The Atiyah－Patodi－Singer index and domain－wall fermion Dirac operators

松尾信一郎
名古屋大学大学院多元数理科学研究科
2020年10月6日＠東大数理トポロジー火曜セミナー

Introduction

This talk is based on a joint work
arXiv:1910.01987 (to appear in CMP)
of three mathematicians and three physicists:

- Mikio Furuta
- Mayuko Yamashita
- Shinichiroh Matsuo
- Hidenori Fukaya
- Tetsuya Onogi
- Satoshi Yamaguchi

Main theorem

Theorem 1.1 (FFMOYY, arXiv:1910.01987, to appear in CMP)

For $m \gg 0$, we have a formula

$$
\operatorname{Ind}_{A P S}\left(\left.D\right|_{X_{+}}\right)=\frac{\eta(D+m k \gamma)-\eta(D-m \gamma)}{2} .
$$

- The Atiyah-Patodi-Singer index is expressed in terms of the η-invariant of domain-wall fermion Dirac operators.
- The original motivation comes from the bulk-edge correspondence of topological insulators in condensed matter physics.
- The proof is based on a Witten localisation argument.

Plan of the talk

1. Reviews of the Atiyah-Singer index and the eta invariant
2. The Atiyah-Patodi-Singer index
3. Domain-wall fermion Dirac operators
4. Main theorem
5. The proof of a toy model
6. The proof of the main theorem: Witten localisation

Index and Eta

Let X be a closed manifold and $S \rightarrow X$ a hermitian bundle. Assume $\operatorname{dim} X$ is even. Assume S is $\mathbb{Z} / 2$-graded: there exists $\gamma: \Gamma(S) \rightarrow \Gamma(S)$ such that $\gamma^{2}=i d_{S}$.

$$
\gamma=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Let $\mathrm{D}: \Gamma(\mathrm{S}) \rightarrow \Gamma(\mathrm{S})$ be a 1st order elliptic differential operator. Assume D is odd and self-adjoint:

$$
\mathrm{D}=\left(\begin{array}{cc}
0 & \mathrm{D}_{-} \\
\mathrm{D}_{+} & 0
\end{array}\right) \text { and } \mathrm{D}_{-}=\left(\mathrm{D}_{+}\right)^{*} .
$$

Definition 2.1 (Atiyah-Singer index)
We define the index Ind D of a self-adjoint, odd, elliptic operator D by

$$
\begin{aligned}
\text { Ind } \mathrm{D} & : \\
& =\operatorname{dim} \text { Ker } \mathrm{D}_{+}-\operatorname{dim} \text { Ker } \mathrm{D}_{-} \\
& =\operatorname{dim} \text { Ker } \mathrm{D}_{+}-\operatorname{dim} \text { Coker } \mathrm{D}_{+} .
\end{aligned}
$$

Fix $\mathrm{m} \neq 0$ and consider

$$
D+m \gamma=\left(\begin{array}{cc}
m & D_{-} \\
D_{+} & -m
\end{array}\right): \Gamma(S) \rightarrow \Gamma(S) .
$$

This is self-adjoint but no longer odd; thus, its spectrum is real but not symmetric around 0 . For $s \in \mathbb{C}$, let

$$
\eta(D+m \gamma)(s):=\sum_{\lambda_{j}} \frac{\operatorname{sign} \lambda_{j}}{\left|\lambda_{j}\right|^{s}}
$$

where $\left\{\lambda_{j}\right\}=\operatorname{Spec}(D+m \gamma)$. Note that $\lambda_{j} \neq 0$ for any j.

- This series converges absolutely when $\operatorname{Re}(s) \gg 0$.
- We can extend $\eta(D+m \gamma)(s)$ meromorphically to the whole complex plane \mathbb{C}.
- It is a quite non-trivial result that 0 is not a pole of $\eta(D+m \gamma)(s)$.

Definition 2.2

$$
\eta(D+m \gamma):=\eta(D+m \gamma)(0) .
$$

The eta invariant describes the overall asymmetry of the spectrum of a self-adjoint operator.

Proposition 2.3

For any $m>0$, we have a formula

$$
\operatorname{Ind}(D)=\frac{\eta(D+m \gamma)-\eta(D-m \gamma)}{2}
$$

This formula might be unfamiliar; however, we can prove it easily, for example, by diagonalising D^{2} and γ simultaneously. We will explain another proof later.

We will generalise this formula to handle compact manifolds with boundary and the Atiyah-Patodi-Singer index.

Proposition 2.4

For any $m>0$, we have a formula

$$
\operatorname{Ind}(D)=\frac{\eta(D+m \gamma)-\eta(D-m \gamma)}{2}
$$

We will generalise this formula to handle compact manifolds with boundary and the Atiyah-Patodi-Singer index by using domain-wall fermion Dirac operators.

Theorem 2.5 (FFMOYY arXiv:1910.01987)

For $m \gg 0$, we have a formula

$$
\operatorname{Ind}_{A P S}\left(\left.D\right|_{X_{+}}\right)=\frac{\eta(D+m k \gamma)-\eta(D-m \gamma)}{2}
$$

Next, we review the Atiyah-Patodi-Singer index.

The Atiyah-Patodi-Singer index

Let $\mathrm{Y} \subset \mathrm{X}$ be a separating submanifold that decomposes X into two compact manifolds X_{+}and X_{-} with common boundary Y . Assume Y has a collar neighbourhood isometric to $(-4,4) \times \mathrm{Y}$.

$$
(-4,4) \times Y \subset X=X-\bigcup_{Y} X_{+}
$$

Assume $S \rightarrow X$ and $\mathrm{D}: \Gamma(S) \rightarrow \Gamma(S)$ are standard on $(-4,4) \times \mathrm{Y}$ in the sense that there exists a hermitian bundle $E \rightarrow Y$ and a self-adjoint elliptic operator $A: \Gamma(E) \rightarrow \Gamma(E)$ such that $S=\mathbb{C}^{2} \otimes E$ and

$$
\mathrm{D}=\left(\begin{array}{cc}
0 & \mathrm{D}_{+}^{*} \\
\mathrm{D}_{+} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & \partial_{\mathfrak{u}}+A \\
-\partial_{\mathfrak{u}}+A & 0
\end{array}\right)
$$

$$
\text { on }(-4,4) \times Y \text {. }
$$

Assume also A has no zero eigenvalues.

Let $\widehat{X_{+}}:=(-\infty, 0] \times Y \cup X_{+}$.

We assumed D is translation invariant on $(-4,4) \times \mathrm{Y}$:

$$
D=\left(\begin{array}{cc}
0 & D_{+}^{*} \\
D_{+} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & \partial_{\mathfrak{u}}+A \\
-\partial_{\mathfrak{u}}+A & 0
\end{array}\right) .
$$

Thus, $\left.\mathrm{D}\right|_{\mathrm{X}_{+}}$naturally extends to $\widehat{\mathrm{X}_{+}}$, which is denoted by $\widehat{\mathrm{D}}$.
This is Fredholm if A has no zero eigenvalues.
Definition 3.1 (Atiyah-Patodi-Singer index)

$$
\operatorname{Ind}_{\mathrm{APS}}\left(\left.\mathrm{D}\right|_{\mathrm{X}_{+}}\right):=\operatorname{Ind}(\widehat{\mathrm{D}})
$$

Domain-wall fermion Dirac

 operatorsLet $\kappa: X \rightarrow \mathbb{R}$ be a step function such that $\kappa \equiv \pm 1$ on $X_{ \pm}$.

Definition 4.1

For $m>0$,

$$
\mathrm{D}+\mathrm{m} k \gamma: \Gamma(\mathrm{S}) \rightarrow \Gamma(\mathrm{S})
$$

is called a domain-wall fermion Dirac operator.
$\mathrm{D}+\mathrm{m} \mathrm{K} \gamma$ is self-adjoint but not odd.

Proposition 4.2
If $\operatorname{Ker} A=\{0\}$, then $\operatorname{Ker}(D+m \kappa \gamma)=\{0\}$ for $m \gg 0$.
Next we will define $\eta(D+m \kappa \gamma)$.

The eta invariant of domain-wall fermion Dirac operators

Since $\operatorname{Ker}(D+m \kappa \gamma)=\{0\}$, there exists a constant $C_{m}>0$ such that $\operatorname{Ker}(D+m \kappa \gamma+f)=\{0\}$ if $\|f\|_{2}<C_{m}$.

Proposition 4.3 (Corollary of the variational formula of the eta invariant)

Assume both $m k \gamma+f_{1}$ and $m k \gamma+f_{2}$ are smooth and self-adjoint with $\left\|f_{1}\right\|_{2}<C_{m}$ and $\left\|f_{2}\right\|_{2}<C_{m}$. Then, we have

$$
\eta\left(D+m \kappa \gamma+f_{1}\right)=\eta\left(D+m \kappa \gamma+f_{2}\right) .
$$

Definition 4.4

For any f with $\|\mathrm{f}\|_{2}<\mathrm{C}_{\mathrm{m}}$ and $\mathrm{m} \kappa \gamma+\mathrm{f}$ smooth and self-adjoint, we set

$$
\eta(D+m k \gamma):=\eta(D+m k \gamma+f) .
$$

Main theorem

Main theorem

Theorem 5.1 (FFMOYY arXiv:1910.01987)

For $m \gg 0$, we have a formula

$$
\operatorname{Ind}_{A P S}\left(\left.D\right|_{X_{+}}\right)=\frac{\eta\left(D+m_{k} \gamma\right)-\eta(D-m \gamma)}{2} .
$$

- The Atiyah-Patodi-Singer index is expressed in terms of the η-invariant of domain-wall fermion Dirac operators.
- The original motivation comes from physics.
- The proof is based on a Witten localisation argument.

The proof of a toy model

Toy model

Proposition 6.1

For any $m>0$, we have a formula

$$
\operatorname{Ind}(D)=\frac{\eta(D+m \gamma)-\eta(D-m \gamma)}{2}
$$

As a warm-up, we will prove this formula in the spirit of our proof of the main theorem.

Let $\widehat{\mathrm{k}}_{\mathrm{AS}}: \mathbb{R} \times \mathrm{X} \rightarrow \mathbb{R}$ be a step function such that $\widehat{\mathrm{k}}_{\mathrm{AS}} \equiv 1$ on $(0, \infty) \times X$ and $\widehat{\mathrm{k}}_{\mathrm{AS}} \equiv-1$ on $(-\infty, 0) \times X$.

We consider $\widehat{\mathrm{D}}_{\mathrm{m}}: \mathrm{L}^{2}(\mathbb{R} \times \mathrm{X} ; \mathrm{S} \oplus \mathrm{S}) \rightarrow \mathrm{L}^{2}(\mathbb{R} \times \mathrm{X} ; \mathrm{S} \oplus \mathrm{S})$ defined by

$$
\widehat{\mathrm{D}}_{\mathrm{m}}:=\left(\begin{array}{cc}
0 & \left(\mathrm{D}+\mathrm{m}_{\left.\widehat{\kappa}_{A S} \gamma\right)+\partial_{\mathrm{t}}}^{\left(\mathrm{D}+\mathrm{m} \widehat{\kappa}_{A S} \gamma\right)-\partial_{\mathrm{t}}}\right.
\end{array}\right) .
$$

This is a Fredholm operator.

Model case: the Jackiw-Rebbi solution on \mathbb{R}

For any $m>0$, we have

$$
\frac{d}{d t} e^{-m|t|}=-m \operatorname{sgn} e^{-m|t|}
$$

where $\operatorname{sgn}(\pm t)= \pm 1$. As $m \rightarrow \infty$, the solution concentrates at 0 .

$$
\begin{gathered}
\widehat{\mathrm{D}}_{\mathrm{m}}:=\left(\begin{array}{cc}
0 & \left(\mathrm{D}+\mathrm{m} \widehat{\kappa}_{A S} \gamma\right)+\partial_{\mathrm{t}} \\
\left(\mathrm{D}+\mathrm{m} \widehat{\kappa}_{A S} \gamma\right)-\partial_{\mathrm{t}} & 0
\end{array}\right) \\
\left(\mathrm{e}^{-\mathrm{m}|\mathrm{t}|}\right)^{\prime}=-\mathrm{m} \operatorname{sgn} e^{-\mathrm{m}|\mathrm{t}|}
\end{gathered}
$$

Proposition 6.2 (Product formula)

$$
\operatorname{Ind}(D)=\operatorname{Ind}\left(\widehat{D}_{m}\right)
$$

(Proof) Assume $\mathrm{D} \phi=0$. Set $\phi_{ \pm}:=(\phi \pm \gamma \phi) / 2$. Then, we have

$$
\left(\begin{array}{cc}
0 & \left(\mathrm{D}+\mathrm{m} \widehat{\mathrm{k}}_{A S} \gamma\right)+\partial_{\mathrm{t}} \\
\left(\mathrm{D}+\mathrm{m} \widehat{\mathrm{k}}_{\mathrm{AS}} \gamma\right)-\partial_{\mathrm{t}} & 0
\end{array}\right)\binom{\mathrm{e}^{-\mathfrak{m}|\mathrm{t}|} \phi_{-}}{e^{-\mathfrak{m}|\mathrm{t}|} \phi_{+}}=0 .
$$

$$
\widehat{\mathrm{D}}_{\mathrm{m}}:=\left(\begin{array}{cc}
0 & \left(\mathrm{D}+\mathrm{m} \widehat{\kappa}_{A S} \gamma\right)+\partial_{\mathrm{t}} \\
\left(\mathrm{D}+\mathrm{m} \widehat{\mathrm{k}}_{\mathrm{AS}} \gamma\right)-\partial_{\mathrm{t}} & 0
\end{array}\right)
$$

Proposition 6.3 (APS formula)

$$
\operatorname{Ind}\left(\widehat{D}_{m}\right)=\frac{\eta(D+m \gamma)-\eta(D-m \gamma)}{2}
$$

(Proof)

- Note that $\mathrm{D}+\mathrm{m} \widehat{\mathrm{k}}_{\mathrm{AS}}(\pm 1, \cdot) \gamma=\mathrm{D} \pm \mathrm{m} \gamma$.
- Perturb $\widehat{K}_{A S}$ slightly near $\{0\} \times X$ to get a smooth operator.
- Use the Atiyah-Patodi-Singer index theorem on $\mathbb{R} \times X$.
- Since $\operatorname{dim} \mathbb{R} \times X$ is odd, the constant term in the asymptotic expansion of the heat kernel vanishes.

$$
\widehat{\mathrm{D}}_{\mathrm{m}}:=\left(\begin{array}{cc}
0 & \left(\mathrm{D}+\mathrm{m} \widehat{\kappa}_{A S} \gamma\right)+\partial_{\mathrm{t}} \\
\left(\mathrm{D}+\mathrm{m} \widehat{\mathrm{k}}_{\mathrm{AS}} \gamma\right)-\partial_{\mathrm{t}} & 0
\end{array}\right)
$$

Proposition 6.4

$$
\operatorname{Ind}(D)=\frac{\eta(D+m \gamma)-\eta(D-m \gamma)}{2}
$$

(Proof) By the product formula, we have

$$
\operatorname{Ind}(D)=\operatorname{Ind}\left(\widehat{D}_{m}\right)
$$

By the APS formula, we have

$$
\operatorname{Ind}\left(\widehat{D}_{m}\right)=\frac{\eta(D+m \gamma)-\eta(D-m \gamma)}{2}
$$

The proof of the main theorem

Outline of the proof

Theorem 7.1 (FFMOYY arXiv:1910.01987)

For $m \gg 0$, we have a formula

$$
\operatorname{Ind}_{A P S}\left(\left.D\right|_{X_{+}}\right)=\frac{\eta(D+m k \gamma)-\eta(D-m \gamma)}{2}
$$

The proof is modelled on the original embedding proof of the Atiyah-Singer index theorem.

1. Embed $\widehat{X_{+}}$into $\mathbb{R} \times X$.
2. Extend both $\widehat{\mathrm{D}}$ on $\widehat{\mathrm{X}_{+}}$and $\mathrm{D}+\mathrm{m} \kappa \gamma$ on $\{10\} \times X$ to $\mathbb{R} \times X$.
3. Use the product formula, the APS formula, and a Witten localisation argument.

Embedding of ${\widehat{X_{+}}}^{\text {into }} \mathbb{R} \times X$

$\widehat{X_{+}}:=(-\infty, 0] \times Y \cup X_{+}$.

We can embed $\widehat{\mathrm{X}_{+}}$into $\mathbb{R} \times \mathrm{X}$ as follows:

Extension of $\widehat{\mathrm{D}}$ and $\mathrm{D}+\mathrm{m}_{\mathrm{k}} \gamma$ to $\mathbb{R} \times X$

$(\mathbb{R} \times \mathrm{X}) \backslash \widehat{\mathrm{X}_{+}}$has two connected components. We denote by $(\mathbb{R} \times \mathrm{X})_{-}$the one containing $\{-10\} \times X_{+}$and by $(\mathbb{R} \times X)_{+}$the other half. Let $\widehat{\mathrm{K}}_{\text {APs }}: \mathbb{R} \times X \rightarrow[-1,1]$ be a step function such that $\widehat{\mathrm{k}}_{\mathrm{APS}} \equiv \pm 1$ on $(\mathbb{R} \times \mathrm{X})_{ \pm}$.

We consider

$$
\widehat{\mathcal{D}}_{\mathfrak{m}}:=\left(\begin{array}{cc}
0 & \left(\mathrm{D}+\mathrm{m} \widehat{\mathrm{k}}_{\mathrm{APS}} \gamma\right)+\partial_{\mathrm{t}} \\
\left(\mathrm{D}+\mathrm{m} \widehat{\mathrm{k}}_{\mathrm{APS}} \gamma\right)-\partial_{\mathrm{t}} & 0
\end{array}\right) .
$$

$$
\widehat{\mathcal{D}}_{\mathrm{m}}:=\left(\begin{array}{cc}
0 & \left(\mathrm{D}+\mathrm{m} \widehat{\mathrm{k}}_{\mathrm{APS}} \gamma\right)+\partial_{\mathrm{t}} \\
\left(\mathrm{D}+\mathrm{m} \widehat{\mathrm{k}}_{\mathrm{APS}} \gamma\right)-\partial_{\mathrm{t}} & 0
\end{array}\right)
$$

$$
\widehat{\mathrm{K}}_{\mathrm{APS}} \equiv \mathrm{~K} \text { on }\{10\} \times \mathrm{X} .
$$

Proposition 7.2 (APS formula)

$$
\operatorname{Ind}\left(\widehat{\mathcal{D}}_{\mathrm{m}}\right)=\frac{\eta(\mathrm{D}+\mathrm{m} \mathrm{k} \gamma)-\eta(\mathrm{D}-\mathrm{m} \gamma)}{2}
$$

$$
\widehat{\mathcal{D}}_{\mathrm{m}}:=\left(\begin{array}{cc}
0 & \left(\mathrm{D}+\mathrm{m} \widehat{\mathcal{K}}_{\text {APS }} \gamma\right)+\partial_{\mathrm{t}} \\
\left(\mathrm{D}+\mathrm{m} \widehat{\mathcal{K}}_{\text {APS }} \gamma\right)-\partial_{\mathrm{t}} & 0
\end{array}\right) .
$$

The restriction of $\widehat{\mathcal{D}}_{\mathfrak{m}}$ to a tubular neighbourhood of $\widehat{X_{+}}$is isomorphic to

$$
\left(\begin{array}{cc}
0 & (\widehat{\mathrm{D}}+\mathrm{m} \operatorname{sgn} \gamma)+\partial_{\mathrm{t}} \\
(\widehat{\mathrm{D}}+\mathrm{m} \operatorname{sgn} \gamma)-\partial_{\mathrm{t}} & 0
\end{array}\right)
$$

on $\mathbb{R} \times \widehat{X_{+}}$near $\{0\} \times \widehat{X_{+}}$, where \widehat{D} is the extension of $\left.D\right|_{X_{+}}$to $\widehat{X_{+}}$.

Witten localisation

Theorem 7.3 (Witten localisation)

For $m \gg 0$, we have

$$
\operatorname{Ind}\left(\widehat{\mathcal{D}}_{m}\right)=\operatorname{Ind}\left(\begin{array}{cc}
0 & (\widehat{\mathrm{D}}+m \operatorname{sgn} \gamma)+\partial_{t} \\
(\widehat{\mathrm{D}}+m \operatorname{sgn} \gamma)-\partial_{t} & 0
\end{array}\right)
$$

The proof is too technical to state here, but the idea is simple.

$$
\left(\begin{array}{cc}
0 & \partial_{t}+m \operatorname{sgn} \\
-\partial_{t}+m \operatorname{sgn} & 0
\end{array}\right)\binom{0}{e^{-m|t|}}=\binom{0}{0} .
$$

Proposition 7.4 (Product formula)

$$
\operatorname{Ind}\left(\begin{array}{cc}
0 & (\widehat{D}+m \operatorname{sgn} \gamma)+\partial_{t} \\
(\widehat{D}+m \operatorname{sgn} \gamma)-\partial_{t} & 0
\end{array}\right)=\operatorname{Ind}(\widehat{D})
$$

Theorem 7.5 (FFMOYY arXiv:1910.01987)

For $m \gg 0$, we have a formula

$$
\operatorname{Ind}_{A P S}\left(\left.D\right|_{X_{+}}\right)=\frac{\eta(D+m \kappa \gamma)-\eta(D-m \gamma)}{2} .
$$

(Proof) By definition, we have $\operatorname{Ind}{ }_{\text {APS }}\left(\left.\mathrm{D}\right|_{\mathrm{X}_{+}}\right)=\operatorname{Ind}(\widehat{\mathrm{D}})$.
By the product formula, we have

$$
\operatorname{Ind}(\widehat{D})=\operatorname{Ind}\left(\begin{array}{cc}
0 & (\widehat{D}+m \operatorname{sgn} \gamma)+\partial_{t} \\
(\widehat{D}+m \operatorname{sgn} \gamma)-\partial_{t} & 0
\end{array}\right) .
$$

By the Witten localisation argument, for $m \gg 0$, we have

$$
\operatorname{Ind}\left(\begin{array}{cc}
0 & (\widehat{D}+m \operatorname{sgn} \gamma)+\partial_{t} \\
(\widehat{D}+m \operatorname{sgn} \gamma)-\partial_{t} & 0
\end{array}\right)=\operatorname{Ind}\left(\widehat{\mathcal{D}}_{m}\right) .
$$

By the APS formula, we have

$$
\operatorname{Ind}\left(\widehat{\mathcal{D}}_{m}\right)=\frac{\eta(D+m \kappa \gamma)-\eta(D-m \gamma)}{2} .
$$

Thus, we have proved the formula.

