} + \mathfrak{m}\operatorname{sgn}\gamma) + \mathfrak{d}_t \\ (\widehat{D} + \mathfrak{m}\operatorname{sgn}\gamma) - \mathfrak{d}_t & 0 \end{pmatrix}.$$

By the Witten localisation argument, for $\mathfrak{m} \gg 0$, we have

$$\operatorname{Ind} \begin{pmatrix} 0 & (\widehat{D} + \mathfrak{m}\operatorname{sgn}\gamma) + \mathfrak{d}_{\mathfrak{t}} \\ (\widehat{D} + \mathfrak{m}\operatorname{sgn}\gamma) - \mathfrak{d}_{\mathfrak{t}} & 0 \end{pmatrix} = \operatorname{Ind}(\widehat{\mathcal{D}}_{\mathfrak{m}}).$$

By the APS formula, we have

$$\operatorname{Ind}(\widehat{\mathbb{D}}_{\mathfrak{m}}) = \frac{\eta(D + \mathfrak{m}\kappa\gamma) - \eta(D - \mathfrak{m}\gamma)}{2}.$$

Thus, we have proved the formula.