The Atiyah-Patodi-Singer index and domain-wall fermion Dirac operators
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Introduction




This talk is based on a joint work
arXiv:1910.01987 (to appear in CMP)
of three mathematicians and three physicists:

¢ Mikio Furuta ¢ Hidenori Fukaya
¢ Mayuko Yamashita ¢ Tetsuya Onogi

e Shinichiroh Matsuo ¢ Satoshi Yamaguchi
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Main theorem

Theorem 1.1 (FFMQOYY, arXiv:1910.01987, to appear in CMP)
For m > 0, we have a formula
n(D + mky) —n(D —my)

Indaps (Dlx, ) = 3 o

¢ The Atiyah-Patodi-Singer index is expressed in terms of the n-invariant of domain-wall fermion
Dirac operators.

e The original motivation comes from the bulk-edge correspondence of topological insulators in
condensed matter physics.

* The proof is based on a Witten localisation argument.
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Plan of the talk

o 1 A~ W N

. Reviews of the Atiyah-Singer index and the eta invariant
. The Atiyah-Patodi-Singer index

. Domain-wall fermion Dirac operators

. Main theorem

. The proof of a toy model

. The proof of the main theorem: Witten localisation
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Index and Eta




Let X be a closed manifold and S — X a hermitian bundle. Assume dim X is even. Assume S is
Z/2-graded: there exists y: I'(S) — I'(S) such that v? =ids.

= %)

Let D: T'(S) — I'(S) be a 1st order elliptic differential operator. Assume D is odd and self-adjoint:

0 D_ )
D_<D+ O)andD_(D+).

Definition 2.1 (Atiyah-Singer index)
We define the index Ind D of a self-adjoint, odd, elliptic operator D by

IndD :=dimKerD. — dimKerD _
=dimKer D, — dim Coker D .
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Fix m # 0 and consider

m D_
Dy —m

D+my—< >:F(S)—>T‘(S).

This is self-adjoint but no longer odd; thus, its spectrum is real but not symmetric around 0.

For s € C, let
sign A
[Azs 7

n(D +my)(s) =)

Aj

where {A;} = Spec(D + my). Note that A; 7 0 for any j.

e This series converges absolutely when Re(s) > 0.
e We can extend n(D + my)(s) meromorphically to the whole complex plane C.

e Itis a quite non-trivial result that 0 is not a pole of (D + my)(s).

Definition 2.2

n(D + my) :=n(D + my)(0).

The eta invariant describes the overall asymmetry of the spectrum of a self-adjoint operator.
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Proposition 2.3
For any m > 0, we have a formula

n(D +my) —n(D — my)

Ind(D) = 3

This formula might be unfamiliar; however, we can prove it easily, for example, by diagonalising D?
and vy simultaneously. We will explain another proof later.

We will generalise this formula to handle compact manifolds with boundary and the
Atiyah-Patodi-Singer index.
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Proposition 2.4
For any m > 0, we have a formula

n(D +my) —n(D — my)
2

Ind(D) =

We will generalise this formula to handle compact manifolds with boundary and the
Atiyah-Patodi-Singer index by using domain-wall fermion Dirac operators.

Theorem 2.5 (FFMOYY arXiv:1910.01987)
For m > 0, we have a formula
n(D + mky) —n(D — my)

Indaps(Dlx ) = 5 :

Next, we review the Atiyah-Patodi-Singer index.
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The Atiyah-Patodi-Singer index




Let Y C X be a separating submanifold that decomposes X into two compact manifolds X and X_
with common boundary Y. Assume Y has a collar neighbourhood isometric to (—4,4) x Y.

(—4,4) xYCX=X_[JX;4
Y
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Assume S — X and D: I'(S) — TI'(S) are standard on (—4,4) X Y in the sense that there exists a
hermitian bundle E — Y and a self-adjoint elliptic operator A.: '(E) — I'(E) such that S = C’QE

and
o_ (0 Di\_ 0 du+A
D. 0 —du+A 0

on (—4,4) x Y.

Assume also A has no zero eigenvalues.
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Let X4 = (—o00,0] X YU X,.

(700,0) XY Xt

We assumed D is translation invariant on (—4,4) x Y:
o_ (0 DI\_ 0 du+ A
D, 0 —du+A 0 :
Thus, D|X+ naturally extends to 5(:, which is denoted by D.

This is Fredholm if A has no zero eigenvalues.

Definition 3.1 (Atiyah-Patodi-Singer index)
IndAps( D|X+) = Ind(D)
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Domain-wall fermion Dirac
operators




Let k: X — R be a step function such that Kk = £1 on X..

K

Definition 4.1
For m > 0,
D + mky: T'(S) = T'(S)

is called a domain-wall fermion Dirac operator.
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D + mky is self-adjoint but not odd.

K
X v X,
0 du+A
D= —44) XY
(—au+A 0 )O"( 4) X

Proposition 4.2
If Ker A = {0}, then Ker(D + mky) = {0} for m > 0.

Next we will define n(D + mky).
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The eta invariant of domain-wall fermion Dirac operators

Since Ker(D + mky) = {0}, there exists a constant C,, > 0 such that Ker(D + m«ky + f) = {0} if
Ifll2 < Cm.

Proposition 4.3 (Corollary of the variational formula of the eta invariant)
Assume both mky + f; and mky + f, are smooth and self-adjoint with [[f;]» < Cm and
[[f2]l2 < Cm. Then, we have

n(D + mky + f1) =n(D + mky + f2).

Definition 4.4
For any f with ||f||2 < Cm and mky + f smooth and self-adjoint, we set

n(D + mky) :=n(D + mky + f).
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Main theorem




Main theorem

Theorem 5.1 (FFMOYY arXiv:1910.01987)
For m > 0, we have a formula
n(D + mky) —n(D —my)

Indaps (Dlx , ) = 5 .

* The Atiyah-Patodi-Singer index is expressed in terms of the n-invariant of domain-wall fermion
Dirac operators.

e The original motivation comes from physics.

* The proof is based on a Witten localisation argument.
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The proof of a toy model




Toy model

Proposition 6.1
For any m > 0, we have a formula
(D +my)—n(D —my)

Ind(D) = 1 . .

As a warm-up, we will prove this formula in the spirit of our proof of the main theorem.
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Let Kas: R X X — R be a step function such that Kas = 1 on (0, 0) X X and Kas = —1 on
(—o00,0) x X.

A)
>
n

We consider D : L2(R x X; S® S) — L2(R X X; S @ S) defined by

= 0 (D +mKasy) + 0t
D= ; .
(D + mKasy) — 0t 0

This is a Fredholm operator.
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Model case: the Jackiw-Rebbi solution on R

For any m > 0, we have
4.
dt

where sgn(+t) = £1. As m — oo, the solution concentrates at 0.

—mlt] _ —m|t|
- ’

—msgne

—m|t|

e msgn

0 9 + msgn 0 [0
—0¢ + msgn 0 et~ lo)"
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A)
[
I1f
+

/Ii/\g — *1
D — 0 (D + mkasy) + 0t
™ (D 4 miasy) — 9t 0
(em™t) = —msgne ™I

Proposition 6.2 (Product formula)

Ind(D) = Ind(Dm)

(Proof) Assume D¢ = 0. Set b+ := (b £ yd) /2. Then, we have

(0] (D + mKasy) + 0+ eim‘tld), —0
(D + mKasy) — 0¢ 0 271“‘t|(];)4r -
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Kas = —1
~ 0] (D + mKasy) + 0¢
D 8= _
(D + mkasy) — 0t 0
Proposition 6.3 (APS formula)
Ind(D,,) = AP +my) —n(D — my)

2

(Proof)
e Note that D + mKas(£1,:)y = D & my.
e Perturb Kas slightly near {0} x X to get a smooth operator.
e Use the Atiyah-Patodi-Singer index theorem on R x X.
e Since dimR X X is odd, the constant term in the asymptotic expansion of the heat kernel vanishes.
|
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RAS — *’[
Do — 0 (D + mKasy) + ¢
™ (D 4 miasy) — 0t 0
Proposition 6.4
D —n(D —
Ind(D) = 1P +my) —n(D —my)

2

(Proof) By the product formula, we have
Ind(D) = Ind(D ).
By the APS formula, we have

Ind(D ) = n(Derv);n(Dfmv).
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The proof of the main theorem




Outline of the proof

Theorem 7.1 (FFMOYY arXiv:1910.01987)

For m > 0, we have a formula

D + — (D —
IndAPS(D|x+):n( vaJZ n( my)

The proof is modelled on the original embedding proof of the Atiyah-Singer index theorem.
1. Embed i: into R x X.
2. Extend both D on )/(: and D + mky on {10} x X to R x X.

3. Use the product formula, the APS formula, and a Witten localisation argument.
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Embedding of )/(: into R x X

(—00,0) XY

We can embed >/(: into R x X as follows:

X
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Extension of D and D + mky to R x X

(R x X)\ i: has two connected components. We denote by (R x X)_ the one containing
{—10} x X and by (R x X) the other half. Let Kaps: R X X — [—1, 1] be a step function such

that Kaps = +=1 on (R x X)+.
kﬁg = +1

Kaps = +— | B

< 0 (D + mKapsy) + at)

We consider

(W)
\

m ‘=

(D + mKapsy) — 0t 0
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gﬁs = +1
Raps = + X, g

=~ 0 (D + mKapsy) + 0t
D, o= ~
(D + mKapsy) — Ot 0
/K\ApsE K on {10}>< X. ]

Proposition 7.2 (APS formula)

n(D + mky) —n(D —my)
2

Ind(Dm) =
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KAPS = T~

1

D, = (( 0 (DJFmEAPSV)‘Fat)'

D + mKapsy) — Ot 0

The restriction of D, to a tubular neighbourhood of X is isomorphic to

(0] (6+msgny)+at
(D + msgny) — 0¢ 0]

on R x i: near {0} x i:, where D is the extension of Dy . o f:
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Witten localisation

Theorem 7.3 (Witten localisation)
For m > 0, we have

P 0 (15+msgny)+at
D) = _ .
Ind( ) = Ind ((D+msgny)—a:t (0] )

The proof is too technical to state here, but the idea is simple.

—m|t|

e msgn

0 Ot + msgn 0 0
—0¢ + msgn 0 e~ mitl 0/
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Proposition 7.4 (Product formula)

nd [ - (0] (D + msgny) + 0¢ =Ind(f))
(D + msgny) — 0¢ 0]
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Theorem 7.5 (FFMOYY arXiv:1910.01987)
For m > 0, we have a formula

8) —n(D—
IndAPS(D|X+):n( +mey) —n(D —my)

2
(Proof) By definition, we have Indaps ( D‘x+) = lnd(ﬁ).
By the product formula, we have
Ind(D) = Ind [~ (0] (D + msgny) + 0t .
(D + msgny) — 0¢ (0]
By the Witten localisation argument, for m > 0, we have
ndl - 0] (D + msgnvy) + 0t — Ind(Dry).
(D + msgny) — 0¢ (0]

By the APS formula, we have

Ind(D ) = n(D + va)z—n(D —my)

Thus, we have proved the formula. |
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